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Abstract

Abstract dynamic programming (DP) models
are used to analyze A-policy iteration with
randomization (A-PIR) algorithms. Particu-
larly, contractive models with infinite poli-
cies are considered and it is shown that well-
posedness of the A-operator plays a central
role in the algorithm. In addition, we iden-
tifty the conditions required to guarantee con-
vergence with probability one when the policy
space is infinite. Guided by the analysis, we
exemplity a data-driven approximated imple-
mentation of the algorithm for estimation of
optimal costs of constrained control problems,
where promising numerical results are found.

Motivations

A-PIR, proposed in [1], belongs to the broad
class of policy iteration (PI) methods. In par-
ticular, it brings to bears the rich results for im-
plementations due to its close connections to

B TD()\): temporal difference (ITD) learning
ideas;

B Proximal algorithm: prominent methods
in convex optimization [2];

B Value iteration: a principle method for DP.

However, no analysis is given for problems
with infinite states and/or infinite policies.

Problems
B Well-posedness:

Is the A\-PIR well-posed for problems
with infinite states and policies?

B Convergence:

Given the A-PIR is well-posed, will it
converge to the optimal?

Preliminaries

Given state space X, control space U, and pol-
icy space M = {u|u(z) € U(x), Vo € X}, we
study the mappings of the form H : X X U X
R(X) — R, and the ones

(TyJ)(x) = H(z, p(x), J),

(T)(x) = inf (T,J)()

Principle properties are:

B Uniform contraction:

For some o € (0,1),VJ,J" € B(X), u
M, it holds that

c

HTMJ_TMJ/H < allJ — J/H-

B Monotonicity:

vVJ,J' € B(X), it holds that J < J' im-
pliesVz € X, u € U(x),

H(z,u,J) < H(x,u,J).
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Main Results

The operator, named as A-operator, is

Z)\E T (=

Given J; € B(X) and pr € (0,1), A-PIR com-
putes the policy ©* and cost approximate J 11
as

with we(x) > 0and Y. ,”, we(x) = 1. Then the
range of Tﬁw) 1s a subset of B(X), viz., T,Sw) :
B(X)— B(X), and bew) is a contraction.

(TMJ) () (1)

2 Convergence

Theorem 2 Let relevant assumptions hold. Given
Jo € B(X) such that TJy < Jy, the sequence
{Jr}72 generated by algorithm (2) converges in

T T T — Twde, Dk, , norm to J* with probability one.
S TF(L?)J , 0.W. ) Corollary 2.1 Let H(-,-,-) have the form

Hizu.d) = [ (ofa.up) +ad () dPlyla.w

(4)
where g : X xUxX — R, a € (0,1) and P(-|z, u)
1s the probability measure conditioned on (x,u) for
certain MDP. Let v(x) = 1 Vx € X, and relevant
assumptions hold. Given arbitrary Jy € B(X), the
sequence {Jy } 72, generated by algorithm (2) con-
verges in norm to J* with probability one.

1 Well-posedness

Theorem 1 Let the set of mappings T, : B(X) —
B(X), n € M, satisfy the contraction property.

Consider the mappings TL(LM defined point-wise as

Zwe

T(w)J (), v € X, (3)

Numerical Example

Consider a torsional pendulum system:
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with state and control spaces constrained in
compact sets. It is suitably discretized and the 0-
dynamics on the state boundaries are tailored

to have the assumptions hold.
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Figure 3: Cost function along the axis ¢ = 0 after
different training iterations.

B The closed loop system behavior greatly im-
proved after 5 A-PIR iterations, see Fig. 1.

B )\-PIR shows faster convergence against VI;
and requires less computational efforts to
obtain training samples for the cost func-
tion when compared with OPI [3], see

~0.5 Figs. 4 and b.
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Figure 1: Closed loop system trajectory before (yel- o _ 2 feratons
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tions, see Figs. 2 and 3 for plots along the ¢

axes where w = 0 and ¢ = 0. . . .
Figure 4: Cost functions of VI along the axis w = 0.
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Figure 2: Cost function along the axis w = 0 after

different training iterations. Figure 5: Cost functions of OPI along the axis w = 0.
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