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0 Model Predictive Control as Approximation in Value Space
e Computing Most Likely Sequence of a Language Model
e Addressing Multiple Object Tracking/Data Association Problem

0 Approximation in Value Space with Fine-Tuned Language Model (if time permits)
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Model Predictive Control and AlphaGo/AlphaZero
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Figure: Modified from [Kouvaritakis & Cannon, Fig. 2.1]

@ Model predictive control (MIPC): Select control at the present time based on the
prediction and evaluation of state trajectories into the future
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@ Model predictive control (MIPC): Select control at the present time based on the
prediction and evaluation of state trajectories into the future

@ The predicted trajectories are truncated after finite stages, and an offline computed
function and/or constraint are used at the end of the prediction for evaluation.
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@ Model predictive control (MIPC): Select control at the present time based on the
prediction and evaluation of state trajectories into the future

@ The predicted trajectories are truncated after finite stages, and an offline computed
function and/or constraint are used at the end of the prediction for evaluation.

@ The prediction and evaluation is carried out online: repeated at each stage
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@ Model predictive control (MPC): Select control at the present time based on the
prediction and evaluation of state trajectories into the future

@ The predicted trajectories are truncated after finite stages, and an offline computed
function and/or constraint are used at the end of the prediction for evaluation.

@ The prediction and evaluation is carried out online: repeated at each stage

@ AlphaGo/AlphaZero: Highly similar structures involving prediction and evaluation
of future board configuration, using trained neural networks
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@ Model predictive control (MPC): Select control at the present time based on the
prediction and evaluation of state trajectories into the future

@ The predicted trajectories are truncated after finite stages, and an offline computed
function and/or constraint are used at the end of the prediction for evaluation.

@ The prediction and evaluation is carried out online: repeated at each stage

@ AlphaGo/AlphaZero: Highly similar structures involving prediction and evaluation
of future board configuration, using trained neural networks

@ Can we connect MPC and AlphaGo/AlphaZero via a unifying framework?
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Dynamic Programming Model

Deterministic Dynamics . .
Infinite Horizon

Tpt1 = f(k, wr)
Stage Cost

g(wr, ur,)

@ The state space X and the control constraint set U(x) C U.
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@ The state space X and the control constraint set U(x) C U.
@ The system dynamics f : X x U — X and the stage cost g : X x U — R*.
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Dynamic Programming Model

Deterministic Dynamics . .
Infinite Horizon

Tpt1 = f(k, wr)
Stage Cost

g(xkv uk)

@ The state space X and the control constraint set U(x) C U.
@ The system dynamics f : X x U — X and the stage cost g : X x U — R*.
@ Apolicy p: X — U with p(x) € U(x) for all x and its cost function

N—1

u6) = fim 3 g, x0)
@ The optimal cost function J* : X — R and optimal policy p* : X — U:

Ug,k=0,1,... N— oo

N—1
J()=min lim > g(X, Uk),  Jus(X) = J(X).
k=0

Li & Bertsekas NetCon Talk June 10, 2024 5/31



Bellman’s Equation

Deterministic Dynamics
Infinite Horizon

@D OO
Stage Cost

g(wg, ug)

@ The optimal cost function J* fulfills Bellman’s equation:

J*(x) = min {gx u)+ J*(f(x,u))}, forall x.

ueU(x
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@ The optimization problem is transformed to solving fixed point equation:
N—1
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Stage Cost

g(wg, ug)

@ The optimal cost function J* fulfills Bellman’s equation:

J*(x) = min {gx u)+ J*(f(x,u))}, forall x.

ueU(x

@ The optimization problem is transformed to solving fixed point equation:

N—1

min  lim Zg(xk,uk) = J*(X):ureru(r}(){g(x, u)+J*(f(x,u)) }.
0

Ug,k=0,1,... N— oo

@ Upon obtaining J*, the optimal policy p* can be computed via:

w(x) € arg UQE?X) {g(x,u) + J*(f(x,u))}

@ The sum g(x, u) + J*(f(x, u)) is known as the Q-factor, and denoted by Q(x, u).
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Approximation in Value Space: Basic Form

@ Typically, it is intractable to compute the optimal cost function J*. As a result, the
optimal policy ©* cannot be computed via

W (x) € arg urenUiPx) {g(x,u) + J*(f(x,u))}.
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Approximation in Value Space: Basic Form

@ Typically, it is intractable to compute the optimal cost function J*. As a result, the
optimal policy ©* cannot be computed via

W (x) € arg urenUiPx) {g(x,u) + J*(f(x,u))}.

@ Approximation in value space: replacing J* with some function J that is obtained
through offline training, and apply the policy i obtained through online play:

i(x) € argureru?x){g(x, U)Jrj(f(x, u))} (1)

The form is called one-step lookahead.
@ The offline computation ensures that the values J(x) are ‘known’ for all x.
@ The online computation (1) for fi(x) is only for the state x that we encounter.
@ Why effective: Computing J* can be viewed as a root finding problem:

J(x) — ug}j?x) {g(x,u) + J"(f(x,u))} =0, forallx. 2)

@ Approximation in value space is one step of Netwon's method for solving (2), with
the offline computed J as the initial guess of J*.
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@ Simplified minimization: construct a subset U(x) C U(x), and compute /i(x) via

fi(x) € arg urengpx) {g(x,u) + j(f(X, u))}.
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Approximation in Value Space: Variants

@ Rollout: using cost function J,, of a policy p as J, where y is called a base policy
@ Truncated rollout: setting J ~ J,,, e.g., after computing some J, define J(x) as

£+m—1
Jx) = D g0k, 1(xc)) + J(Xerm)
k=¢
@ /-step lookahead: optimizing over £ controls uy, Ui, . .., Up—1:

fi(x0) € arguomin ) (g(xo, Uo) + b min (> alxe, ux) + j(Xz))).

eU(xp) \~ T u, k=1,...,

@ Simplified minimization: construct a subset U(x) C U(x), and compute /i(x) via

fi(x) € arg urengpx) {g(x,u) + j(f(X, u))}.

@ All the ideas discussed thus far apply to finite horizon problems!
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MPC as Approximation in Value Space
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@ Offline training: The cost functions J,, of some base policy can be computed as
closed-form expressions and used as G.

Li & Bertsekas NetCon Talk June 10, 2024 9/31



MPC as Approximation in Value Space

ON-LINE
PLAY  pim—1
min Z g(xp,uk) + G(zosm) terminal cost

{Uk}i;a k=0
s.t. Ty = flog,uk), k=0,....0+m—1, OFF-LINE
a1 =4 ) TRAINING

2 € Cyup € U(ag), k=0,...0+m—1, /
up = p(zg), k=4,...,0+m—1, base policy
Torm € Cogm terminal constraint

Tro = X.

@ Offline training: The cost functions J,, of some base policy can be computed as
closed-form expressions and used as G.

@ Online play: The minimization problems are cast as optimization problems that
can be solved efficiently.

Li & Bertsekas NetCon Talk June 10, 2024 9/31



MPC as Approximation in Value Space

ON-LINE
PLAY  pim—1
min Z g(xp,uk) + G(zosm) terminal cost

{Uk}i;a k=0
s.t. Ty = flog,uk), k=0,....0+m—1, OFF-LINE
a1 =4 ) TRAINING

2 € Cyup € U(ag), k=0,...0+m—1, /
up = p(zg), k=4,...,0+m—1, base policy
Torm € Cogm terminal constraint

Tro = X.

@ Offline training: The cost functions J,, of some base policy can be computed as
closed-form expressions and used as G.

@ Online play: The minimization problems are cast as optimization problems that
can be solved efficiently.

@ These favorable characteristics of MPC may not be present in other context. But
we have remedies.
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Remedies from TD-Gammon
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@ Training a neural network to represent the function J
@ Using real-time simulation to make up the imperfect J: truncated rollout to collect
sample trajectory Xii2, (Xk+2), Xk+3, - - -, Xk+2+m, @nd the effective J is
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@ Training a neural network to represent the function J
@ Using real-time simulation to make up the imperfect J: truncated rollout to collect
sample trajectory Xii2, (Xk+2), Xk+3, - - -, Xk+2+m, @nd the effective J is

~ k+2+m—1
JX2) = > 9% 1(x)) + I (Xer24m)
i=k+2
@ The lookahead tree is constructed for the minization computation.
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e Computing Most Likely Sequence of a Language Model
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The n-Gram Model of Next Word Generation

Ty Tk41

T
o Current Text String | Next |  Next Text String

n Words Word n Words

@ One word added to the front and one word deleted from the back
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The n-Gram Model of Next Word Generation

Ty Tk41

T
o Current Text String | Next |  Next Text String

n Words Word n Words

@ One word added to the front and one word deleted from the back

@ The n-gram provides transition probabilities p(xx+1 | Xx) to which we have access
@ p(xk+1 | Xk) is a suggested local measure of desirability for xk1 to follow X

@ We have freedom to select the next word according to a policy of our choice

@ Think of texting/next word suggestions; we can follow the suggested words or
choose our own

@ We focus on policies that produce highly likely sequences {xi, xo, ..., xn} starting
from a given initial state/prompt xp; a global measure of desirability

@ The constant nis also known as the size of the context window, and the constant
N is the generated sequence length
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An Optimization Problem: Most Likely Sequence Selection Poiicy

Tk Th+t1

o Current Text String | Next |  Next Text String

n Words Word n Words

@ The most likely selection policy: Starting at xo, it selects the most likely sequence
{x1, X2, ..., Xn}, according to the n-gram’s suggestions.
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An Optimization Problem: Most Likely Sequence Selection Poiicy

Tk Th+1

o Current Text String | Next |  Next Text String

n Words Word n Words

@ The most likely selection policy: Starting at xo, it selects the most likely sequence
{x1, X2, ..., Xn}, according to the n-gram’s suggestions.

@ This the one that maximizes
Prob(x1, X2, ..., Xn | Xo0)
or equivalently maximizes
p(xi | xo0) - p(Xe | X1) - P(Xs | X2) -~ P(Xn | Xn—1)

[using the Markov property, i.e., P(Xk+1 | Xo, X1, - ., Xk) = P(Xk+1 | X«) and the
multiplication rule of conditional probability].
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An Optimization Problem: Most Likely Sequence Selection Poiicy

Tk Th+1

o Current Text String | Next |  Next Text String

n Words Word n Words

@ The most likely selection policy: Starting at xo, it selects the most likely sequence
{x1, X2, ..., Xn}, according to the n-gram’s suggestions.

@ This the one that maximizes
Prob(x1, X2, ..., Xn | Xo0)
or equivalently maximizes
p(xi | xo0) - p(Xe | X1) - P(Xs | X2) -~ P(Xn | Xn—1)

[using the Markov property, i.e., P(Xk+1 | Xo, X1, - ., Xk) = P(Xk+1 | X«) and the
multiplication rule of conditional probability].

@ We will view this policy as optimal/most desirable.
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Dynamic Programming Formulation of the Problem

Tk Th+1

o Current Text String | Next | Next Text String

n Words Word n Words

@ The control constraint sets U(x): the set of all possible words U, known as the
vocabulary, independent of x
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n Words Word n Words

@ The control constraint sets U(x): the set of all possible words U, known as the
vocabulary, independent of x

@ The state space X: the n-fold product of U, i.e., X = U"
@ The system dynamics f: Given a text string (state) xx and a word (control) ug, the
new text string (next state) xx.1 is obtained by

adding ux to the front end of xx, and deleting the last word at the back end of xx
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Dynamic Programming Formulation of the Problem

Tk Th+1

o Current Text String | Next | Next Text String

n Words Word n Words

@ The control constraint sets U(x): the set of all possible words U, known as the
vocabulary, independent of x

@ The state space X: the n-fold product of U, i.e., X = U"

@ The system dynamics f: Given a text string (state) xx and a word (control) ug, the
new text string (next state) xx.1 is obtained by

adding ux to the front end of xx, and deleting the last word at the back end of xx

@ The stage cost g: The cost of applying ux at x is given by

g(Xk,Uk) = = Ing(Xk+1 ‘ Xk)v

where xi1 = f(X«, Ux). For convenience, we still work with the probabilities directly

@ This is a finite-horizon problem: selecting N controls
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Rollout Policy Based on the Greedy Policy

Tk Tkl

o Current Text String | Next | Next Text String

n Words Word n Words

@ The optimal selection policy: Intractable to compute when U and/or n are large.
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Rollout Policy Based on the Greedy Policy

Tk Tkl

o Current Text String | Next | Next Text String

n Words Word n Words

@ The optimal selection policy: Intractable to compute when U and/or n are large.

@ The greedy selection policy: Select at each xix the next word x,1 that maximizes
the next word transition probability p(Xx+1 | Xk).

@ The rollout selection policy that uses the greedy as base policy: At xk, it selects uk
that maximizes the greedy Q-factor Q(x«, ux); i-e. the probability of the sequence

Prob(f(xk, ux), Greedy sequence starting from f(xx, k) | Xx)

@ In this case, the function J is Ju, with 1 being the greedy selection policy

@ Variants of rollout: Multistep lookahead, truncated, simplified, and their
combinations.
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One-Step and Multistep Rollout Selection Policies

Next States Final States

Current State

Rollout with
One-Step Lookahead
Greedy Selection

Q-Factors

States at the End Final States
of the Lookahead

Greedy Selection

Current State Y1 Greedy Selection

Rollout with
Multi-Step Lookahead

Greedy Selection

Greedy Selection

mOROIO,

Q-Factors

There are also truncated and simplified variants, etc )
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Most Likely Word Sequence from a GPT
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@ We generated most likely sequences, using a fine-tuned GPT, which defines an
n-gram and its associated transition probabilities. We used N = 200 and
n=1024.
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Probability

@ We generated most likely sequences, using a fine-tuned GPT, which defines an
n-gram and its associated transition probabilities. We used N = 200 and

n=1024.
@ The transition probabilities are generated by the GPT
@ The number of different n-grams is 50258'%4, enormous! Intractable via DP
@ The large vocabulary size leads to excessive Q-factor computations
@ We applied simplified rollout and its truncated counterpart
@ Rollout can take advantage of the parallel processing power of graphical
processing units (GPU) |
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Performance of Simplified Rollout
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@ We applied two simplification techniques:
Computing only 10 Q-factors corresponding to top ten most likely next words: simplified
rollout with one-step lookahead
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@ We applied two simplification techniques:
Computing only 10 Q-factors corresponding to top ten most likely next words: simplified
rollout with one-step lookahead
In addition, truncating the simulation after 10 steps: m-step truncated rollout

@ General observations from the experiments:

Simplified rollout has substantial improvement over the greedy policy, with modest
computation increase
The truncated counterpart still improves upon the greedy policy in all our test cases
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e Addressing Multiple Object Tracking/Data Association Problem
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Modeling General Discrete Optimization via DP

Stage 2 Stage 3 e Stage N
Stage 1 Z"" _ o
Artificial so \ __t»0O
Initial State -rO : 1
g R G
States vz L= UA?"O

(uo) States - gtates States

(w0, u1) (ug, u1, ug) w= (uo,...,uN_1)
Cost G(u)

Minimize G(u) subjectto u € U
@ Assume that each solution u has N components: wo, . .., Uy—_1

g - - =
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@ Assume that each solution u has N components: wo, . .., Uy—_1
@ View the components as the controls of N stages
@ Define xx = (U, ..., ux—1), Kk =1,.... N, and introduce artificial start state xp = s
@ The system dynamics is f(Xk, ux) = (Uo, - . -, Uxk—1, Ux), Where Xx = (U, - . ., Uk—1).

@ Only the state and control pairs (xy—1, un) has the cost g(xn—1, un) = G(u); all
other costs are 0
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DP and Approximation in Value Space

DP solution to the discrete optimization problem

@ Start with
Ju(xn) = G(xn) = G(uo, - .., un—1) forall xy € U
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DP solution to the discrete optimization problem

@ Start with
Ju(xn) = G(xn) = G(uo, - .., un—1) forall xy € U

@ Fork=0,...,N—1,let

J; (Xk) = min J;+1 (Xk7 Uk) for all xx
ugeU(xx)

where Uk (xx) need to be suitably defined.
@ Construct the optimal solution (ug, - .., Uy_1) by forward calculation

Ug € arg min  Jg 1(Xk, uc) for all xx
ux € U(xk)

Approximation in value space

@ Use some Jx.1 in place of Jiiq
@ Starting from the artificial initial state, for k = 0,..., N — 1, set

[],(Xk) € arg min jk+1 (Xk, Uk) for all Xk
ug e U(xk)
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Multiple Object Tracking
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Figure source: Chumachenko et. al., Object Detection and Tracking

@ Multiple object tracking (MOT) aims to match the same objects over various frames
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Figure source: Chumachenko et. al., Object Detection and Tracking

@ Multiple object tracking (MOT) aims to match the same objects over various frames

@ Nontrivial: occlusion, changes in object appearance, and real-time computation
constraint
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Multiple Object Tracking

=y

k—1 k k+1
Figure source: Chumachenko et. al., Object Detection and Tracking

@ Multiple object tracking (MOT) aims to match the same objects over various frames

@ Nontrivial: occlusion, changes in object appearance, and real-time computation
constraint

@ Important problem with many applications: traffic monitoring, robotics, consumer
analytics, augmented and virtual realities ...
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Multidimensional Assignment Problem
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@ MOT can be modeled as a multidimensional assignment problem
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Multidimensional Assignment Problem

6-Dimensional Assignment Problem

>4 |

*]
Node Layers

@ MOT can be modeled as a multidimensional assignment problem
@ There are (N + 1) layers (frames) of nodes

@ A grouping consists of N + 1 nodes (ip, - - ., in) Where ix belongs to kth layer, and
N corresponding arcs

@ For each grouping, there is an associated cost depending on the entire grouping

@ Our goal: find m groupings so that each node belongs to one and only one
grouping and the sum of the costs of the groupings is minimized
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DP Formulation for MOT

Frame 0 “es Frame k Frame k +1

@ The state xx = (uo, s, - . ., Uk—1) defines a set of tracks, referred to as the given
tracks.
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DP Formulation for MOT

Frame 0 “es Frame k Frame k +1

@ The state xx = (uo, s, - . ., Uk—1) defines a set of tracks, referred to as the given
tracks.

@ At each time, we select v in order to match the objects in the target frame to the
given tracks

@ Each uy is a matching between the tracks and the objects in the target frame
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Approximation in Value Space for MOT

Truncated Horizon | Future

Frame 0 e Frame k Frame|k +1 e Frame k|+ £ +1

Xp uy

@ First process a few frames beyond target frame defined by the truncated horizon

Li & Bertsekas NetCon Talk June 10, 2024 25/31



Approximation in Value Space for MOT
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@ First process a few frames beyond target frame defined by the truncated horizon

@ It then applies a base policy to solve the MOT starting from the target frame, which
we call near-online simulation
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Approximation in Value Space for MOT

) Truncated Horizon )

Frame 0 e Frame k Frame/k +1 - Frame k|+ £ +1
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@ First process a few frames beyond target frame defined by the truncated horizon

@ It then applies a base policy to solve the MOT starting from the target frame, which
we call near-online simulation

@ The function Ji,1(xk, ux) is given by the sum of similarity scores CZ+1 (Xx):

Tyt (X, Ux) = Z CZ+1(XK)»

(7:)) € uk

where each (i, ) € uk is an arc from the matching specified by control uy
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Approximation in Value Space for MOT

) Truncated Horizon )

Frame 0 e Frame k Frame/k +1 - Frame k|+ £ +1
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@ First process a few frames beyond target frame defined by the truncated horizon

@ It then applies a base policy to solve the MOT starting from the target frame, which
we call near-online simulation

@ The function Ji,1(xk, ux) is given by the sum of similarity scores CZ+1 (Xx):
Jep1 (X, u) = D el (),
(.)€

where each (i, ) € uk is an arc from the matching specified by control uy

@ The control selection fi(Xx) € arg maxy, cu(x,) Ji+1 (X, ux) becomes solving a
bipartite matching problem
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MOT Example: Approximation in Value Space
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0 Approximation in Value Space with Fine-Tuned Language Model (if time permits)
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The Potential of Language Model in Approximation in Value Space

LM
Developer | ReleaseDate | Access Parameters
Name
GPT-4o | Openal May13,202 | API Unknown
March 14,
Claude3 | Anthropic APl Unknown
2024
November 4, | Open-
Grok-1 xAl 314 billion
2023 Source
September | Open-
Mistral 78 | Mistral Al 73 billion
27,2023 Source
Open-
PalM2 Google May 10,2023 340 billion
Source
Technology
Falcon September6, | Open-
Innovation 180 billion
1808 2023 Source
Institute
Stable LM January19, | Open- 16 billion, 12
Stability Al
2 2024 Source billion
Google February 2nd,
Gemini15 API Unknown
DeepMind | 2024

Figure: From https://explodingtopics.com/blog/list-of-11lms

@ There are growing list of language models with impressive capabilities
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@ There are growing list of language models with impressive capabilities

@ Can a given language model act as a base policy or function J used in
approximation in value space for a generic task?
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Figure: From https://explodingtopics.com/blog/list-of-11lms

@ There are growing list of language models with impressive capabilities

@ Can a given language model act as a base policy or function J used in
approximation in value space for a generic task?

@ Can fine-tuning (further training with small amount of data for a short time) improve
the performance of the policy obtained from approximation in value space?
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Innovation 180 billion
1808 2023 Source
Institute
Stable LM January19, | Open- 16 billion, 12
Stability Al
2 2024 Source billion
Google February 2nd,
Gemini15 API Unknown
DeepMind | 2024

Figure: From https://explodingtopics.com/blog/list-of-11lms

@ There are growing list of language models with impressive capabilities

@ Can a given language model act as a base policy or function J used in
approximation in value space for a generic task?

@ Can fine-tuning (further training with small amount of data for a short time) improve
the performance of the policy obtained from approximation in value space?

@ We will use chess as our test-bed
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Computational Study Based on Pythia and GPT4

@ We collected 32,000 data point from Stockfish (an expert software of chess).
Each data is a pair given as

(chess board configuration,score)
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Computational Study Based on Pythia and GPT4

@ We collected 32,000 data point from Stockfish (an expert software of chess).
Each data is a pair given as

(chess board configuration,score)

@ We used the data to fine-tune an open-source language model, Pythia with 410
million parameters (a much inferior model than GPT4), so that it can act as J

@ In addition, we used GPT4 as alternative choice of J

@ As comparison, we also applied GPT4 and the fine-tuned Pythia to play chess
directly.
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Computational Results

Performance of Models vs Stockfish
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Figure: Collaboration with A. Gundawar
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Computational Results

Performance of Models vs 1800 ELO Bot
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Computational Results

Performance of Models vs 1500 ELO Bot
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Figure: Collaboration with A. Gundawar
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