




# Rollout-Based Charging Strategy for Electric Trucks with Hours-of-Service Regulations

Ting Bai $^{\dagger}$ , Yuchao Li $^{\ddagger}$ , Karl H. Johansson $^{\dagger}$ , Jonas Mårtensson $^{\dagger}$ 

<sup>†</sup>Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden <sup>‡</sup>School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA



### Road Freight Electrification



Charging of heavy, electric truck (courtesy of Scania CV AB)

#### Positive impacts:

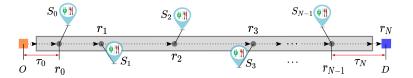
- 1) Reduce air and noise pollution
- 2) Mitigate climate change
- 3) Cope with energy shortages
- 4) Save operational cost
- 5) Lead to sustainable transport
- 6) ...

## Truck Electrification Lagging Behind...

- Insufficient battery Range anxiety
- Drivers need to follow HoS regulations



Limited driving range (200-600 km)

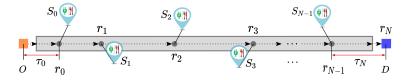



|                                | USA    | EU        | China  |
|--------------------------------|--------|-----------|--------|
| Continuous driving time (max.) | 8 h    | 4.5 h     | 4 h    |
| Mandatory rest time<br>(min.)  | 30 min | $45 \min$ | 20 min |
| Daily driving time<br>(max.)   | 11 h   | 9 h       | 10 h   |

Hours-of-service (HoS) regulations

**Problem:** How to design reliable and efficient **charging strategies** for electric trucks to complete delivery missions on time while aligning with the HoS regulations?

#### Route Model




Decision variables:

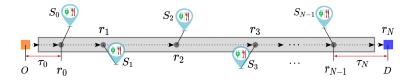
$$b_k, \tilde{b}_k \in \{0, 1\}, \quad t_k \in \Re_+$$

- $b_k$ : whether to charge at the station  $S_k$
- $\tilde{b}_k$ : whether to rest at  $S_k$
- $t_k$ : how long to charge the truck at  $S_k$  if  $b_k = 1$

### **Dynamics**



• The **remaining battery** upon arriving at  $r_{k+1}$ :


$$e_{k+1} = e_k + b_k \Delta e_k - \bar{P}\Big(2(b_k \vee \tilde{b}_k)d_k + \tau_{k+1}\Big)$$

 $\Delta e_k = t_k \min\{P_k, P_{\max}\} \le \text{battery capacity}$ 

▶ The **consecutive driving time** at *r*<sub>*k*+1</sub>:

$$c_{k+1} = au_{k+1} + (b_k \vee \tilde{b}_k)d_k + (1 - \tilde{b}_k)(c_k + b_k d_k)$$

### Constraints

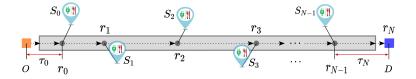


- Sufficient energy to reach  $S_k$ :  $e_k \ge$  battery for safe operation  $+\bar{P}d_k$
- HoS regulations:
  - $c_k + d_k \leq$  the maximum consecutive driving time
  - $\sum_{k=0}^{N} au_k + \sum_{k=0}^{N-1} 2(b_k \lor \tilde{b}_k) d_k \le$  the maximum daily driving time
- Delivery deadline:

$$\sum_{k=0}^{N-1} \max\left\{ \frac{b_k (2d_k + p_k + t_k), \tilde{b}_k (2d_k + T_r)}{\delta_k (2d_k + T_r)} \right\} \leq \Delta T$$

### The Optimal Charging Problem

$$\min_{\{(b_k, \tilde{b}_k, t_k)\}_{k=0}^{N-1}} F(b_0, \tilde{b}_0, t_0, \dots, b_{N-1}, \tilde{b}_{N-1}, t_{N-1})$$


$$= \sum_{k=0}^{N-1} \xi_k b_k t_k + \sum_{k=0}^{N-1} \max\left\{ b_k (2d_k + p_k + t_k), \tilde{b}_k (2d_k + T_r) \right\} \epsilon$$

Challenge: the problem is a Mixed Integer Program with bilinear constraints

- It cannot be directly solved by many standard solvers
- Exact solutions: iterate over all possible combinations of integer variables  $\rightarrow$  4<sup>N</sup> continuous optimization problems
- Linear transformation: it may still require an exponential number of iterations [see, p.480]<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>D.Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6. Belmont, MA, USA: Athena Sci., 1997.

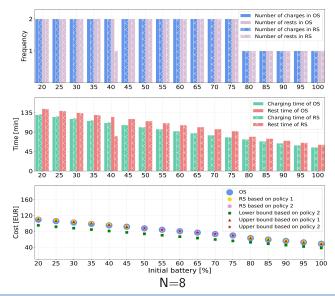
#### Rollout-Based Approximate Solution



Two base solutions:

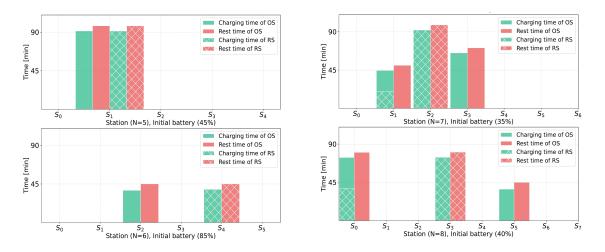
- Greedy solution: set  $(b_k, \tilde{b}_k) = (1, 1)$  if the remaining energy is insufficient to reach  $S_{k+1}$
- **Relaxed solution**: solve a relaxation of the original problem with  $b_k, \tilde{b}_k \in [0, 1]$
- ► Complexity: it requires solving at most 4*N* continuous optimization problems

## Simulation Studies (1)




The route of one truck.

- Routes are obtained via OpenStreetMap
- Data for electric trucks manufactured by Scania
  - P<sub>k</sub>=300 kW
  - $P_{\rm max} = 375 \text{ kW}$
  - e<sub>f</sub> = 468 kWh
  - $\bar{P} = 1.83 \text{ kWh/min}$
  - $p_k = 6 \min$
  - $\xi_k = 0.36 \in /kWh, \epsilon_k = 0.4 \in /min$
- EU's HoS regulations


## Simulation Studies (2)

▶ 6 scenarios (*N* is between 5 and 10, initial battery is between 20% and 100%)



## Simulation Studies (3)

Comparison between the optimal solution (OS) and rollout solution (RS).

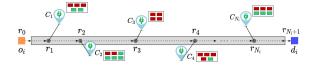


## Simulation Studies (4)

#### Table: Comparison between the OS and RS

| Ν                                    | 5    | 6    | 7    | 8     | 9     | 10     |
|--------------------------------------|------|------|------|-------|-------|--------|
| Average optimality gap-RS [%]        | 0    | 0.55 | 0.72 | 0.49  | 0.03  | 0.42   |
| Average optimality gap-UB [%]        | 1.04 | 5.46 | 2.23 | 0.48  | 4.28  | 1.72   |
| Average computation time of RS [s]   | 0.34 | 0.42 | 0.57 | 0.65  | 0.84  | 1.43   |
| Average computation time of OS [min] | 0.32 | 1.34 | 5.45 | 24.02 | 98.50 | 413.68 |

► The optimality gap between the RS and OS:


$$\frac{(F(RS) - F(OS)) \times 100}{F(OS)}$$

### Conclusions

- ▶ We formulate the optimal charging problem of electric trucks as a mixed-integer program
- ▶ A rollout-based charging strategy is proposed, which provides near-optimal solutions
  - It allows for handling the HoS regulations, subject to delivery deadlines
  - It is of high efficiency and is promising to be applied to real-time strategy planning
- Extensive simulation studies illustrate the effectiveness of the developed approach

#### Future work:

Developing optimal charging strategies with limited charging resources at stations

