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An Investment Problem for Farming from 70s [Ber76]

A farmer annually produces xk units of a certain crop, stores (1 − uk )xk and
invests uk xk for improving production of next year, where 0 ≤ uk ≤ 1

The production of next year xk+1 is given by

xk+1 = xk + wk xk uk ,

where wk is an independent random variable with E{wk} = w̄ for all k

The problem is to find the optimal investment policy so that it maximizes the total
expected product stored over N years:

E
wk

k=0,1,...,N−1

{
xN +

N−1∑
k=0

(1 − uk )xk

}

Key characteristics of the problem
The system and the cost have bilinear structure: wk xk uk in the system equation
and uk xk in the cost

Nonegative states and bounded control 0 ≤ uk ≤ 1
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Exact Solution via Dynamic Programming (DP)

Start by setting J∗
N(xN) = c∗

NxN , where c∗
N = 1

Suppose J∗
k+1(xk+1) = c∗

k+1xk+1. Going backwards, for k = N − 1,N − 2, . . . , 0, let

J∗
k (xk ) = max

0≤uk≤1
E
{
(1 − uk )xk + c∗

k+1(xk + wk xk uk )
}

=(1 + c∗
k+1)xk + max

0≤uk≤1

(
c∗

k+1E{wk} − 1
)
xk uk

=(1 + c∗
k+1)xk + max

0≤uk≤1
(c∗

k+1w̄ − 1)xk uk

=(1 + c∗
k+1)xk + (c∗

k+1w̄ − 1)u∗
k xk

We have J∗
k (x) = c∗

k xk , where c∗
k = c∗

k+1(1 + w̄) and u∗
k = 1 if c∗

k+1w̄ > 1, and
c∗

k = 1 + c∗
k+1 and u∗

k = 0 otherwise

Solution property: Linear functions are closed under the DP calculation and
optimal policies are of special type.

Focus of this talk
Can we obtain similarly structured pairs of cost functions and policies for problems
with an inifite horizon?

1) Deterministic problems; 2) Stochastic problems; 3) Markov jump problems

Li & Bertsekas ANU Talk Mar. 27, 2025 5 / 23



Deterministic Optimal Control Problems with Nonnegative Costs

State space X ⊂ ℜn, control space U, control constraint set at x given by U(x)

Optimal control problem: for a given x0 ∈ X , solve

min
{uk}∞k=0

∞∑
k=0

αk g(xk , uk ) s. t. xk+1 = f (xk , uk ), uk ∈ U(xk ), k = 0, 1, . . . ,

where f : X × U 7→ ℜn and g : X × U 7→ ℜ are the system function and cost per
stage, respectively, and α ∈ (0, 1] is a given scalar.

Nonnegative cost condition g(x , u) ≥ 0 for all x ∈ X , u ∈ U(x).

Existing results for the problem
The optimal cost function J∗(x) satisfies Bellman’s equation

J∗(x) = min
u∈U(x)

{
g(x , u) + αJ∗(f (x , u))}, for all x .

Given a policy µ : X 7→ U so that µ(x) ∈ U(x) for all x , its cost function Jµ satisfies

Jµ(x) = g
(
x , µ(x)

)
+ αJµ

(
f
(
x , µ(x)

))
, for all x .

Optimal policy µ∗ attains the min. in Bellman’s equation and satisfies J∗ = Jµ∗

However, computation of J∗ and µ∗ is intractable
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Semilinear Structure for Deterministic Problems

State remains in the positive orthant: X ⊂ ℜn
+ and f (x , u) ∈ X for all x ∈ X and

u ∈ U(x)

Favorable class of policies: a set of policies M̂ such that for every µ ∈ M̂

f
(
x , µ(x)

)
= Aµx , g

(
x , µ(x)

)
= q′

µx ,

where Aµ is n × n nonneg. matrix, and qµ is n-dimensional nonneg. vector.

Critical conditions enabling exact solutions (in addition to other conditions)

The set of nonnegative linear functions Ĵ is closed under value iteration (VI) in the
sense that for every c ∈ ℜn

+, the function

min
u∈U(x)

[
g(x , u) + αc′f (x , u)

]
belongs to Ĵ , i.e., it has the form ĉ′x for some ĉ ≥ 0. Furthermore, ĉ depends
continuously on c.

There is a policy µ ∈ M̂ that attains the minimum above, in the sense that

µ(x) ∈ arg min
u∈U(x)

[
g(x , u) + αc′f (x , u)

]
, for all x ∈ X .
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Example I: Positive Linear Systems with Control Constraint
[Ran22, LR24]

The state equation is by xk+1 = Axk + Buk , where A ∈ ℜn×n and B ∈ ℜn×m

The cost of stage k is q′xk + r ′uk , where q ∈ ℜn
+ and r ∈ ℜm

+

The control constraint set U(x) = {u ∈ ℜm | |u| ≤ Hx}, where H ∈ ℜn×m
+

In this problem, M̂ is the set of feasible linear policies:

M̂ =
{
µ |µ(x) = Lx , where L ∈ ℜn×m and |Lx | ≤ Hx for all x .

}
.

Starting with J(x) = c′x , c ≥ 0, the VI operation produces the function

Ĵ(x) = min
|u|≤Hx

{
q′x + r ′u + c′(Ax + Bu)

}
=(q + A′c)′x + min

|u|≤Hx
(r + B′c)′u

=(q + A′c)′x − |r + B′c|′Hx ,

where | · | takes absolute values of each component.

Let Ĵ(x) = ĉ′x . It can be seen that ĉ depends continuously on c.

The minimum is attained at Lx , where L depends on r , B, H, and c.
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Example II: Markov Decision Problems with Distributions as States
[BS78]

Each state is a probability distribution over n points: x = (x1, . . . , xn)

Each control u has n scalar components u1, . . . , un, with u i ∈ U i , i = 1, . . . , n

The system equation is

xk+1 =
n∑

i=1

pi(u i
k )x

i
k ,

where the function pi maps each u i to a probability distribution over n points

The objective is to minimize the total cost
∑∞

k=0 α
k ∑n

i=1 gi(u i
k )x

i
k , where

α ∈ (0, 1), gi : U i 7→ ℜ+, i = 1, . . . , n

In this problem, M̂ is the set of constant control policies:

M̂ =
{
µ |µ(x) = (u1, . . . , un) for all x , where u i ∈ U i , i = 1, . . . , n.

}
.

Starting with J(x) = c′x , c ≥ 0, the VI operation produces the function

Ĵ(x) =
n∑

i=1

min
ui∈U i

[gi(u i)x i + αc′pi(u i)x i ] =
n∑

i=1

min
ui∈U i

[gi(u i) + αc′pi(u i)]x i .
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Summary of Analytical Results

The optimal cost function J∗ satisfies J∗(x) = (c∗)′x , with c∗ ≥ 0

Bellman’s equation can be expressed in terms of coefficients:

c = G(c),

where G : ℜn
+ 7→ ℜn

+ is defined uniquely through the equations

G(c)′x = min
u∈U(x)

[
g(x , u) + αc′f (x , u)

]
= min

µ∈M̂
Gµ(c)′x , for all x ∈ X ,

where Gµ = qµ + αA′
µc.

The coefficient c∗ is the unique solution of the equation c = G(c) within ℜn
+

There exists an optimal policy µ∗ that belongs to M̂. Moreover, αAµ∗ is stable

Analytical approach applied to the problem
The sequence {Jk} generated via VI with 0 ≤ J0 ≤ J∗ typically converges to J∗

Linear functions closed under VI implies that the limit J∗ is also a linear function

Uniqueness is due to 1) observability condition 2) uniqueness of the solution
within the interval [J∗, sJ∗] for any s > 1 [YB15]

Stability of αAµ∗ : Perron-Frobenius theorem and X containing x of all “directions"
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Summary of Computational Approaches

Synchronous and Asynchronous VI

Starting with J0(x) = c′
0x with c0 ≥ 0, VI generates {Jk} that satisfies Jk (x) = c′

k x ,
where ck+1 = G(ck ), k = 0, 1, . . .

For every c0 ∈ ℜn
+, the sequence {ck} with ck+1 = G(ck ) converges to c∗

The VI algorithm for coefficients can be implemented in asynchronous and
distributed fashion; see [Ber82, Ber83]

Policy Iteration and Its Variants

Starting with µ0(x) ∈ M̂ so that αAµ0 is stable, policy iteration (PI) generates a
sequence of policies {µk} ⊂ M̂ such that αAµk , k = 1, 2, . . . , are stable

For every µk , its cost function Jµk (x) satisfies Jµk (x) = c′
µk x , where cµk ≥ 0

Policy evaluation is simplified as solving linear equation c = Gµk (c); the improved
policy µk+1 satisfies Gµk+1(cµk ) = G(cµk )

The sequence of policies {µk} generated by PI (or its variants) satisfies cµk → c∗

as k → ∞.

Mathematical programming approach
The coefficient c∗ can be obtained by solving a convex program

Li & Bertsekas ANU Talk Mar. 27, 2025 13 / 23



Stochastic Problems with Semilinear Structure

The stochastic version of the nonnegative cost problem is

min
{µk}∞k=0

lim
N→∞

E
θk

k=0,...,N−1

{
N−1∑
k=0

αk g
(
xk , µk (xk ), θk

)}

s. t. xk+1 = f
(
xk , µk (xk ), θk

)
, µk (xk ) ∈ U(xk ), k = 0, 1, ...,

where θk ∈ Θ is generated according to a known stationary distribution

For all x ∈ X , u ∈ U(x), θ ∈ Θ, f satisfies f (x , u, θ) ∈ X , Eθ

{
f (x , u, θ)

}
∈ X

Nonnegative cost condition g(x , u, θ) ≥ 0 for all x ∈ X , u ∈ U(x), θ ∈ Θ.

Semilinear structure

There exists a set of policies M̂ such that for every µ ∈ M̂ and θ ∈ Θ,

f
(
x , µ(x), θ

)
= Aθ

µx , g
(
x , µ(x), θ

)
= (qθ

µ)
′x

where Aθ
µ ∈ ℜn×n

+ and qθ
µ ∈ ℜn

+

Other conditions are similar to those of deterministic problems
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Certainty Equivalence Principle for Stochastic Problems

Formulation of a deterministic problem

For every policy µ ∈ M̂, we define matrix Aµ and vector qµ as Aµ = E{Aθ
µ},

qµ = E{qθ
µ}

We also introduce functions f̂ and ĝ defined as f̂ (x , u) = E
{

f (x , u, θ)
}

,
ĝ(x , u) = E

{
g(x , u, θ)

}
We obtain a deterministic problem: For every x0 ∈ X , solve

min
{uk}∞k=0

∞∑
k=0

αk ĝ(xk , uk ) s. t. xk+1 = f̂ (xk , uk ), uk ∈ U(xk ), k = 0, 1, ...,

Certainty equivalence principle
The deterministic problem satisfies the semilinear conditions of previous section

The optimal cost Ĵ∗(x0) of the deterministic problem and the optimal cost J∗(x0) of
the stochastic problem are equal

A policy µ ∈ M̂ is optimal for the deterministic problem if and only if it is optimal
for the stochastic problem
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Markov Jump Problems with Nonnegative Costs

(x, θ)

Controller
µ(x, θ)

Next Parameter
Generation

w ∼ [pθ1 . . . pθr]
′

Next State
Generation

x̂ = f
(
x, θ, µ(x, θ), w

)

θ̂ = w

(x̂, θ̂)

The Markov jump problems involves a parameter set Θ = {1, 2, . . . , r}
The probability of θk+1 = j given that θk = i is pij

Control u is selected based on (x , θ) from the constraint set U(x , θ)

min
{µk}∞k=0

lim
N→∞

E
wk

k=0,...,N−1

{
N−1∑
k=0

g
(
xk , θk , µk (xk , θk ),wk

)}
s. t. xk+1 = f

(
xk , θk , µk (xk , θk ),wk

)
, k = 0, 1, ...,

θk+1 = wk , k = 0, 1, ...,

µk (xk , θk ) ∈ U(xk , θk ), k = 0, 1, ...

For all x ∈ X , u ∈ U(x , θ), θ, w ∈ Θ, the function f satisfies f (x , θ, u,w) ∈ X ,
Ew

{
f (x , θ, u,w) | θ

}
∈ X

Nonnegative cost condition g(x , θ, u,w) ≥ 0 for all x ∈ X , u ∈ U(x), θ,w ∈ Θ.
Li & Bertsekas ANU Talk Mar. 27, 2025 17 / 23



Semilinear Structure and Equivalence Principle

Semilinear structure

There exists a set of policies M̂ such that for every µ ∈ M̂, θ, w ∈ Θ such that

f
(
x , θ, µ(x , θ),w

)
= Aθw

µ x , g
(

x , θ, µ(x , θ),w
)
= (qθw

µ )′x , for all x

where Aθw
µ ∈ ℜn×n

+ and qθw
µ ∈ ℜn

+

Other conditions of stochastic problems are extended to Markov jump problems

Certainty equivalence principle
We construct a deterministic problem involving state x̄ whose dimension is n × r

Given µ ∈ M̂, the dynamics and stage cost are both linear with coefficients

Āµ =


p11A11

µ p21A21
µ · · · pr1Ar1

µ

p12A12
µ p22A22

µ · · · pr2Ar2
µ

...
...

. . .
...

p1r A1r
µ p2r A2r

µ · · · prr Arr
µ

 , q̄µ =


Ew

{
q1w
µ

∣∣ θ = 1
}

Ew

{
q2w
µ

∣∣ θ = 2
}

...
Ew

{
qrw
µ

∣∣ θ = r
}


The original Markov jump problem can be addressed by solving this deterministic
problem with a higher dimension
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Example III: Markov Jump Positive Linear Systems

(x, θ)

Controller
µ(x, θ) = Lθx

Next Parameter
Generation
w ∼ [pθ1 pθ2]

′

Next State
Generation

x̂ = Aθx + BθLθx
θ̂ = w

(x̂, θ̂) Switched Linear Policy

The param. set is Θ = {1, 2} whose transition probabilities pij , i, j = 1, 2 are given

Given the current state (xk , θk ), the state equation is given by

xk+1 = Aθk xk + Bθk uk , θk+1 ∼ pθk j ,

with stage cost q′xk + r ′uk and control constraint U(x) = {u ∈ ℜm | |u| ≤ Hx}
The set M̂ consists of feasible linear policies with gain matrix dependent on θ:

M̂ =
{
µ |µ(x , θ) = Lθx , where Lθ ∈ ℜn×m and |Lθx | ≤ Hx for all x , θ

}
.

The gain matrices Lθ, θ = 1, 2, are computed by solving a deterministic problem of
the type given in Example I

Optimal policy: linear in x with gain matrix dependent on θ, in full analogy to linear
quadratic problems; see, e.g., [CWC86, CFM05]
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Thank you!
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