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Abstract
Abstract dynamic programming (DP) models
are used to analyze λ-policy iteration with
randomization (λ-PIR) algorithms. Particu-
larly, contractive models with infinite poli-
cies are considered and it is shown that well-
posedness of the λ-operator plays a central
role in the algorithm. In addition, we iden-
tify the conditions required to guarantee con-
vergence with probability one when the policy
space is infinite. Guided by the analysis, we
exemplify a data-driven approximated imple-
mentation of the algorithm for estimation of
optimal costs of constrained control problems,
where promising numerical results are found.

Motivations
λ-PIR, proposed in [1], belongs to the broad
class of policy iteration (PI) methods. In par-
ticular, it brings to bears the rich results for im-
plementations due to its close connections to

� TD(λ): temporal difference (TD) learning
ideas;

� Proximal algorithm: prominent methods
in convex optimization [2];

� Value iteration: a principle method for DP.

However, no analysis is given for problems
with infinite states and/or infinite policies.

Problems
� Well-posedness:

Is the λ-PIR well-posed for problems
with infinite states and policies?

� Convergence:

Given the λ-PIR is well-posed, will it
converge to the optimal?

Preliminaries
Given state space X , control space U , and pol-
icy spaceM = {µ |µ(x) ∈ U(x), ∀x ∈ X}, we
study the mappings of the form H : X × U ×
R(X)→ R, and the ones

(TµJ)(x) = H(x, µ(x), J),

(TJ)(x) = inf
µ∈M

(TµJ)(x).

Principle properties are:

� Uniform contraction:

For some α ∈ (0, 1), ∀J, J ′ ∈ B(X), µ ∈
M, it holds that

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖.

� Monotonicity:

∀J, J ′ ∈ B(X), it holds that J ≤ J ′ im-
plies ∀x ∈ X, u ∈ U(x),

H(x, u, J) ≤ H(x, u, J ′).

Main Results
The operator, named as λ-operator, is

(
T (λ)
µ J

)
(x) = (1− λ)

∞∑
`=1

λ`−1
(
T `µJ

)
(x). (1)

Given Jk ∈ B(X) and pk ∈ (0, 1), λ-PIR com-
putes the policy µk and cost approximate Jk+1

as

TµkJk = TJk; Jk+1 =

{
TµkJk, pk,

T
(λ)

µk Jk, o.w.
(2)

1 Well-posedness
Theorem 1 Let the set of mappings Tµ : B(X)→
B(X), µ ∈ M, satisfy the contraction property.
Consider the mappings T (w)

µ defined point-wise as

(
T (w)
µ J

)
(x) =

∞∑
`=1

w`(x)
(
T `µJ

)
(x), x ∈ X, (3)

with w`(x) ≥ 0 and
∑∞
`=1 w`(x) = 1. Then the

range of T (w)
µ is a subset of B(X), viz., T (w)

µ :

B(X)→ B(X); and T (w)
µ is a contraction.

2 Convergence
Theorem 2 Let relevant assumptions hold. Given
J0 ∈ B(X) such that TJ0 ≤ J0, the sequence
{Jk}∞k=0 generated by algorithm (2) converges in
norm to J∗ with probability one.
Corollary 2.1 Let H(·, ·, ·) have the form

H(x, u, J) =

∫
X

(
g(x, u, y) + αJ(y)

)
dP(y|x, u)

(4)
where g : X×U×X → R, α ∈ (0, 1) and P(·|x, u)
is the probability measure conditioned on (x, u) for
certain MDP. Let v(x) = 1 ∀x ∈ X , and relevant
assumptions hold. Given arbitrary J0 ∈ B(X), the
sequence {Jk}∞k=0 generated by algorithm (2) con-
verges in norm to J∗ with probability one.

Numerical Example
Consider a torsional pendulum system:

φ̇ = ω, ω̇ =M−1(−mgl sinφ− γω + τ),

with state and control spaces constrained in
compact sets. It is suitably discretized and the
dynamics on the state boundaries are tailored
to have the assumptions hold.
� The closed loop system behavior greatly im-

proved after 5 λ-PIR iterations, see Fig. 1.

Figure 1: Closed loop system trajectory before (yel-
low and green) and after training (red and blue).

� The cost function converges after 5 itera-
tions, see Figs. 2 and 3 for plots along the
axes where ω = 0 and φ = 0.
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Figure 2: Cost function along the axis ω = 0 after
different training iterations.
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Figure 3: Cost function along the axis φ = 0 after
different training iterations.

� λ-PIR shows faster convergence against VI;
and requires less computational efforts to
obtain training samples for the cost func-
tion when compared with OPI [3], see
Figs. 4 and 5.
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Figure 4: Cost functions of VI along the axis ω = 0.
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Figure 5: Cost functions of OPI along the axis ω = 0.
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