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Introduction

Motivation

▶ Model predictive control (MPC) is a well-established scheme dealing effectively
constraints on state and control.

▶ The function and constraint designed at the end of predicting horizon, referred to as
terminal ingredients, play an important role in its performance and analysis.

▶ The framework developed in [Ber22] couches on the dynamic programming (DP) theory,
and regards MPC as an approximate scheme for solving a functional equation.

▶ We leverage on the new framework, and investigate how the terminal ingredients affect
the performance of MPC.
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Introduction

Difference in Perspective
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Figure source: [KC16, Fig. 2.1]

▶ MPC analyzes the predicted trajectory into the future: Forward in time, focusing on
trajectories of states.

▶ DP analysis proceeds as the algorithm progress: Forward in algorithmic iteration, focusing
on functions of states.
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▶ MPC analyzes the predicted trajectory into the future: Forward in time, focusing on
trajectories of states.

▶ DP analysis proceeds as the algorithm progress: Forward in algorithmic iteration, focusing
on functions of states.
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Preliminaries

Dynamic Programming Model
The scalar linear quadratic regulation (LQR) problem:

xk+1 = axk + buk , min
uk ,k=0,1,...

lim
N→∞

N−1∑
k=0

(qx2k + ru2k).

▶ The state space X is ℜ, the control constraint set U(x) ⊂ U is ℜ.
▶ The system dynamics f : X × U → X and the stage cost g : X × U → ℜ

f (x , u) = ax + bu, g(x , u) = qx2 + ru2.

▶ A policy µ : X → U with µ(x) ∈ U(x) for all x and its cost function

µ(x) = Lx , Jµ(x0) = lim
N→∞

N−1∑
k=0

(
qx2k + r(Lxk)

2
)
.

▶ The optimal cost function J∗ : X → ℜ and optimal policy µ∗ : X → U:

J∗(x0) = min
uk ,k=0,1,...

lim
N→∞

N−1∑
k=0

(qx2k + ru2k), µ∗(x) = L∗x .
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Preliminaries

Bellman’s Equation
▶ The optimal cost function J∗ fulfills Bellman’s equation:

J∗(x) = min
u∈U(x)

[
g(x , u) + J∗

(
f (x , u)

)]
, for all x .

▶ For the LQR problem, we know one solution J∗(x) = K ∗x2, so that

K ∗x2 = min
u∈ℜ

[
qx2 + ru2 + K ∗(ax + bu)2

]
, for all x .

▶ The optimization problem is transformed as solving fixed point equations:

min
uk ,k=0,1,...

lim
N→∞

N−1∑
k=0

(qx2k + ru2k) =⇒ J∗(x) = min
u∈ℜ

[
qx2 + ru2 + J∗(ax + bu)

]
.

▶ Bellman’s equation holds for a given policy µ:

Jµ(x) = g
(
x , µ(x)

)
+ Jµ

(
f
(
x , µ(x)

))
, for all x .
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Preliminaries

Value Iteration

▶ The VI algorithm generates a sequence of functions {Jk} by

Jk+1(x) = min
u∈U(x)

[
g(x , u) + Jk

(
f (x , u)

)]
, k = 0, 1, . . . .

▶ For the LQR problem with J0(x) = K0x
2, this is simplified as

Kk+1 = F (Kk) where F (K ) =
a2rK

r + b2K
+ q.

▶ Principle of optimality yields

min
u0,u1∈ℜ

[
qx20 + ru20 + qx21 + ru21 + Kx22

]
= min

u0∈ℜ

[
qx20 + ru20 + min

u1∈ℜ

[
qx21 + ru21 + Kx22

]]
= min

u0∈ℜ

[
qx20 + ru20 + F (K )x21

]
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Preliminaries

Policy Iteration
▶ The PI algorithm generates a sequence of functions {Jµk} by policy evaluation

Jµk (x) = g
(
x , µk(x)

)
+ Jµk

(
f
(
x , µk(x)

))
.

▶ This is followed by policy improvement

µk+1(x) ∈ arg min
u∈U(x)

[
g
(
x , µk(x)

)
+ Jµk

(
f
(
x , µk(x)

))]
.

▶ For the LQR problem with µ0 = L0x , policy evaluation is solving the Lyapunov equation

Kkx
2 = qx2 + r(Lkx)

2 + Kk(ax + bLkx)
2 ⇐⇒ Kk = q + rL2k + Kk(a+ bLk)

2

▶ The policy improvement fulfills

(a+ bLk+1)
2 =

∂F

∂K
(Kk)
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Main Results

A Dynamic Programming View: Unconstrained Problem
▶ Consider MPC scheme for solving LQR:

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. x0 = x , xk+1 = axk + buk , k = 0, ..., ℓ− 1.

▶ The policy µ̃ is obtained via ℓ− 2 steps of VIs followed by one step of PI.
▶ In particular, minimizing over {uk}ℓ−1

k=1 amounts to computing

Ki+1 = F (Ki ), i = 0, . . . , ℓ− 2,

with K0 = K as the initial guess of the solution to Bellman’s equation.
▶ The policy µ̃ is set as µ̃(x) = L̃x where

(a+ bL̃)2 =
∂F

∂K
(Kℓ−1).

▶ The performance of µ̃ is judged by KL̃, which is obtained by policy evaluation [Ber22]

KL̃ = q + r L̃2 + KL̃(a+ bL̃)2.

▶ The cost KL̃ is the approximate solution to Bellman’s equation computed via MPC.

IFAC WC, Yokohama, Japan, 9 July - 14 July 2023 July 13, 2023 8 / 15



Main Results

A Dynamic Programming View: Unconstrained Problem
▶ Consider MPC scheme for solving LQR:

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. x0 = x , xk+1 = axk + buk , k = 0, ..., ℓ− 1.

▶ The policy µ̃ is obtained via ℓ− 2 steps of VIs followed by one step of PI.

▶ In particular, minimizing over {uk}ℓ−1
k=1 amounts to computing

Ki+1 = F (Ki ), i = 0, . . . , ℓ− 2,

with K0 = K as the initial guess of the solution to Bellman’s equation.
▶ The policy µ̃ is set as µ̃(x) = L̃x where

(a+ bL̃)2 =
∂F

∂K
(Kℓ−1).

▶ The performance of µ̃ is judged by KL̃, which is obtained by policy evaluation [Ber22]

KL̃ = q + r L̃2 + KL̃(a+ bL̃)2.

▶ The cost KL̃ is the approximate solution to Bellman’s equation computed via MPC.

IFAC WC, Yokohama, Japan, 9 July - 14 July 2023 July 13, 2023 8 / 15



Main Results

A Dynamic Programming View: Unconstrained Problem
▶ Consider MPC scheme for solving LQR:

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. x0 = x , xk+1 = axk + buk , k = 0, ..., ℓ− 1.

▶ The policy µ̃ is obtained via ℓ− 2 steps of VIs followed by one step of PI.
▶ In particular, minimizing over {uk}ℓ−1

k=1 amounts to computing

Ki+1 = F (Ki ), i = 0, . . . , ℓ− 2,

with K0 = K as the initial guess of the solution to Bellman’s equation.

▶ The policy µ̃ is set as µ̃(x) = L̃x where

(a+ bL̃)2 =
∂F

∂K
(Kℓ−1).

▶ The performance of µ̃ is judged by KL̃, which is obtained by policy evaluation [Ber22]

KL̃ = q + r L̃2 + KL̃(a+ bL̃)2.

▶ The cost KL̃ is the approximate solution to Bellman’s equation computed via MPC.

IFAC WC, Yokohama, Japan, 9 July - 14 July 2023 July 13, 2023 8 / 15



Main Results

A Dynamic Programming View: Unconstrained Problem
▶ Consider MPC scheme for solving LQR:

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. x0 = x , xk+1 = axk + buk , k = 0, ..., ℓ− 1.

▶ The policy µ̃ is obtained via ℓ− 2 steps of VIs followed by one step of PI.
▶ In particular, minimizing over {uk}ℓ−1

k=1 amounts to computing

Ki+1 = F (Ki ), i = 0, . . . , ℓ− 2,

with K0 = K as the initial guess of the solution to Bellman’s equation.
▶ The policy µ̃ is set as µ̃(x) = L̃x where

(a+ bL̃)2 =
∂F

∂K
(Kℓ−1).

▶ The performance of µ̃ is judged by KL̃, which is obtained by policy evaluation [Ber22]

KL̃ = q + r L̃2 + KL̃(a+ bL̃)2.

▶ The cost KL̃ is the approximate solution to Bellman’s equation computed via MPC.
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Main Results

A Dynamic Programming View: Constrained Problem

▶ Consider a constrained problem involving state constraint X̂ and control constraint U.

▶ When applying MPC for this problem, we define a policy µ̃ pointwise by solving the
following optimization:

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. xk+1 = axk + buk , k = 0, ..., ℓ− 1,

xk ∈ X̂ , k = 0, ..., ℓ− 1,

uk ∈ U, k = 0, ..., ℓ− 1,

xℓ ∈ S ⊂ X̂ , x0 = x ,

with suitably designed K and S .

▶ Identical interpretation: ℓ− 1 steps VIs followed by one step policy improvement, with K
and S collectively as initial guess.
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Main Results

Main Result

▶ Proposition 13 (informal): Let {x∗i }ℓi=0 be the sequence of states under µ∗ starting from
x . Then we have

Jµ̃(x)− J∗(x) ≤ K (x∗ℓ )
2 − J∗(x∗ℓ ) ≤ (K − K ∗)(x∗ℓ )

2.

▶ The last inequality follows from the fact that J∗(x) is the optimal cost for the constrained
problem, while K ∗x2 is the optimal cost for the unconstrained problem. As a result, we
have J∗(x) ≥ K ∗x2 for all x .

▶ Note that for this problem, µ∗ is not linear, and J∗ is not quadratic.

▶ Given that µ∗ drives the system to zero exponentially, even large K − K ∗ would results in
a small bound value, as x∗ℓ is likely to be small.
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Main Results

Conventional Wisdom
▶ Focusing here on the MPC with both terminal constraints and terminal costs.

▶ The conventional form of MPC is

min
{uk}ℓ−1

k=0

K ∗x2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. xk+1 = axk + buk , k = 0, ..., ℓ− 1,

xk ∈ X̂ , uk ∈ U, k = 0, ..., ℓ− 1,

xℓ ∈ S∗, x0 = x ,

where K ∗ solves the Riccati equation, and S∗ ⊂ X̂ has the property that

x ∈ S∗ =⇒ L∗x ∈ U and (a+ bL∗)x ∈ S∗,

where L∗ is optimal LQR control.

▶ The reason for choosing K ∗x2 as terminal cost is to have good performance Jµ̃, which
seems not necessary, according to our bound!
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Main Results

New Design Based on Our Insight

▶ To get a good closed loop performance judged by the cost Jµ̃, it is not crucial for the
terminal cost to be K ∗, which may produce a small S∗, if L∗ is large.

▶ Instead, we may try to use some K that is related to ‘small’ control Lx . As a result, the
corresponding terminal set S can be larger than S∗.

▶ Then new design is

min
{uk}ℓ−1

k=0

Kx2ℓ +
ℓ−1∑
k=0

qx2k + ru2k

s. t. xk+1 = axk + buk , k = 0, ..., ℓ− 1,

xk ∈ X̂ , uk ∈ U, k = 0, ..., ℓ− 1,

xℓ ∈ S , x0 = x ,

where a choice for K could be the solution KL that solves KL = q + rL2 + KL(a+ bL)2.

▶ Since S is larger, the feasible set of initial states x for the modified MPC is also larger,
while the performance should be rather comparable.
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Numerical Example

Two Dimensional Example

▶ Consider a double integrator with both state and control constraints.

▶ The matrix K is designed as the solution of Riccati equation

K = A′(K − KB(B ′KB + R̂)−1B ′K
)
A+ Q,

where R̂ = 50R.

▶ As a result, ∥K∥ > 6∥K ∗∥.
▶ The set S ⊂ X̂ has the property that

x ∈ S =⇒ Lx ∈ U and (a+ bL)x ∈ S ,

where L is computed as
L = −(B ′KB + R̂)−1B ′KA.
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Conclusions

Conclusions

▶ We analyzed the performance of MPC via the perspective of DP for unconstrained and
constrained LQR problems;

▶ The insights obtained led to new designs of terminal ingredients with larger feasible
regions while costing little in performance.
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