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An Investment Problem for Farming from 70s [Ber76]

@ A farmer annually produces xx units of a certain crop, stores (1 — ux)xx and
invests uy xx for improving production of next year, where 0 < v, < 1

@ The production of next year xx.1 is given by
Xk+1 = Xk + Wi Xk U,

where w; is an independent random variable with E{w;} = w for all k

@ The problem is to find the optimal investment policy so that it maximizes the total
expected product stored over N years:

N—1
Ek {XN+Z(1 _Uk)Xk}
k=0,1,...,N—1

k=0

Key characteristics of the problem

@ The system and the cost have bilinear structure: wixxux in the system equation
and uk Xk in the cost

@ Nonegative states and bounded control 0 < ux < 1
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Exact Solution via Dynamic Programming (DP)

@ Start by setting Jy(xnv) = cyxn, where ¢y = 1
@ Suppose J, {(Xk+1) = Ci.1Xk+1. Going backwards, fork =N —-1,N—-2,...,0, let

J;(Xk) :02’2]?2(1 E{(1 = Uk)Xk + C;+1(Xk + WkaUk)}

=(1 + Ciey1)X + e (k1 E{wi} — 1) xicux

— * * ey o
=1+ Cky1)Xk + ng<1(ck+1 W — 1) Xk Uk

=(1 + Cky1)Xk + (Cka1 W — 1)Uk Xk
@ We have J; (x) = ci xx, where ¢; = ¢; (1 + w) and uy = 1if ¢g,qw > 1, and
¢y =1+ cxq and ug = 0 otherwise
@ Solution property: Linear functions are closed under the DP calculation and
optimal policies are of special type.

Focus of this talk

@ Can we obtain similarly structured pairs of cost functions and policies for problems
with an inifite horizon?

@ 1) Deterministic problems; 2) Stochastic problems; 3) Markov jump problems
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Deterministic Optimal Control Problems with Nonnegative Costs

@ State space X C R, control space U, control constraint set at x given by U(x)
@ Optimal control problem: for a given x; € X, solve

o0
min E akg(Xk,uk) S.t. Xgi1 = f(Xk,Uk), Uk € U(Xk)7 k=0,1,...,
{“k};?io k=0

where f: X x U+~ R"and g : X x U+~ R are the system function and cost per
stage, respectively, and « € (0, 1] is a given scalar.

@ Nonnegative cost condition g(x, u) > Ofor all x € X, u € U(x).

Existing results for the problem
@ The optimal cost function J*(x) satisfies Bellman’s equation
- = mi , J(f(x, for all x.
J*(x) U?&?X){g(x, u) + ad”(f(x,u))}, or all x
@ Given a policy i : X — U so that u(x) € U(x) for all x, its cost function J,, satisfies
Ju(x) = g(x, u(x)) + ady (f(x, [L(X))), for all x.

@ Optimal policy p* attains the min. in Bellman’s equation and satisfies J* = J,,»

@ However, computation of J* and p* is intractable
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Semilinear Structure for Deterministic Problems

@ State remains in the positive orthant: X c ®7 and f(x, u) € X for all x € X and
u e U(x)

@ Favorable class of policies: a set of policies M such that for every u € M
f(Xv,U'(X)) :A;1X7 g(x,,u(x)) ZQZLX'/

where A, is n x n nonneg. matrix, and g, is n-dimensional nonneg. vector.

Critical conditions enabling exact solutions (in addition to other conditions)

@ The set of nonnegative linear functions J is closed under value iteration (V1) in the
sense that for every ¢ € R, the function

min [g(x, u) + ac'f(x, u)}

ueU(x)

belongs to .7, i.e., it has the form &x for some & > 0. Furthermore, ¢ depends
continuously on c.

@ Thereis a policy u € M that attains the minimum above, in the sense that

w(x) € arg min [g(x, u) + ac'f(x, u)], forall x € X.
ueU(x)

-
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Example |: Positive Linear Systems with Control Constraint

[Ran22, LR24]

@ The state equation is by xx1 = Axx + Buk, where A € ™" and B € ™™
@ The cost of stage k is q'xx + ' ux, where g € R and r € R7
@ The control constraint set U(x) = {u € R" | |u| < Hx}, where H € R}*"™

@ In this problem, M is the set of feasible linear policies:

M = {u| p(x) = Lx, where L € R"™*™ and |Lx| < Hx for all x.}.

@ Starting with J(x) = ¢’x, ¢ > 0, the VI operation produces the function

J(x) = min {g'x+r'u+c'(Ax + Bu)}

Ju] <Hx

=(q+Ac)x+ min (r+B'c)u

|u| <Hx

=(q+Ac)x —|r+ B'c|'Hx,

where | - | takes absolute values of each component.
@ Let J(x) = &x. It can be seen that & depends continuously on c.
@ The minimum is attained at Lx, where L depends on r, B, H, and c.
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Example II: Markov Decision Problems with Distributions as States

[BS78]
@ Each state is a probability distribution over n points: x = (x',...,x")
@ Each control u has n scalar components u',...,u", withu' e U',i=1,...,n

@ The system equation is

n

Xyt = Y pi U)Xk,
=1
where the function p; maps each v’ to a probability distribution over n points
@ The objective is to minimize the total cost >_;°, o 3°7, gi(uk)xk, where
€(0,1),g:U—Ry,i=1,....n

@ In this problem, M is the set of constant control policies:

M= {u|p(x)=(',...,u") forall x, where v e U, i=1,...,n.}.

@ Starting with J(x) = ¢’x, ¢ > 0, the VI operation produces the function

Zmln[g, )x' + ac'pi(u x]_me[g, ) + ac'pi(u)]x'

uieui uleu

Li & Bertsekas ANU Talk Mar. 27, 2025 10/23



Summary of Analytical Results

@ The optimal cost function J* satisfies J*(x) = (¢*)'x, with ¢* > 0
@ Bellman’s equation can be expressed in terms of coefficients:
¢ = G(c),
where G : R — R is defined uniquely through the equations

G(c)'x = min [g(x,u) + ac'f(x,u)] = min Gu.(c)'x, for all x € X,
ueU(x) pEM

where G, = g, + aA,c.
@ The coefficient c* is the unique solution of the equation ¢ = G(c) within R/
@ There exists an optimal policy ;.* that belongs to M. Moreover, aA,+ is stable

Analytical approach applied to the problem
@ The sequence {Jx} generated via VI with 0 < Jy < J* typically converges to J*
@ Linear functions closed under VI implies that the limit J* is also a linear function

@ Uniqueness is due to 1) observability condition 2) uniqueness of the solution
within the interval [J*, sJ*] for any s > 1 [YB15]

@ Stability of «A,~: Perron-Frobenius theorem and X containing x of all “directions”
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Summary of Computational Approaches

Synchronous and Asynchronous VI

@ Starting with Jo(x) = cyx with co > 0, VI generates {Jx} that satisfies Jc(x) = ci.x,
where ckr1 = G(ck), k =0,1,...
@ For every ¢, € 1, the sequence {c«} with cx1 = G(ck) converges to c*

@ The VI algorithm for coefficients can be implemented in asynchronous and
distributed fashion; see [Ber82, Ber83]

Policy Iteration and Its Variants

@ Starting with po(x) € M so that aA,, is stable, policy iteration (PI) generates a
sequence of policies {1/f} M such that ah ik, k=1,2,... are stable

@ For every 1, its cost function J,x(x) satisfies J,x(x) = c;kx, where ¢« > 0

@ Policy evaluation is simplified as solving linear equation ¢ = G «(c); the improved
policy ;" satisfies G,x:1(C,x) = G(C,)

@ The sequence of policies {1X} generated by PI (or its variants) satisfies Cuk — C*
as k — oo.

Mathematical programming approach

@ The coefficient ¢* can be obtained by solving a convex program
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Stochastic Problems with Semilinear Structure

@ The stochastic version of the nonnegative cost problem is

N—1
min lim E o Xk, ek (Xk), Ok
i m B {z 9 0t 5050, 0)
k=0,...,N—1 =

S. t. Xk+1 = I"(Xk7 ,uk(Xk), 9;(), ,uk(Xk) S U(Xk)7 k = 0, 1 yeeny
where 6, € © is generated according to a known stationary distribution

@ Forallx € X, ue U(x), 0 € ©, f satisfies f(x,u,0) € X, Eg{f(x,u,0)} € X
@ Nonnegative cost condition g(x, u,0) > 0for all x € X,u € U(x),0 € ©.

Semilinear structure
@ There exists a set of policies M such that for every u € Mandd e o,
f(x, 1(x),0) = Aux,  g(x,1(x),0) = (qp)'x

where A, € R7*" and ¢, € R
@ Other conditions are similar to those of deterministic problems
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Certainty Equivalence Principle for Stochastic Problems

Formulation of a deterministic problem

@ For every policy u € M, we define matrix A, and vector g, as A, = E{A"},
qQn = E{Qﬁ}

@ We also introduce functions f and § defined as ?(x, u) = E{f(x,u,0)},
g(x,u) = E{g(x,u,0)}

@ We obtain a deterministic problem: For every xo € X, solve

(o5}

min Ozk@(xk, Uk) S.t. Xkp1 = ?(Xk, Uk), ux € U(xk), k=0,1,...,
(O Rt

Certainty equivalence principle
@ The deterministic problem satisfies the semilinear conditions of previous section
@ The optimal cost J*(xo) of the deterministic problem and the optimal cost J*(xp) of
the stochastic problem are equal

@ A policy p € Mis optimal for the deterministic problem if and only if it is optimal
for the stochastic problem
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Markov Jump Problems with Nonnegative Costs

Controller
#(a,0) Next Stat:
I G::erat?oz @
&= f(z,0, p(z,0),w .
Next Parameter — " | (é ! w )
Generation
w e [por - porl
@ The Markov jump problems involves a parameter set © = {1,2,...,r}

@ The probability of 6«41 = j given that 6x = i is pj
@ Control u is selected based on (x, #) from the constraint set U(x, 6)

{rk}R2o N—>00k70 W =

N—1
min lim E { >~ 9 (xk, Ok, (X, Ok), Wk)}
N—1
S. t. Xk1 = f(Xk,ek,,u,k(Xk,Gk),Wk), k=0,1,...,
0k+1 = Wk, k:O717"'7

wk(Xi, Ok) € U(xk,0k), k=0,1 ...

@ Forallx € X, ue U(x,0), 8, w € ©, the function f satisfies f(x, 0, u, w) € X,
Ew{f(x,6,u,w)|0} € X
@ Nonnegative cost condition g(x, ¢, u, w) > Ofor all x € X,u € U(x),0,w € ©.
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Semilinear Structure and Equivalence Principle

Semilinear structure

@ There exists a set of policies M such that for every u € M, 6, w € © such that
f(x,0, u(x,0), w) = A2"x, g(xﬁ,u(x,e), W) = (qi")'x, forall x
where A%Y € R7*" and g5 € R]
@ Other conditions of stochastic problems are extended to Markov jump problems

Certainty equivalence principle
@ We construct a deterministic problem involving state x whose dimension is n x r
@ Given u € M, the dynamics and stage cost are both linear with coefficients

1w _
1AL P2 AL prAL Ewyq." |0 =1
Pi2AZ PAZ - ppRAZ ~ Ew{q?” ! 0=2
= . : 3 . ) Qu = .
] ir j 2r . j r :

@ The original Markov jump problem can be addressed by solving this deterministic

problem with a higher dimension
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Example Ill: Markov Jump Positive Linear Systems

Controller

(@, 0) = L%
Next State

\ Generation . . .
o Ao B Switched Linear Policy
/ -

Next Parameter 0 = w
Generation
w ~ [po1 pe2]’

@ The param. setis © = {1,2} whose transition probabilities pj, i,j = 1,2 are given
@ Given the current state (x, 0x), the state equation is given by
X1 = A%xi + B% U, Oki1 ~ Poyjs
with stage cost ' xx + r’ux and control constraint U(x) = {u € R™ | |u| < Hx}
@ The set M consists of feasible linear policies with gain matrix dependent on 6:
M = {pt| u(x,0) = L°x, where L° € R™™ and |L?x| < Hx for all x,6}.

@ The gain matrices L?, § = 1,2, are computed by solving a deterministic problem of
the type given in Example |

@ Optimal policy: linear in x with gain matrix dependent on 6, in full analogy to linear
quadratic problems; see, e.g., [CWC86, CFMO05]
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Thank you!
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