
Multiagent Rollout with Reshuffling for Warehouse Robots Path Planning

William Emanuelsson, Alejandro Penacho Riveiros, Yuchao Li, Karl H. Johansson, Jonas Mårtensson
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Introduction

Introduction: Warehouse Problem

▶ We consider the warehouse robots path finding problem.

▶ The goal is to compute ‘optimal’ paths for all robots to their respective targets while
avoiding collisions.

▶ The problem is often modeled as computing shortest paths in a grid world environment:
discrete optimal control problem.
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Introduction

Introduction: Existing Approaches and Our Method

Figure source: [Sil05, Fig. 1].

▶ Existing approaches, such as [Sil05], create a space-time grid environment and apply
shortest path algorithms for agents one at a time.

▶ By treating preceding robots as dynamic obstacles, collisions are avoided.

▶ Our approach uses the static space grid and relies on simulation to detect collisions
between robots.
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Background on Multiagent Rollout

Dynamic Programming Model

▶ State space is denoted as X ; the state at kth stage as xk ; the control constraint set at
xk as U(xk). System dynamics and stage costs are denoted as f and g respectively.

▶ For a policy µ : X 7→ U such that control constraints are respected µ(x) ∈ U(x), its cost
function is defined as

Jµ(x0) =
∞∑
k=0

αkg(xk , µ(xk)),

where α ∈ (0, 1) is the discount factor.

▶ The goal is to obtain optimal policy µ∗ such that Jµ∗(x) = J∗(x) for all x , where J∗ is
defined as

J∗(x0) = inf
uk∈U(xk ), k=0,1,...

xk+1=f (xk ,uk ), k=0,1,...

∞∑
k=0

αkg(xk , uk).
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Background on Multiagent Rollout

Multiagent Problem with Classical Information Pattern
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagen Sensor Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um−1
k Control um

k u3
k um−1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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Figure source: [Ber21, Fig. 1]

▶ Discrete optimal control problem: both state and control spaces X and U are finite.

▶ Decision/control has m components u = (u1, . . . , um) corresponding to m ‘agents.’

▶ The agents operate as a team to minimize the shared costs.
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagent Senso Info State Info

1

xk, u1
k xk, u1

k, u2
k xk, u1

k, . . . , um−1
k Control um

k u3
k um−1

k

u1 u2 um x, u1 x, u1, u2 Agent 1 Agent m

Approximation µ̂ to Multiagent Rollout Policy µ̃
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Ĵµ Approximation to Jµ

Approximate Jµ Multiagent Sensor Info State Info

1

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

1

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

Jk+1(x) = Kk+1x2 = F (Kk)x2 = Jk(x) or Kk+1 = F (Kk) from

using an Corresponds to One-Step Lookahead Policy µ̃

1

Figure source: [Ber21, Fig. 1]

▶ Discrete optimal control problem: both state and control spaces X and U are finite.

▶ Decision/control has m components u = (u1, . . . , um) corresponding to m ‘agents.’

▶ The agents operate as a team to minimize the shared costs.
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Background on Multiagent Rollout

Rollout Method [TG96]
▶ If we can compute the function J∗ offline, the optimal policy µ∗ can be obtained via

µ∗(x) ∈ arg min
u∈U(x)

{
g(x , u) + αJ∗

(
f (x , u)

)}
.

▶ Due to large size of the state space X , the function J∗ can not be obtained.

▶ Rollout method relies on a known policy µ, called base policy, and apply to the system
the rollout policy µ̃ defined as

µ̃(x) ∈ arg min
u∈U(x)

{
g(x , u) + αJµ

(
f (x , u)

)}
,

where the related values of Jµ need to be known.

▶ Cost improvement property [BTW97]:

J∗(x) ≤ Jµ̃(x) ≤ Jµ(x), ∀x ∈ X .
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Background on Multiagent Rollout

Challenges in Rollout for Multiagent Problem

For the multiagent problem with U(x) =
(
U1(x), . . . ,Um(x)

)
, rollout takes the form:(

µ̃1(x), . . . , µ̃m(x)
)
∈ arg min

(u1,...,um)∈U(x)

{
g(x , u1, . . . , um) + αJµ

(
f (x , u1, . . . , um)

)}
For this method to be applied to the problem, there are two major challenges.

▶ Suppose |U i (x)| ≤ C . The search space grow exponentially with m.

▶ The values of Jµ cannot be computed beforehand.
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Background on Multiagent Rollout

Multiagent Rollout [Ber21]

▶ Multiagent rollout performs m minimization in succession, one-agent-at-a-time

µ̃1(x) ∈ argmin
u1

{
g(x , u1, µ2(x) . . . , µm(x)) + αJµ

(
f (x , u1, µ2(x) . . . , µm(x))

)}
µ̃2(x) ∈ argmin

u2

{
g(x , µ̃1(x), u2, µ3(x) . . . , µm(x)) + αJµ

(
f (x , µ̃1(x), u2, µ3(x) . . . , µm(x))

)}
· · · · · · · · ·

µ̃m(x) ∈ argmin
um

{
g(x , µ̃1(x), . . . , µ̃m−1(x), um) + αJµ

(
f (x , µ̃1(x), . . . , µ̃m−1(x), um)

)}
the search space grow linearly with m!

▶ The values of Jµ can be computed as needed via real-time simulation!
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Main Result

Multiagent Rollout with Reshuffle

▶ What if the obtained control µ̃(x) is not ‘good’ enough?

▶ Instead of using a fixed agent order, randomly generate a permutation function
σ : {1, . . . ,m} 7→ {1, . . . ,m}! The controls of agents are computed according to the new
order defined by σ.

▶ Proposition 8.1 (informal): For the obtained policy µ̃, we have that

Jµ̃(x) ≤ J̃(x) ≤ Jµ(x),

for all x , where J̃(x) = g
(
x , µ̃(x)

)
+ αJµ

(
f
(
x , µ̃(x)

))
.
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Main Result

Application to the Warehouse Problem

u

3 agents move in 4 directions with perfect vision.They have been assigned to some targets.
Objective is to reach their respective targets in minimum time while avoiding collision.a

aVideo credit: Alejandro Penacho Riveiros
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Main Result

Application to the Warehouse Problem

200 agents move in 4 directions with perfect vision.They have been assigned to some targets.
Objective is to deliver 1183 goods in minimum time while avoiding collision.a

aSee https://github.com/will-em/multi-agent-rollout for implementation.
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Conclusion

Conclusions

▶ We introduced the multiagent rollout with reshuffling algorithm;

▶ The scheme was applied to large-scale warehouse robots path planning problem;

▶ Through online replanning, the method can adapt to a changing environment.
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