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Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden

IFAC World Congress, Germany, July 11-17, 2020 July 15, 2020 1 / 11



Introduction

Automated driving is approaching

I enabled by a chain of complex functional modules;

I reliable steering control is essential for operational safety.

Model predictive control (MPC) is promising

I provides a systematic approach to handle (possibly time-varying) constraints;

I exhibits reliable performance in practice.

Potential pitfalls

The certification of feasibility and stability for emergent situations, particularly when
interfacing with other functional modules like path planner.
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Preliminaries (1): The multi-model MPC approach

I Discrete-time nonlinear systems:

z(k + 1) = f (z(k), u(k)) + ω(k), (1)

z(k) ∈ Z, u(k) ∈ U , ∆u(k) = u(k)− u(k − 1) ∈ ∆U , ∀k ∈ N+ (2)

where ω(k) ∈ Rn are undesired change introduced by other subsystems.

I The multi-model approach replace the nonlinear system with the model set

Γ = {(A,B) ∈ Rm×m × Rm×n : A = A(ξ),B = B(ξ), ξ ∈ Ξ}. (3)

with ξ = [zTr uTr ]T being reference state and control, A(ξ), B(ξ) as linearized model, and
the set

Ξ = {ξ ∈ Rm+n : ξmin ≤ ξ ≤ ξmax}
including all possible combination of zr , ur up to the mesh resolution.
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Preliminaries (2): The multi-model MPC approach

Assuming ω(k) absent, given reference path and control {zr (k), zr (k + 1), ...}
{ur (k), ur (k + 1), ...}, the system equation is

z̃(k + 1) = A(ξ(k))z̃(k) + B(ξ(k))ũ(k) (4)

where z̃(k) = z(k)− zr (k) and ũ(k) = u(k)− ur (k). MPC solves the problem

min
Ũt

J(t) = z̃Tt+N|tQf z̃t+N|t +
t+N−1∑
k=t

z̃Tk|tQz̃k|t + ũTk|tRũk|t (5a)

s. t. (2), (4), initial state constraint, and final state constraint Z̃f (5b)
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Preliminaries (3): Previous work
Assume no mismatch between (1) and (4). For all ξ(t + N + 1) ∈ Ξ:

I The feasibility condition shall hold: starting from z(t + 1), (5) shall be feasible, which
depends on Z̃f ;

I The stability condition shall hold: J(t + 1) < J(t), which depends on Qf .

Previous work1:

I Applied as final constraint the invariant set ŌLQR
∞ for all ξ ∈ Ξ under the corresponding

LQR control:

LLQR(ξ) ∈ arg min
L∈Rn×m

∞∑
k=0

z̃(k)TQz̃(k) + ũ(k)TRũ(k), where ũ(k) = Lz̃(k) =⇒

A(ξ)T
(
P(ξ)− P(ξ)B(ξ)

(
B(ξ)TP(ξ)B(ξ) + R

)−1
B(ξ)P(ξ)

)
A(ξ) + Q − P(ξ) = 0;

I Introduced a design procedure, providing candidates Qf fulfilling necessary conditions of
stability.

1P.F. Lima, et al. Experimental validation of model predictive control stability for autonomous driving.
Control Engineering Practice, 81, 244–255, 2018.
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Contributions (1): Feasibility condition

When can ω(k) be present and how large can it be?

Given z̃(k) ∈ Zw , where Zw is some specified range for states, the ω(k) introduced by the
interfacing system should be within W where

W ⊕Zw = ŌLQR
∞ ,

with ⊕ denoting the Minkowski addition.
The feasibility can be ensured provided that

W ⊕Zw = KN(ŌLQR
∞ ),

with KN(·) denoting N step reachable set, which is computationally intractable, while ŌLQR
∞

can be computed and ŌLQR
∞ ⊂ KN(ŌLQR

∞ ).
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Contributions (2): Stability condition

What suffices for Qf to ensure stability?

Given Z̃f = ŌLQR
∞ , stability condition is equivalent to

Acl(ξ)TQf Acl(ξ) + LLQR(ξ)TRLLQR(ξ) + Q − Qf � 0, (6)

where Acl(ξ) =
(
A(ξ) + B(ξ)LLQR(ξ)

)
. This in turn is equivalent to linear matrix inequalities

(LMIs) [
Qf Qf Acl(ξ)

Acl(ξ)TQf Qf + ∆V (ξ)

]
� 0, ∀ξ ∈ Ξ, (7)

where ∆V (ξ) is given as

∆V (ξ) = Acl(ξ)TP(ξ)Acl(ξ)− P(ξ), (8)

where P(ξ) is given by the solution of the algebraic Riccati equation for the system (4) for a
specific ξ ∈ Ξ.
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Automated vehicle application (1)
The emergency lane change (ELC) senario of consideration:

40 m40 m20 m

1 m 50 m

Figure: The scenario for LTV-MPC controller stability test.

Kinematic bicycle model in road aligned
frame is used for MPC control:

e ′y =
ρs − ey
ρs

tan(eψ),

e ′ψ =
(ρs − ey )

ρs cos(eψ)
κ− ψ′s .

(9)
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Figure: A nonlinear bicycle model in the road aligned
framework.
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Automated vehicle application (2)

Z̃f
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Reference path
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ωŌLQR
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Figure: An ELC is planned to occur at k = 5 where the changed lane is in green and the set W in
yellow. In this particular illustration, such ELC would be regarded as feasible since z̃(5) +ω(5) ∈ ŌLQR

∞ .
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Figure: Illustration of Zw , W, and ŌLQR
∞ , where W

is obtained via (6).
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Figure: The ellipses of of xT
(
Qf − P(ξ)

)
x = 1 and

xTAcl(ξ)T
(
Qf − P(ξ)

)
Acl(ξ)x = 1 with different ξ.
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Automated vehicle application (3)
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(a) States and control with and without final stage
costs where Q11 = 2.
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(b) States and control with and without final stage
costs where Q11 = 3.

Figure: Closed-loop system behavior under different state costs Q.
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Conclusion

I Device the lateral control of automated vehicles as an LTV-MPC problem;

I Cast the computation of final cost as LMIs;

I The feasibility of the LTV-MPC under setpoint changes is ensured by introducing a bound
on the change magnitudes;

I An emergency lane change scenario is used to demonstrate the feasibility and stability
analysis of LTV-MPC under setpoint changes.
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