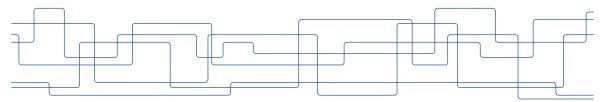


## Linear Time-Varying Model Predictive Control for Automated Vehicles: Feasibility and Stability under Emergency Lane Change

Yuchao Li, Xiao Chen, Jonas Mårtensson

Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden



#### Introduction

#### Automated driving is approaching

- enabled by a chain of complex functional modules;
- reliable steering control is essential for operational safety.

#### Model predictive control (MPC) is promising

- provides a systematic approach to handle (possibly time-varying) constraints;
- exhibits reliable performance in practice.

#### Potential pitfalls

The certification of feasibility and stability for emergent situations, particularly when interfacing with other functional modules like path planner.

#### Preliminaries (1): The multi-model MPC approach

Discrete-time nonlinear systems:

$$z(k+1) = f(z(k), u(k)) + \omega(k),$$
(1)

$$z(k) \in \mathcal{Z}, \ u(k) \in \mathcal{U}, \ \Delta u(k) = u(k) - u(k-1) \in \Delta \mathcal{U}, \ \forall k \in \mathbb{N}_+$$
 (2)

where  $\omega(k) \in \mathbb{R}^n$  are undesired change introduced by other subsystems.

> The multi-model approach replace the nonlinear system with the model set

$$\Gamma = \{ (A, B) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n} : A = A(\xi), B = B(\xi), \xi \in \Xi \}.$$
 (3)

with  $\xi = [z_r^T \ u_r^T]^T$  being reference state and control,  $A(\xi)$ ,  $B(\xi)$  as linearized model, and the set

$$\Xi = \{\xi \in \mathbb{R}^{m+n} : \xi_{\min} \le \xi \le \xi_{\max}\}\$$

including all possible combination of  $z_r$ ,  $u_r$  up to the mesh resolution.

#### Preliminaries (2): The multi-model MPC approach

Assuming  $\omega(k)$  absent, given reference path and control  $\{z_r(k), z_r(k+1), ...\}$  $\{u_r(k), u_r(k+1), ...\}$ , the system equation is

$$\tilde{z}(k+1) = A(\xi(k))\tilde{z}(k) + B(\xi(k))\tilde{u}(k)$$
(4)

where  $\tilde{z}(k) = z(k) - z_r(k)$  and  $\tilde{u}(k) = u(k) - u_r(k)$ . MPC solves the problem

$$\min_{\tilde{U}_{t}} \quad J(t) = \tilde{z}_{t+N|t}^{T} Q_{f} \tilde{z}_{t+N|t} + \sum_{k=t}^{t+N-1} \tilde{z}_{k|t}^{T} Q \tilde{z}_{k|t} + \tilde{u}_{k|t}^{T} R \tilde{u}_{k|t}$$
(5a)

s. t. (2), (4), initial state constraint, and final state constraint  $\tilde{Z}_f$  (5b)

## Preliminaries (3): Previous work

Assume no mismatch between (1) and (4). For all  $\xi(t + N + 1) \in \Xi$ :

- The feasibility condition shall hold: starting from z(t + 1), (5) shall be feasible, which depends on Z
  <sub>f</sub>;
- The stability condition shall hold: J(t+1) < J(t), which depends on  $Q_f$ . Previous work<sup>1</sup>:
  - Applied as final constraint the invariant set O<sup>LQR</sup><sub>∞</sub> for all ξ ∈ Ξ under the corresponding LQR control:

$$L_{\mathrm{LQR}}(\xi) \in \underset{L \in \mathbb{R}^{n \times m}}{\operatorname{arg\,min}} \sum_{k=0}^{\infty} \tilde{z}(k)^{T} Q \tilde{z}(k) + \tilde{u}(k)^{T} R \tilde{u}(k), \text{ where } \tilde{u}(k) = L \tilde{z}(k) \Longrightarrow$$
$$A(\xi)^{T} \Big( P(\xi) - P(\xi) B(\xi) \Big( B(\xi)^{T} P(\xi) B(\xi) + R \Big)^{-1} B(\xi) P(\xi) \Big) A(\xi) + Q - P(\xi) = 0;$$

Introduced a design procedure, providing candidates Q<sub>f</sub> fulfilling necessary conditions of stability.

<sup>&</sup>lt;sup>1</sup>P.F. Lima, *et al.* Experimental validation of model predictive control stability for autonomous driving. *Control Engineering Practice*, 81, 244–255, 2018.

## Contributions (1): Feasibility condition

#### When can $\omega(k)$ be present and how large can it be?

Given  $\tilde{z}(k) \in \mathcal{Z}_w$ , where  $\mathcal{Z}_w$  is some specified range for states, the  $\omega(k)$  introduced by the interfacing system should be within  $\mathcal{W}$  where

$$\mathcal{W} \oplus \mathcal{Z}_{w} = \bar{\mathcal{O}}_{\infty}^{\mathrm{LQR}},$$

with  $\oplus$  denoting the Minkowski addition. The feasibility can be ensured provided that

$$\mathcal{W} \oplus \mathcal{Z}_{w} = \mathcal{K}_{\mathcal{N}}(\bar{\mathcal{O}}_{\infty}^{\mathrm{LQR}}),$$

with  $\mathcal{K}_N(\cdot)$  denoting N step reachable set, which is computationally intractable, while  $\bar{\mathcal{O}}_{\infty}^{LQR}$  can be computed and  $\bar{\mathcal{O}}_{\infty}^{LQR} \subset \mathcal{K}_N(\bar{\mathcal{O}}_{\infty}^{LQR})$ .

# Contributions (2): Stability condition

What suffices for  $Q_f$  to ensure stability? Given  $\tilde{Z}_f = \bar{\mathcal{O}}^{LQR}_{\infty}$ , stability condition is equivalent to

$$A_{\rm cl}(\xi)^{\mathsf{T}} Q_f A_{\rm cl}(\xi) + L_{\rm LQR}(\xi)^{\mathsf{T}} R L_{\rm LQR}(\xi) + Q - Q_f \leq 0,$$
(6)

where  $A_{cl}(\xi) = (A(\xi) + B(\xi)L_{LQR}(\xi))$ . This in turn is equivalent to linear matrix inequalities (LMIs)

$$\begin{bmatrix} Q_f & Q_f A_{cl}(\xi) \\ A_{cl}(\xi)^T Q_f & Q_f + \Delta V(\xi) \end{bmatrix} \succeq 0, \ \forall \xi \in \Xi,$$
(7)

where  $\Delta V(\xi)$  is given as

$$\Delta V(\xi) = A_{\rm cl}(\xi)^T P(\xi) A_{\rm cl}(\xi) - P(\xi), \tag{8}$$

where  $P(\xi)$  is given by the solution of the algebraic Riccati equation for the system (4) for a specific  $\xi \in \Xi$ .

## Automated vehicle application (1)

The emergency lane change (ELC) senario of consideration:

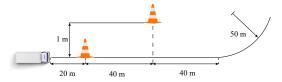


Figure: The scenario for LTV-MPC controller stability test.

Kinematic bicycle model in road aligned frame is used for MPC control:

$$e'_{y} = \frac{\rho_{s} - e_{y}}{\rho_{s}} \tan(e_{\psi}),$$

$$e'_{\psi} = \frac{(\rho_{s} - e_{y})}{\rho_{s} \cos(e_{\psi})} \kappa - \psi'_{s}.$$
(9)

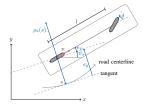


Figure: A nonlinear bicycle model in the road aligned framework.

# Automated vehicle application (2)

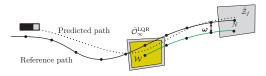
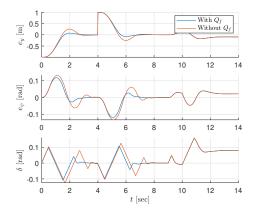


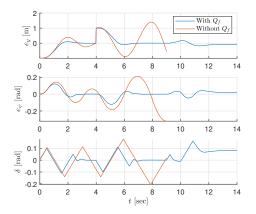
Figure: An ELC is planned to occur at k = 5 where the changed lane is in green and the set  $\mathcal{W}$  in yellow. In this particular illustration, such ELC would be regarded as feasible since  $\tilde{z}(5) + \omega(5) \in \bar{\mathcal{O}}_{\infty}^{LQR}$ .



Figure: Illustration of  $\mathcal{Z}_w$ ,  $\mathcal{W}$ , and  $\bar{\mathcal{O}}_{\infty}^{\text{LQR}}$ , where  $\mathcal{W}$  Figure: The ellipses of of  $x^T (Q_f - P(\xi))x = 1$  and  $x^T A_{\text{cl}}(\xi)^T (Q_f - P(\xi))A_{\text{cl}}(\xi)x = 1$  with different  $\xi$ .

# Automated vehicle application (3)





(a) States and control with and without final stage costs where  $Q_{11} = 2$ .

(b) States and control with and without final stage costs where  $Q_{11} = 3$ .

Figure: Closed-loop system behavior under different state costs Q.

#### Conclusion

- Device the lateral control of automated vehicles as an LTV-MPC problem;
- Cast the computation of final cost as LMIs;
- The feasibility of the LTV-MPC under setpoint changes is ensured by introducing a bound on the change magnitudes;
- An emergency lane change scenario is used to demonstrate the feasibility and stability analysis of LTV-MPC under setpoint changes.