

Performance Bounds of Model Predictive Control for Unconstrained and Constrained Linear Quadratic Problems and Beyond

Yuchao Li[†], Aren Karapetyan[‡], John Lygeros[‡], Karl H. Johansson[†], Jonas Mårtensson[†]

[†]Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden [‡]Automatic Control Laboratory, Swiss Federal Institute of Technology in Zürich, Switzerland

 Model predictive control (MPC) is a well-established scheme dealing effectively constraints on state and control.

- Model predictive control (MPC) is a well-established scheme dealing effectively constraints on state and control.
- The function and constraint designed at the end of predicting horizon, referred to as terminal ingredients, play an important role in its performance and analysis.

- Model predictive control (MPC) is a well-established scheme dealing effectively constraints on state and control.
- The function and constraint designed at the end of predicting horizon, referred to as terminal ingredients, play an important role in its performance and analysis.
- The framework developed in [Ber22] couches on the dynamic programming (DP) theory, and regards MPC as an approximate scheme for solving a functional equation.

- Model predictive control (MPC) is a well-established scheme dealing effectively constraints on state and control.
- The function and constraint designed at the end of predicting horizon, referred to as terminal ingredients, play an important role in its performance and analysis.
- The framework developed in [Ber22] couches on the dynamic programming (DP) theory, and regards MPC as an approximate scheme for solving a functional equation.
- We leverage on the new framework, and investigate how the terminal ingredients affect the performance of MPC.

Difference in Perspective

Figure source: [KC16, Fig. 2.1]

MPC analyzes the predicted trajectory into the future: Forward in time, focusing on trajectories of states. Introduction

Difference in Perspective

Figure source: [Ber17, Fig. 2.1.2]

- MPC analyzes the predicted trajectory into the future: Forward in time, focusing on trajectories of states.
- DP analysis proceeds as the algorithm progress: Forward in algorithmic iteration, focusing on functions of states.

Dynamic Programming Model

The scalar linear quadratic regulation (LQR) problem:

$$x_{k+1} = ax_k + bu_k, \quad \min_{u_k, k=0,1,...} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2).$$

Dynamic Programming Model

The scalar linear quadratic regulation (LQR) problem:

$$x_{k+1} = ax_k + bu_k, \quad \min_{u_k, k=0,1,...} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2).$$

▶ The state space X is \Re , the control constraint set $U(x) \subset U$ is \Re .

Dynamic Programming Model

The scalar linear quadratic regulation (LQR) problem:

$$x_{k+1} = ax_k + bu_k, \quad \min_{u_k, k=0,1,\dots} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2).$$

▶ The state space X is \Re , the control constraint set $U(x) \subset U$ is \Re .

▶ The system dynamics $f : X \times U \rightarrow X$ and the stage cost $g : X \times U \rightarrow \Re$

$$f(x, u) = ax + bu$$
, $g(x, u) = qx^2 + ru^2$.

Dynamic Programming Model

The scalar linear quadratic regulation (LQR) problem:

$$x_{k+1} = ax_k + bu_k, \quad \min_{u_k, k=0,1,\dots} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2).$$

▶ The state space X is \Re , the control constraint set $U(x) \subset U$ is \Re .

▶ The system dynamics $f : X \times U \rightarrow X$ and the stage cost $g : X \times U \rightarrow \Re$

$$f(x, u) = ax + bu$$
, $g(x, u) = qx^2 + ru^2$.

• A policy $\mu: X \to U$ with $\mu(x) \in U(x)$ for all x and its cost function

$$\mu(x) = Lx, \quad J_{\mu}(x_0) = \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + r(Lx_k)^2).$$

Dynamic Programming Model

The scalar linear quadratic regulation (LQR) problem:

$$x_{k+1} = ax_k + bu_k, \quad \min_{u_k, k=0,1,...} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2).$$

▶ The state space X is \Re , the control constraint set $U(x) \subset U$ is \Re .

▶ The system dynamics $f : X \times U \rightarrow X$ and the stage cost $g : X \times U \rightarrow \Re$

$$f(x, u) = ax + bu$$
, $g(x, u) = qx^2 + ru^2$.

▶ A policy $\mu : X \to U$ with $\mu(x) \in U(x)$ for all x and its cost function

$$\mu(x) = Lx, \quad J_{\mu}(x_0) = \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + r(Lx_k)^2).$$

▶ The optimal cost function $J^* : X \to \Re$ and optimal policy $\mu^* : X \to U$:

$$J^{*}(x_{0}) = \min_{u_{k}, k=0,1,...} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_{k}^{2} + ru_{k}^{2}), \quad \mu^{*}(x) = L^{*}x.$$

Bellman's Equation

▶ The optimal cost function *J*^{*} fulfills **Bellman's equation**:

$$J^*(x) = \min_{u \in U(x)} \Big[g(x, u) + J^* \big(f(x, u) \big) \Big], \quad \text{for all } x.$$

Bellman's Equation

▶ The optimal cost function *J*^{*} fulfills **Bellman's equation**:

$$J^*(x) = \min_{u \in U(x)} \Big[g(x,u) + J^*(f(x,u)) \Big], \quad \text{for all } x.$$

For the LQR problem, we know one solution $J^*(x) = K^* x^2$, so that

$$\mathcal{K}^* x^2 = \min_{u \in \Re} \left[q x^2 + r u^2 + \mathcal{K}^* (ax + bu)^2 \right], \quad \text{for all } x.$$

Bellman's Equation

▶ The optimal cost function *J*^{*} fulfills **Bellman's equation**:

$$J^*(x) = \min_{u \in U(x)} \Big[g(x, u) + J^* \big(f(x, u) \big) \Big], \quad \text{for all } x.$$

For the LQR problem, we know one solution $J^*(x) = K^* x^2$, so that

$$K^* x^2 = \min_{u \in \Re} \left[q x^2 + r u^2 + K^* (a x + b u)^2 \right],$$
 for all x.

> The optimization problem is transformed as solving **fixed point equations**:

$$\min_{u_k,k=0,1,...} \lim_{N \to \infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2) \implies J^*(x) = \min_{u \in \Re} \left[qx^2 + ru^2 + J^*(ax + bu) \right].$$

Bellman's Equation

▶ The optimal cost function *J*^{*} fulfills **Bellman's equation**:

$$J^*(x) = \min_{u \in U(x)} \Big[g(x, u) + J^*(f(x, u)) \Big], \quad \text{for all } x.$$

For the LQR problem, we know one solution $J^*(x) = K^* x^2$, so that

$$K^* x^2 = \min_{u \in \Re} \left[qx^2 + ru^2 + K^* (ax + bu)^2 \right],$$
 for all x.

> The optimization problem is transformed as solving **fixed point equations**:

$$\min_{u_k,k=0,1,...} \lim_{N\to\infty} \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2) \implies J^*(x) = \min_{u\in\Re} [qx^2 + ru^2 + J^*(ax + bu)].$$

• Bellman's equation holds for a given policy μ :

$$J_{\mu}(x) = g(x,\mu(x)) + J_{\mu}\Big(f(x,\mu(x))\Big),$$
 for all x .

Value Iteration

• The VI algorithm generates a sequence of functions $\{J_k\}$ by

$$J_{k+1}(x) = \min_{u \in U(x)} \Big[g(x, u) + J_k \big(f(x, u) \big) \Big], \quad k = 0, 1, \dots$$

Value Iteration

• The VI algorithm generates a sequence of functions $\{J_k\}$ by

$$J_{k+1}(x) = \min_{u \in U(x)} \left[g(x, u) + J_k(f(x, u)) \right], \quad k = 0, 1, \dots$$

For the LQR problem with $J_0(x) = K_0 x^2$, this is simplified as

$$K_{k+1} = F(K_k)$$
 where $F(K) = \frac{a^2 r K}{r + b^2 K} + q$.

Value Iteration

▶ The VI algorithm generates a sequence of functions $\{J_k\}$ by

$$J_{k+1}(x) = \min_{u \in U(x)} \left[g(x, u) + J_k(f(x, u)) \right], \quad k = 0, 1, \dots$$

For the LQR problem with $J_0(x) = K_0 x^2$, this is simplified as

$$\mathcal{K}_{k+1}=\mathcal{F}(\mathcal{K}_k)$$
 where $\mathcal{F}(\mathcal{K})=rac{a^2r\mathcal{K}}{r+b^2\mathcal{K}}+q.$

Principle of optimality yields

$$\begin{split} \min_{u_0, u_1 \in \Re} \left[qx_0^2 + ru_0^2 + qx_1^2 + ru_1^2 + Kx_2^2 \right] &= \min_{u_0 \in \Re} \left[qx_0^2 + ru_0^2 + \min_{u_1 \in \Re} \left[qx_1^2 + ru_1^2 + Kx_2^2 \right] \right] \\ &= \min_{u_0 \in \Re} \left[qx_0^2 + ru_0^2 + F(K)x_1^2 \right] \end{split}$$

Policy Iteration

• The PI algorithm generates a sequence of functions $\{J_{\mu^k}\}$ by **policy evaluation**

$$J_{\mu^k}(x) = g(x, \mu^k(x)) + J_{\mu^k}\Big(f(x, \mu^k(x))\Big).$$

Policy Iteration

• The PI algorithm generates a sequence of functions $\{J_{\mu^k}\}$ by **policy evaluation**

$$J_{\mu^k}(x) = g(x, \mu^k(x)) + J_{\mu^k}\Big(f(x, \mu^k(x))\Big).$$

This is followed by policy improvement

$$\mu^{k+1}(x) \in \arg\min_{u \in U(x)} \left[g\left(x, \mu^{k}(x)\right) + J_{\mu^{k}}\left(f\left(x, \mu^{k}(x)\right)\right) \right].$$

Policy Iteration

• The PI algorithm generates a sequence of functions $\{J_{\mu^k}\}$ by **policy evaluation**

$$J_{\mu^k}(x) = g(x, \mu^k(x)) + J_{\mu^k}\Big(f(x, \mu^k(x))\Big).$$

This is followed by policy improvement

$$\mu^{k+1}(x) \in \arg\min_{u \in U(x)} \left[g\left(x, \mu^{k}(x)\right) + J_{\mu^{k}}\left(f\left(x, \mu^{k}(x)\right)\right) \right].$$

▶ For the LQR problem with $\mu^0 = L_0 x$, policy evaluation is solving the Lyapunov equation

$$\mathcal{K}_k x^2 = q x^2 + r (L_k x)^2 + \mathcal{K}_k (a x + b L_k x)^2 \iff \mathcal{K}_k = q + r L_k^2 + \mathcal{K}_k (a + b L_k)^2$$

Policy Iteration

• The PI algorithm generates a sequence of functions $\{J_{\mu^k}\}$ by **policy evaluation**

$$J_{\mu^k}(x) = g(x, \mu^k(x)) + J_{\mu^k}\Big(f(x, \mu^k(x))\Big).$$

This is followed by policy improvement

$$\mu^{k+1}(x) \in \arg\min_{u \in U(x)} \left[g\left(x, \mu^{k}(x)\right) + J_{\mu^{k}}\left(f\left(x, \mu^{k}(x)\right)\right) \right].$$

▶ For the LQR problem with $\mu^0 = L_0 x$, policy evaluation is solving the Lyapunov equation

$$K_k x^2 = qx^2 + r(L_k x)^2 + K_k (ax + bL_k x)^2 \iff K_k = q + rL_k^2 + K_k (a + bL_k)^2$$

The policy improvement fulfills

$$(a+bL_{k+1})^2 = \frac{\partial F}{\partial K}(K_k)$$

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\{u_k\}_{k=0}^{\ell-1}} \quad K x_{\ell}^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2$$

s.t. $x_0 = x, \ x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1.$

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} \quad K x_{\ell}^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2 \\ \text{s.t.} \quad x_0 = x, \ x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1.$$

▶ The policy $\tilde{\mu}$ is obtained via $\ell - 2$ steps of VIs followed by one step of PI.

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} Kx_{\ell}^2 + \sum_{k=0}^{\ell-1} qx_k^2 + ru_k^2 \text{s.t.} x_0 = x, \ x_{k+1} = ax_k + bu_k, \ k = 0, ..., \ell - 1.$$

The policy μ̃ is obtained via ℓ − 2 steps of VIs followed by one step of PI.
 In particular, minimizing over {u_k}^{ℓ−1}_{k=1} amounts to computing

$$K_{i+1}=F(K_i), \quad i=0,\ldots,\ell-2,$$

with $K_0 = K$ as the initial guess of the solution to Bellman's equation.

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} Kx_{\ell}^2 + \sum_{k=0}^{\ell-1} qx_k^2 + ru_k^2 \\ \text{s.t.} x_0 = x, \ x_{k+1} = ax_k + bu_k, \ k = 0, ..., \ell - 1.$$

The policy μ̃ is obtained via ℓ − 2 steps of VIs followed by one step of PI.
 In particular, minimizing over {u_k}^{ℓ−1}_{k=1} amounts to computing

$$K_{i+1}=F(K_i), \quad i=0,\ldots,\ell-2,$$

with $K_0 = K$ as the initial guess of the solution to Bellman's equation. The policy $\tilde{\mu}$ is set as $\tilde{\mu}(x) = \tilde{L}x$ where

$$(a+b\tilde{L})^2=rac{\partial F}{\partial K}(K_{\ell-1}).$$

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} Kx_{\ell}^2 + \sum_{k=0}^{\ell-1} qx_k^2 + ru_k^2 \\ \text{s.t.} x_0 = x, \ x_{k+1} = ax_k + bu_k, \ k = 0, ..., \ell - 1.$$

The policy μ̃ is obtained via ℓ − 2 steps of VIs followed by one step of PI.
 In particular, minimizing over {u_k}^{ℓ−1}_{k=1} amounts to computing

$$K_{i+1}=F(K_i), \quad i=0,\ldots,\ell-2,$$

with $K_0 = K$ as the initial guess of the solution to Bellman's equation. The policy $\tilde{\mu}$ is set as $\tilde{\mu}(x) = \tilde{L}x$ where

$$(a+b\tilde{L})^2=rac{\partial F}{\partial K}(K_{\ell-1}).$$

• The performance of $\tilde{\mu}$ is judged by $K_{\tilde{l}}$, which is obtained by policy evaluation [Ber22]

$$K_{\tilde{L}} = q + r\tilde{L}^2 + K_{\tilde{L}}(a + b\tilde{L})^2.$$

A Dynamic Programming View: Unconstrained Problem

Consider MPC scheme for solving LQR:

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} Kx_{\ell}^2 + \sum_{k=0}^{\ell-1} qx_k^2 + ru_k^2 \\ \text{s.t.} x_0 = x, \ x_{k+1} = ax_k + bu_k, \ k = 0, ..., \ell - 1.$$

The policy μ̃ is obtained via ℓ − 2 steps of VIs followed by one step of PI.
 In particular, minimizing over {u_k}^{ℓ−1}_{k=1} amounts to computing

$$K_{i+1}=F(K_i), \quad i=0,\ldots,\ell-2,$$

with $K_0 = K$ as the initial guess of the solution to Bellman's equation. The policy $\tilde{\mu}$ is set as $\tilde{\mu}(x) = \tilde{L}x$ where

$$(a+b\tilde{L})^2=rac{\partial F}{\partial K}(K_{\ell-1}).$$

• The performance of $\tilde{\mu}$ is judged by $K_{\tilde{l}}$, which is obtained by policy evaluation [Ber22]

$$K_{\tilde{L}} = q + r\tilde{L}^2 + K_{\tilde{L}}(a + b\tilde{L})^2.$$

• The cost $K_{\tilde{L}}$ is the approximate solution to Bellman's equation computed via MPC.

A Dynamic Programming View: Constrained Problem

• Consider a constrained problem involving state constraint \hat{X} and control constraint U.

A Dynamic Programming View: Constrained Problem

- Consider a constrained problem involving state constraint \hat{X} and control constraint U.
- When applying MPC for this problem, we define a policy μ̃ pointwise by solving the following optimization:

$$\min_{\{u_k\}_{k=0}^{\ell-1}} \quad K x_{\ell}^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2$$

s.t. $x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1,$
 $x_k \in \hat{X}, \ k = 0, ..., \ell - 1,$
 $u_k \in U, \ k = 0, ..., \ell - 1,$
 $x_{\ell} \in S \subset \hat{X}, \quad x_0 = x,$

with suitably designed K and S.

A Dynamic Programming View: Constrained Problem

- Consider a constrained problem involving state constraint \hat{X} and control constraint U.
- When applying MPC for this problem, we define a policy μ̃ pointwise by solving the following optimization:

$$\min_{\{u_k\}_{k=0}^{\ell-1}} \quad K x_{\ell}^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2$$

s.t. $x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1,$
 $x_k \in \hat{X}, \ k = 0, ..., \ell - 1,$
 $u_k \in U, \ k = 0, ..., \ell - 1,$
 $x_{\ell} \in S \subset \hat{X}, \quad x_0 = x,$

with suitably designed K and S.

► Identical interpretation: l − 1 steps VIs followed by one step policy improvement, with K and S collectively as initial guess.

Proposition 13 (informal): Let {x_i^{*}}^ℓ_{i=0} be the sequence of states under μ^{*} starting from x. Then we have

$$J_{ ilde{\mu}}(x) - J^*(x) \leq K(x_\ell^*)^2 - J^*(x_\ell^*) \leq (K - K^*)(x_\ell^*)^2$$

Proposition 13 (informal): Let {x_i^{*}}^ℓ_{i=0} be the sequence of states under μ^{*} starting from x. Then we have

$$J_{ ilde{\mu}}(x) - J^*(x) \leq \mathcal{K}(x_\ell^*)^2 - J^*(x_\ell^*) \leq (\mathcal{K} - \mathcal{K}^*)(x_\ell^*)^2.$$

The last inequality follows from the fact that J*(x) is the optimal cost for the constrained problem, while K*x² is the optimal cost for the unconstrained problem. As a result, we have J*(x) ≥ K*x² for all x.

Proposition 13 (informal): Let {x_i^{*}}^ℓ_{i=0} be the sequence of states under μ^{*} starting from x. Then we have

$$J_{ ilde{\mu}}(x) - J^*(x) \leq \mathcal{K}(x_\ell^*)^2 - J^*(x_\ell^*) \leq (\mathcal{K} - \mathcal{K}^*)(x_\ell^*)^2.$$

- The last inequality follows from the fact that J*(x) is the optimal cost for the constrained problem, while K*x² is the optimal cost for the unconstrained problem. As a result, we have J*(x) ≥ K*x² for all x.
- ▶ Note that for this problem, μ^* is *not* linear, and J^* is *not* quadratic.

Proposition 13 (informal): Let {x_i^{*}}^ℓ_{i=0} be the sequence of states under μ^{*} starting from x. Then we have

$$J_{ ilde{\mu}}(x) - J^*(x) \leq K(x_\ell^*)^2 - J^*(x_\ell^*) \leq (K - K^*)(x_\ell^*)^2.$$

- The last inequality follows from the fact that J*(x) is the optimal cost for the constrained problem, while K*x² is the optimal cost for the unconstrained problem. As a result, we have J*(x) ≥ K*x² for all x.
- ▶ Note that for this problem, μ^* is *not* linear, and J^* is *not* quadratic.
- Given that µ^{*} drives the system to zero exponentially, even large K − K^{*} would results in a small bound value, as x^{*}_ℓ is likely to be small.

Conventional Wisdom

▶ Focusing here on the MPC with both terminal constraints and terminal costs.

Conventional Wisdom

- ▶ Focusing here on the MPC with both terminal constraints and terminal costs.
- The conventional form of MPC is

$$\min_{\{u_k\}_{k=0}^{\ell-1}} \quad K^* x_{\ell}^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2$$

s.t. $x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1,$
 $x_k \in \hat{X}, \ u_k \in U, \ k = 0, ..., \ell - 1,$
 $x_{\ell} \in S^*, \ x_0 = x,$

where \mathcal{K}^* solves the Riccati equation, and $\mathcal{S}^* \subset \hat{X}$ has the property that

$$x \in S^* \implies L^*x \in U$$
 and $(a + bL^*)x \in S^*$,

where L^* is optimal LQR control.

Conventional Wisdom

- ▶ Focusing here on the MPC with both terminal constraints and terminal costs.
- ► The conventional form of MPC is

$$\min_{\{u_k\}_{k=0}^{\ell-1}} \quad K^* x_\ell^2 + \sum_{k=0}^{\ell-1} q x_k^2 + r u_k^2$$

s.t. $x_{k+1} = a x_k + b u_k, \ k = 0, ..., \ell - 1,$
 $x_k \in \hat{X}, \ u_k \in U, \ k = 0, ..., \ell - 1,$
 $x_\ell \in S^*, \ x_0 = x,$

where \mathcal{K}^* solves the Riccati equation, and $\mathcal{S}^* \subset \hat{X}$ has the property that

$$x \in S^* \implies L^*x \in U$$
 and $(a + bL^*)x \in S^*$,

where L^* is optimal LQR control.

The reason for choosing K^*x^2 as terminal cost is to have good performance $J_{\tilde{\mu}}$, which seems not necessary, according to our bound!

To get a good closed loop performance judged by the cost J_{μ̃}, it is not crucial for the terminal cost to be K^{*}, which may produce a small S^{*}, if L^{*} is large.

- ▶ To get a good closed loop performance judged by the cost $J_{\tilde{\mu}}$, it is not crucial for the terminal cost to be K^* , which may produce a small S^* , if L^* is large.
- ▶ Instead, we may try to use some K that is related to 'small' control Lx. As a result, the corresponding terminal set S can be larger than S^* .

- ▶ To get a good closed loop performance judged by the cost $J_{\tilde{\mu}}$, it is not crucial for the terminal cost to be K^* , which may produce a small S^* , if L^* is large.
- ▶ Instead, we may try to use some K that is related to 'small' control Lx. As a result, the corresponding terminal set S can be larger than S^* .
- Then new design is

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ \text{s.t.}}} Kx_{\ell}^2 + \sum_{k=0}^{\ell-1} qx_k^2 + ru_k^2$$
s.t. $x_{k+1} = ax_k + bu_k, \ k = 0, ..., \ell - 1,$
 $x_k \in \hat{X}, \ u_k \in U, \ k = 0, ..., \ell - 1,$
 $x_\ell \in S, \ x_0 = x,$

where a choice for K could be the solution K_L that solves $K_L = q + rL^2 + K_L(a + bL)^2$.

- ▶ To get a good closed loop performance judged by the cost $J_{\tilde{\mu}}$, it is not crucial for the terminal cost to be K^* , which may produce a small S^* , if L^* is large.
- ▶ Instead, we may try to use some K that is related to 'small' control Lx. As a result, the corresponding terminal set S can be larger than S^* .
- Then new design is

$$\min_{\substack{\{u_k\}_{k=0}^{\ell-1} \\ k \in \mathcal{X}_{k} = 0}} Kx_{\ell}^{2} + \sum_{k=0}^{\ell-1} qx_{k}^{2} + ru_{k}^{2}$$
s.t. $x_{k+1} = ax_{k} + bu_{k}, \ k = 0, ..., \ell - 1,$
 $x_{k} \in \hat{X}, \ u_{k} \in U, \ k = 0, ..., \ell - 1,$
 $x_{\ell} \in S, \ x_{0} = x,$

where a choice for K could be the solution K_L that solves $K_L = q + rL^2 + K_L(a + bL)^2$.

Since S is larger, the feasible set of initial states x for the modified MPC is also larger, while the performance should be rather comparable.

Consider a double integrator with both state and control constraints.

- Consider a double integrator with both state and control constraints.
- ▶ The matrix K is designed as the solution of Riccati equation

$$K = A' (K - KB(B'KB + \hat{R})^{-1}B'K)A + Q,$$

where $\hat{R} = 50R$.

- Consider a double integrator with both state and control constraints.
- The matrix K is designed as the solution of Riccati equation

$$K = A' (K - KB(B'KB + \hat{R})^{-1}B'K)A + Q,$$

where $\hat{R} = 50R$.

• As a result, $||K|| > 6||K^*||$.

- Consider a double integrator with both state and control constraints.
- The matrix K is designed as the solution of Riccati equation

$$K = A' (K - KB(B'KB + \hat{R})^{-1}B'K)A + Q,$$

where $\hat{R} = 50R$.

• As a result, $||K|| > 6||K^*||$.

• The set $S \subset \hat{X}$ has the property that

$$x \in S \implies Lx \in U \text{ and } (a + bL)x \in S,$$

where L is computed as

$$L = -(B'KB + \hat{R})^{-1}B'KA.$$

Conclusions

Conclusions

We analyzed the performance of MPC via the perspective of DP for unconstrained and constrained LQR problems; Conclusions

Conclusions

- We analyzed the performance of MPC via the perspective of DP for unconstrained and constrained LQR problems;
- The insights obtained led to new designs of terminal ingredients with larger feasible regions while costing little in performance.

References I

- [Ber17] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 4 edition, 2017.
- [Ber22] Dimitri P. Bertsekas. Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Control. Athena Scientific, 2022.
- [KC16] Basil Kouvaritakis and Mark Cannon. Model Predictive Control. Springer, 2016.