# Semilinear Dynamic Programming: Analysis, Algorithms, and Certainty Equivalence Properties

Yuchao Li and Dimitri P. Bertsekas

Based on the paper "Semilinear Dynamic Programming: Analysis, Algorithms, and Certainty Equivalence Properties", by Y. Li and D.P. Bertsekas, arXiv:2501.04668, Jan. 2025

# Outline



- Deterministic Problems with Semilinear Structure
- Analytical and Algorithmic Results
- Equivalence Principles for Stochastic and Markov Jump Problems

#### 5 References

# An Investment Problem for Farming from 70s [Ber76]

- A farmer annually produces  $x_k$  units of a certain crop, stores  $(1 u_k)x_k$  and invests  $u_k x_k$  for improving production of next year, where  $0 \le u_k \le 1$
- The production of next year *x*<sub>*k*+1</sub> is given by

$$x_{k+1} = x_k + w_k x_k u_k,$$

where  $w_k$  is an independent random variable with  $E\{w_k\} = \bar{w}$  for all k

• The problem is to find the optimal investment policy so that it maximizes the total expected product stored over *N* years:

$$\mathop{E}_{\substack{w_k\\=0,1,\dots,N-1}}\left\{x_N + \sum_{k=0}^{N-1}(1-u_k)x_k\right\}$$

#### Key characteristics of the problem

- The system and the cost have bilinear structure: *w<sub>k</sub>x<sub>k</sub>u<sub>k</sub>* in the system equation and *u<sub>k</sub>x<sub>k</sub>* in the cost
- Nonegative states and bounded control  $0 \le u_k \le 1$

k

# Exact Solution via Dynamic Programming (DP)

- Start by setting  $J_N^*(x_N) = c_N^* x_N$ , where  $c_N^* = 1$
- Suppose  $J_{k+1}^*(x_{k+1}) = c_{k+1}^* x_{k+1}$ . Going backwards, for k = N 1, N 2, ..., 0, let

$$J_{k}^{*}(x_{k}) = \max_{0 \le u_{k} \le 1} E\{(1 - u_{k})x_{k} + c_{k+1}^{*}(x_{k} + w_{k}x_{k}u_{k})\}$$
  
=(1 + c\_{k+1}^{\*})x\_{k} + \max\_{0 \le u\_{k} \le 1} (c\_{k+1}^{\*}E\{w\_{k}\} - 1)x\_{k}u\_{k}  
=(1 + c\_{k+1}^{\*})x\_{k} + \max\_{0 \le u\_{k} \le 1} (c\_{k+1}^{\*}\bar{w} - 1)x\_{k}u\_{k}  
=(1 + c\_{k+1}^{\*})x\_{k} + (c\_{k+1}^{\*}\bar{w} - 1)u\_{k}^{\*}x\_{k}

- We have  $J_k^*(x) = c_k^* x_k$ , where  $c_k^* = c_{k+1}^*(1 + \bar{w})$  and  $u_k^* = 1$  if  $c_{k+1}^* \bar{w} > 1$ , and  $c_k^* = 1 + c_{k+1}^*$  and  $u_k^* = 0$  otherwise
- Solution property: Linear functions are closed under the DP calculation and optimal policies are of special type.

#### Focus of this talk

- Can we obtain similarly structured pairs of cost functions and policies for problems with an inifite horizon?
- 1) Deterministic problems; 2) Stochastic problems; 3) Markov jump problems

# Deterministic Optimal Control Problems with Nonnegative Costs

- State space  $X \subset \Re^n$ , control space U, control constraint set at x given by U(x)
- Optimal control problem: for a given  $x_0 \in X$ , solve

$$\min_{\{u_k\}_{k=0}^{\infty}} \sum_{k=0}^{\infty} \alpha^k g(x_k, u_k) \text{ s.t. } x_{k+1} = f(x_k, u_k), \ u_k \in U(x_k), \quad k = 0, 1, \ldots,$$

where  $f : X \times U \mapsto \Re^n$  and  $g : X \times U \mapsto \Re$  are the system function and cost per stage, respectively, and  $\alpha \in (0, 1]$  is a given scalar.

• Nonnegative cost condition  $g(x, u) \ge 0$  for all  $x \in X, u \in U(x)$ .

#### Existing results for the problem

• The optimal cost function  $J^*(x)$  satisfies Bellman's equation

$$J^*(x) = \min_{u \in U(x)} \left\{ g(x, u) + \alpha J^*(f(x, u)) \right\}, \quad \text{for all } x.$$

• Given a policy  $\mu : X \mapsto U$  so that  $\mu(x) \in U(x)$  for all x, its cost function  $J_{\mu}$  satisfies

 $J_{\mu}(x) = g(x,\mu(x)) + \alpha J_{\mu}(f(x,\mu(x))),$  for all x.

• Optimal policy  $\mu^*$  attains the min. in Bellman's equation and satisfies  $J^* = J_{\mu^*}$ 

• However, computation of  $J^*$  and  $\mu^*$  is intractable

Li & Bertsekas

- State remains in the positive orthant:  $X \subset \Re^n_+$  and  $f(x, u) \in X$  for all  $x \in X$  and  $u \in U(x)$
- Favorable class of policies: a set of policies  $\widehat{\mathcal{M}}$  such that for every  $\mu \in \widehat{\mathcal{M}}$

$$f(x,\mu(x))=A_{\mu}x,\qquad g(x,\mu(x))=q_{\mu}'x,$$

where  $A_{\mu}$  is  $n \times n$  nonneg. matrix, and  $q_{\mu}$  is *n*-dimensional nonneg. vector.

Critical conditions enabling exact solutions (in addition to other conditions)

The set of nonnegative linear functions *J* is closed under value iteration (VI) in the sense that for every *c* ∈ ℜ<sup>n</sup><sub>+</sub>, the function

$$\min_{u\in U(x)} \left[ g(x,u) + \alpha c' f(x,u) \right]$$

belongs to  $\widehat{\mathcal{J}}$ , i.e., it has the form  $\widehat{c}'x$  for some  $\widehat{c} \ge 0$ . Furthermore,  $\widehat{c}$  depends continuously on c.

• There is a policy  $\mu \in \widehat{\mathcal{M}}$  that attains the minimum above, in the sense that

$$\mu(x) \in \arg\min_{u \in U(x)} \Big[ g(x, u) + \alpha c' f(x, u) \Big], \quad \text{ for all } x \in X.$$

Li & Bertsekas

# Example I: Positive Linear Systems with Control Constraint [Ran22, LR24]

- The state equation is by  $x_{k+1} = Ax_k + Bu_k$ , where  $A \in \Re^{n \times n}$  and  $B \in \Re^{n \times m}$
- The cost of stage k is  $q'x_k + r'u_k$ , where  $q \in \Re^n_+$  and  $r \in \Re^m_+$
- The control constraint set  $U(x) = \{u \in \Re^m \mid |u| \le Hx\}$ , where  $H \in \Re^{n \times m}_+$
- In this problem,  $\widehat{\mathcal{M}}$  is the set of feasible linear policies:

$$\widehat{\mathcal{M}} = \big\{ \mu \, | \, \mu(x) = Lx, ext{ where } L \in \Re^{n imes m} ext{ and } |Lx| \leq Hx ext{ for all } x. \big\}.$$

• Starting with  $J(x) = c'x, c \ge 0$ , the VI operation produces the function

$$\begin{aligned} \hat{J}(x) &= \min_{|u| \le Hx} \left\{ q'x + r'u + c'(Ax + Bu) \right\} \\ &= (q + A'c)'x + \min_{|u| \le Hx} (r + B'c)'u \\ &= (q + A'c)'x - |r + B'c|'Hx, \end{aligned}$$

where  $|\cdot|$  takes absolute values of each component.

- Let  $\hat{J}(x) = \hat{c}'x$ . It can be seen that  $\hat{c}$  depends continuously on c.
- The minimum is attained at *Lx*, where *L* depends on *r*, *B*, *H*, and *c*.

# Example II: Markov Decision Problems with Distributions as States [BS78]

- Each state is a probability distribution over *n* points:  $x = (x^1, ..., x^n)$
- Each control u has n scalar components  $u^1, \ldots, u^n$ , with  $u^i \in U^i$ ,  $i = 1, \ldots, n$
- The system equation is

$$\mathbf{x}_{k+1} = \sum_{i=1}^{n} \mathbf{p}_i(\mathbf{u}_k^i) \mathbf{x}_k^i,$$

where the function  $p_i$  maps each  $u^i$  to a probability distribution over *n* points

- The objective is to minimize the total cost  $\sum_{k=0}^{\infty} \alpha^k \sum_{i=1}^{n} g_i(u_k^i) x_k^i$ , where  $\alpha \in (0, 1), g_i : U^i \mapsto \Re_+, i = 1, ..., n$
- In this problem,  $\widehat{\mathcal{M}}$  is the set of constant control policies:

 $\widehat{\mathcal{M}} = \{ \mu \, | \, \mu(x) = (u^1, \dots, u^n) \text{ for all } x, \text{ where } u^i \in U^i, i = 1, \dots, n. \}.$ 

• Starting with J(x) = c'x,  $c \ge 0$ , the VI operation produces the function

$$\hat{J}(x) = \sum_{i=1}^{n} \min_{u^{i} \in U^{i}} [g_{i}(u^{i})x^{i} + \alpha c' p_{i}(u^{i})x^{i}] = \sum_{i=1}^{n} \min_{u^{i} \in U^{i}} [g_{i}(u^{i}) + \alpha c' p_{i}(u^{i})]x^{i}.$$

- The optimal cost function  $J^*$  satisfies  $J^*(x) = (c^*)'x$ , with  $c^* \ge 0$
- Bellman's equation can be expressed in terms of coefficients:

c = G(c),

where  $G: \Re_+^n \mapsto \Re_+^n$  is defined uniquely through the equations

 $G(c)'x = \min_{u \in U(x)} \left[ g(x,u) + \alpha c' f(x,u) \right] = \min_{\mu \in \widehat{\mathcal{M}}} G_{\mu}(c)'x, \quad \text{ for all } x \in X,$ 

where  $G_{\mu} = q_{\mu} + \alpha A'_{\mu} c$ .

- The coefficient  $c^*$  is the unique solution of the equation c = G(c) within  $\Re_+^n$
- There exists an optimal policy  $\mu^*$  that belongs to  $\widehat{\mathcal{M}}$ . Moreover,  $\alpha A_{\mu^*}$  is stable

#### Analytical approach applied to the problem

- The sequence  $\{J_k\}$  generated via VI with  $0 \le J_0 \le J^*$  typically converges to  $J^*$
- Linear functions closed under VI implies that the limit J\* is also a linear function
- Uniqueness is due to 1) observability condition 2) uniqueness of the solution within the interval [J\*, sJ\*] for any s > 1 [YB15]
- Stability of  $\alpha A_{\mu^*}$ : Perron-Frobenius theorem and X containing x of all "directions"

#### Synchronous and Asynchronous VI

- Starting with  $J_0(x) = c'_0 x$  with  $c_0 \ge 0$ , VI generates  $\{J_k\}$  that satisfies  $J_k(x) = c'_k x$ , where  $c_{k+1} = G(c_k)$ , k = 0, 1, ...
- For every  $c_0 \in \Re_+^n$ , the sequence  $\{c_k\}$  with  $c_{k+1} = G(c_k)$  converges to  $c^*$
- The VI algorithm for coefficients can be implemented in asynchronous and distributed fashion; see [Ber82, Ber83]

#### Policy Iteration and Its Variants

- Starting with μ<sub>0</sub>(x) ∈ M so that αA<sub>μ<sup>0</sup></sub> is stable, policy iteration (PI) generates a sequence of policies {μ<sup>k</sup>} ⊂ M such that αA<sub>μ<sup>k</sup></sub>, k = 1, 2, ..., are stable
- For every  $\mu^k$ , its cost function  $J_{\mu^k}(x)$  satisfies  $J_{\mu^k}(x) = c'_{\mu^k}x$ , where  $c_{\mu^k} \ge 0$
- Policy evaluation is simplified as solving linear equation c = G<sub>μ<sup>k</sup></sub>(c); the improved policy μ<sup>k+1</sup> satisfies G<sub>μ<sup>k+1</sup></sub>(c<sub>μ<sup>k</sup></sub>) = G(c<sub>μ<sup>k</sup></sub>)
- The sequence of policies {μ<sup>k</sup>} generated by PI (or its variants) satisfies c<sub>μk</sub> → c\* as k → ∞.

#### Mathematical programming approach

• The coefficient *c*<sup>\*</sup> can be obtained by solving a convex program

Li & Bertsekas

ANU Talk

#### Stochastic Problems with Semilinear Structure

• The stochastic version of the nonnegative cost problem is

$$\min_{\{\mu_k\}_{k=0}^{\infty}} \qquad \lim_{N \to \infty} \mathop{\mathbb{E}}_{\substack{\theta_k \\ k=0,...,N-1}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), \theta_k) \right\}$$
  
s.t.  $x_{k+1} = f(x_k, \mu_k(x_k), \theta_k), \ \mu_k(x_k) \in U(x_k), \ k = 0, 1, ...,$ 

where  $\theta_k \in \Theta$  is generated according to a known stationary distribution

- For all  $x \in X$ ,  $u \in U(x)$ ,  $\theta \in \Theta$ , f satisfies  $f(x, u, \theta) \in X$ ,  $E_{\theta} \{f(x, u, \theta)\} \in X$
- Nonnegative cost condition  $g(x, u, \theta) \ge 0$  for all  $x \in X, u \in U(x), \theta \in \Theta$ .

#### Semilinear structure

• There exists a set of policies  $\widehat{\mathcal{M}}$  such that for every  $\mu \in \widehat{\mathcal{M}}$  and  $\theta \in \Theta$ ,

$$f(x,\mu(x),\theta) = A^{\theta}_{\mu}x, \qquad g(x,\mu(x),\theta) = (q^{\theta}_{\mu})'x$$

where  $A^ heta_\mu \in \Re^{n imes n}_+$  and  $q^ heta_\mu \in \Re^n_+$ 

Other conditions are similar to those of deterministic problems

#### Formulation of a deterministic problem

- For every policy  $\mu \in \widehat{\mathcal{M}}$ , we define matrix  $A_{\mu}$  and vector  $q_{\mu}$  as  $A_{\mu} = E\{A_{\mu}^{\theta}\}, q_{\mu} = E\{q_{\mu}^{\theta}\}$
- We also introduce functions  $\hat{f}$  and  $\hat{g}$  defined as  $\hat{f}(x, u) = E\{f(x, u, \theta)\}, \hat{g}(x, u) = E\{g(x, u, \theta)\}$
- We obtain a deterministic problem: For every  $x_0 \in X$ , solve

$$\min_{\{u_k\}_{k=0}^{\infty}} \sum_{k=0}^{\infty} \alpha^k \hat{g}(x_k, u_k) \quad \text{s.t. } x_{k+1} = \hat{f}(x_k, u_k), \ u_k \in U(x_k), \ k = 0, 1, ...,$$

#### Certainty equivalence principle

- The deterministic problem satisfies the semilinear conditions of previous section
- The optimal cost  $\hat{J}^*(x_0)$  of the deterministic problem and the optimal cost  $J^*(x_0)$  of the stochastic problem are equal
- A policy µ ∈ *M* is optimal for the deterministic problem if and only if it is optimal for the stochastic problem

#### Markov Jump Problems with Nonnegative Costs



- The Markov jump problems involves a parameter set  $\Theta = \{1, 2, \dots, r\}$
- The probability of  $\theta_{k+1} = j$  given that  $\theta_k = i$  is  $p_{ij}$
- Control *u* is selected based on  $(x, \theta)$  from the constraint set  $U(x, \theta)$

$$\min_{\substack{\mu_{k}\}_{k=0}^{\infty}}} \lim_{\substack{N \to \infty}} \mathop{\mathbb{E}}_{\substack{k=0,...,N-1}} \left\{ \sum_{k=0}^{N-1} g(x_{k}, \theta_{k}, \mu_{k}(x_{k}, \theta_{k}), w_{k}) \right\}$$
  
s. t.  $x_{k+1} = f(x_{k}, \theta_{k}, \mu_{k}(x_{k}, \theta_{k}), w_{k}), \quad k = 0, 1, ...,$   
 $\theta_{k+1} = w_{k}, \quad k = 0, 1, ...,$   
 $\mu_{k}(x_{k}, \theta_{k}) \in U(x_{k}, \theta_{k}), \quad k = 0, 1, ...$ 

• For all  $x \in X$ ,  $u \in U(x, \theta)$ ,  $\theta$ ,  $w \in \Theta$ , the function f satisfies  $f(x, \theta, u, w) \in X$ ,  $E_w \{f(x, \theta, u, w) | \theta\} \in X$ 

• Nonnegative cost condition  $g(x, \theta, u, w) \ge 0$  for all  $x \in X, u \in U(x), \theta, w \in \Theta$ .

Li & Bertsekas

#### Semilinear structure

• There exists a set of policies  $\widehat{\mathcal{M}}$  such that for every  $\mu \in \widehat{\mathcal{M}}, \theta, w \in \Theta$  such that

 $f(x, \theta, \mu(x, \theta), w) = A_{\mu}^{\theta w} x, \quad g(x, \theta, \mu(x, \theta), w) = (q_{\mu}^{\theta w})' x, \text{ for all } x$ 

where  $A_{\mu}^{ heta w} \in \Re_{+}^{n imes n}$  and  $q_{\mu}^{ heta w} \in \Re_{+}^{n}$ 

• Other conditions of stochastic problems are extended to Markov jump problems

#### Certainty equivalence principle

- We construct a deterministic problem involving state  $\bar{x}$  whose dimension is  $n \times r$
- Given  $\mu \in \widehat{\mathcal{M}}$ , the dynamics and stage cost are both linear with coefficients

$$\bar{A}_{\mu} = \begin{bmatrix} p_{11}A_{\mu}^{11} & p_{21}A_{\mu}^{21} & \cdots & p_{r1}A_{\mu}^{r1} \\ p_{12}A_{\mu}^{12} & p_{22}A_{\mu}^{22} & \cdots & p_{r2}A_{\mu}^{r2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1r}A_{\mu}^{1r} & p_{2r}A_{\mu}^{2r} & \cdots & p_{rr}A_{\mu}^{rr} \end{bmatrix}, \qquad \bar{q}_{\mu} = \begin{bmatrix} E_w \left\{ q_{\mu}^{1w} \mid \theta = 1 \right\} \\ E_w \left\{ q_{\mu}^{2w} \mid \theta = 2 \right\} \\ \vdots \\ E_w \left\{ q_{\mu}^{rw} \mid \theta = r \right\} \end{bmatrix}$$

• The original Markov jump problem can be addressed by solving this deterministic problem with a higher dimension

# Example III: Markov Jump Positive Linear Systems



- The param. set is  $\Theta = \{1, 2\}$  whose transition probabilities  $p_{ij}$ , i, j = 1, 2 are given
- Given the current state  $(x_k, \theta_k)$ , the state equation is given by

$$x_{k+1} = A^{\theta_k} x_k + B^{\theta_k} u_k, \quad \theta_{k+1} \sim p_{\theta_k j},$$

with stage cost  $q'x_k + r'u_k$  and control constraint  $U(x) = \{u \in \Re^m | |u| \le Hx\}$ 

• The set  $\widehat{\mathcal{M}}$  consists of feasible linear policies with gain matrix dependent on  $\theta$ :

$$\widehat{\mathcal{M}} = \big\{ \mu \, | \, \mu(x,\theta) = L^{\theta}x, \text{ where } L^{\theta} \in \Re^{n \times m} \text{ and } |L^{\theta}x| \leq Hx \text{ for all } x, \theta \big\}.$$

- The gain matrices L<sup>θ</sup>, θ = 1, 2, are computed by solving a deterministic problem of the type given in Example I
- Optimal policy: linear in x with gain matrix dependent on θ, in full analogy to linear quadratic problems; see, e.g., [CWC86, CFM05]

# Thank you!

# References I



Dimitri P. Bertsekas. *Dynamic Programming and Stochastic Control.* Academic Press, 1976.



Dimitri P. Bertsekas. Distributed dynamic programming. *IEEE transactions on Automatic Control*, 27(3):610–616, 1982.



Dimitri P. Bertsekas.

Distributed asynchronous computation of fixed points. *Mathematical Programming*, 27(1):107–120, 1983.



Dimitir P. Bertsekas and Steven Shreve. Stochastic Optimal Control: The Discrete-Time Case. Academic Press, 1978.

Oswaldo Luiz Valle Costa, Marcelo Dutra Fragoso, and Ricardo Paulino Marques. *Discrete-Time Markov Jump Linear Systems.* Springer Science & Business Media, 2005.



Howard J. Chizeck, Alan S. Willsky, and David Castanon. Discrete-time Markovian-jump linear quadratic optimal control. *International Journal of Control*, 43(1):213–231, 1986.



Yuchao Li and Anders Rantzer.

Exact dynamic programming for positive systems with linear optimal cost. *IEEE Transactions on Automatic Control*, 69(12):8738 – 8750, 2024.

#### A

Anders Rantzer.

Explicit solution to Bellman equation for positive systems with linear cost. In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 6154–6155. IEEE, 2022.

#### Huizhen Yu and Dimitri P. Bertsekas.

A mixed value and policy iteration method for stochastic control with universally measurable policies.

Mathematics of Operations Research, 40(4):926–968, 2015.