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Aggregation is A Form of

Original problem Simplified problem Simplified solution

' . ' Aggregation
O ) —

The Aggregation Methodology
© Combine groups of similar states into aggregate states.
@ Formulate an aggregate dynamic programming problem based on these states.
© Solve the aggregate problem using some computational method.

© Use the solution to the aggregate problem to compute a cost function approximation
for the original problem.
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a Aggregation for Perfect State Information Problems
© Aggregation for Imperfect State Information Problems

e Illustrative Example and Computational Experiments
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Recap of Markov Decision Problems (MDP)

p,-j(u),g(i, uaj)

® 15

State space: X = {1,...,n}, states are denoted by i, j.

Control constraint set: U(7).
Probability of transitioning from state i to j given control u: pjj(u).
Equivalent formulation: xix+1 = f(xk, Uk, wk).

Cost of transitioning from state i to j given control u: g(i, u, j).
Cost-to-go from state i: J(i).

Discount factor: .
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Approximation in Value Space

First Step “Future”

n -« —>

min > pij(u) (i u, j) + @ (5))

u€eU (%) =

e Optimal policy: u* can be computed via

W (i) € arg UQJZ)ZIPU(”) (g(isu,j) +aJ(j)), i=1,....n
=

where J* is the optimal cost function satisfying Bellman’s equation
o When computing J* is intractable, aggregation computes some J to approximate J*

@ A suboptimal policy /i can be computed online via

flic) € arg min > pi(u) (g, u, ) + aJ())

Jj=1

upon reaching state iy at stage k
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Representative States

o Introduce a subset A of the original states 1,..., n, called representative states.
o We use i, to denote original states and x, y to denote representative states. J
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Aggregation Probabilities

o For each state i we define aggregation probabilities {¢i | x € A}. J

@ Intuitively, ¢ix expresses similarity between states i and x, where ¢, = 1.

Representative States | Aggregation Probabilities

7y
Relate
Original States to

Original State Space Representative States
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Dynamics of the Aggregate System

Original States

—

Dij (’U,), g(ia ua])

Aggregation
Probabilities
Pjy
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Formulating the Aggregate Dynamic Programming Problem

@ State space: A (the set of representative states).
o Control constraint set: U(i) (the original control constraint set).

@ Transition probabilities and costs

n
Py (u) = pri(u)qﬁ,-y, for all representative states (x,y) and controls u,
i=1
n
g(x,u) = Z pxi(u)g(x, u, i), for all representative states x and controls w.
i=1

Original system states

pii(u), g(i, u,j) '@

Representative states
i\)X,V(u)7 é’(X, U)
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Solving the Aggregate Dynamic Programming Problem

o The aggregate problem can be solved “exactly” using dynamic
programming/simulation; see [Berl9, Section 6.3]

*

@ The optimal cost from a representative state x in this problem is denoted by r;.
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Cost Difference Between the Aggregate and Original Problems

o The aggregate cost function r; is only defined for representative states x € A.
@ The optimal cost function J*(i) is defined for the entire state space i = 1,...,n.

o For a representative state x, we generally have r; # J*(x).

Cost r,
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Cost Difference Between the Aggregate and Original Problems

o The aggregate cost function r; is only defined for representative states x € A.
@ The optimal cost function J*(i) is defined for the entire state space i = 1,...,n.

o For a representative state x, we generally have r; # J*(x).

Cost r
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Using the Aggregate Solution to Approximate the Original Problem

@ We obtain an approximate cost function J for the original problem via interpolation:

Jiy =Y éurr, i=1,...,n.

x€EA

@ Using this cost function, we can obtain a one-step lookahead policy:

fi(i) € argmin Y py(u) (g(i,u.j) +aJ()),  i=1,2,...,n
ueU(i) =
Jj=1

Cost r,

States |

X Femm e e a -

Representative states
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What is the difference between the approximation J and the optimal cost function J*?
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Hard Aggregation

o Consider the case where ¢jx = 0 for all representative states x except one.
o Let Si denote the set of states that aggregate to the representative state x.
i.e., the footprint of x, where {1,... ,n} = UxeA Sx.

Footprint set of x (example)

\ . .
——— States (Fine Grid)

. — Representative States
(Coarse Grid)
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Structure of the Cost Function Approximation

o In the case of hard aggregation, J(i)= erA oty =1, forallies,. J

@ Hence, J is piecewise constant.

Cost r,
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Approximation Error Bound in the Case of Hard Aggregation [TR96]

@ Let € be the maximum variation of J* within a footprint set Sy, i.e.,
€ = max max |J* (i) — J*(j)|.
XEA i,jESy 17(7) 0l

o We refer to the difference |J*(i) — J(i)| as the approximation error.

@ This error is bounded as

|J*(i)—](i)|§ﬁ i=1,...,n.

o Takeway: choose the footprint sets so that € is small.

Cost € = max{e1, &2, €3} T

States i
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General Aggregation and Approximation Error

@ Introduce a finite set of aggregate states A.
o Each aggregate state x € A is associated with a disjoint subset I C {1,...,n}.

@ An aggregation problem can be defined similarly; see Section 3.6.4 of the course
book [Ber25] for details

—\\b
I X
State space {1,...,n} Aggregate states A

Upcoming Work

We show that similar error bound also hold for general aggreation with soft aggregation
probabilities; i.e., ¢ # 0 for several x € A [LHB25]
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Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, ..., n}, observation space Z, and control constraint set U(i).
Each state transition (i, /) generates a cost g(/, u, j);

and an observation z with probability p(z | j, u).

Let b(i) denote the conditional probability that the state is /, given the history.
The belief state is defined as b = (b(1), b(2), ..., b(n)).

The belief b is updated using a belief estimator F(b, u, z).

Goal: Find a policy as a function of b that minimizes the cost.

Observationlzkﬂ

Belief Estimator
Belief State System | Belief State by
b1 = Fio(br, uk, 2k+1)

Belief State is a
“Probabilistic Estimate”
of the Unknown State

Cost g (br, ur)

Control of
Belief State

Control ug = gy (br)

Controller
Mk
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The Belief Space

@ The belief b resides in the belief space B, i.e., the n — 1 dimensional unit simplex.
o For example, if the states are {0, 1}, then b € [0, 1]. J

(0,0,1)

(0.25,0.55,0.2)

0.55

(0.4,0.6)
0.4 : 0.6
(1,0) M (0,1) (1,0,0) (0,1,0)
(a) 1-dimensional unit simplex. (b) 2-dimensional unit simplex.
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Aggregation of the Belief Space into Representative Beliefs

@ We can obtain representative beliefs via uniform discretization of the belief space:

.AZ{b’beB,b(i)=5,'/p,zn:5f=p,5iE{O,...,p}},

fi=1l

where p serves as the discretization resolution.

B B B
Discretization resolution p =1 Discretization resolution p =5 Discretization resolution p = 10
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Hard Aggregation of the Belief Space

o We can implement hard aggregation via the nearest neighbor mapping: J

¢p, = 1 if and only if y is the nearest neighbor of b,where b € B and y € A.

B B

Alele]e|y
l v el lelolN

Discretization resolution p =1 Discretization resolution p =5 Discretization resolution p = 10
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Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.

The controls (north, south, east, west) (at cost 0.1).

The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost —10 for sampling a good rock).

Control “check-I" applies a sensor to check the quality of rock / (at cost 1).

@ Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.

@ The rover stops the mission by moving to the right, yielding an exit-cost of —10.

Rocksample (4, 3)

ROCK 3

ROCK 2

X

ROCK T

ak
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Approximating Rocksample (4,3) via Representative Aggregation

@ The Rocksample (4,3) POMDP has a 127-dimensional belief space.
o We discretize the belief space with three different resolutions:

p = 1 leads to an aggregate problem with 128 representative beliefs.
p = 2 leads to an aggregate problem with 8256 representative beliefs.
p = 3 leads to an aggregate problem with 357760 representative beliefs.

Rocksample (4, 3)

ROCK 3

ROCK 2

BAD

&LIxd

ROCK 1
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Animation Setup

Rocksample (4, 3)
ROCK 3

ROCK 2

LIXH

ROCK 1
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Animation Setup

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
BAD
b(good) = 0.5

LIXH

ROCK 1

BAD

b(good) = 0.5
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Animation Setup

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
BAD
b(good) = 0.5 g
£
ROCK 1
H—— |
\
b(good) = 0.5
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Animations of Control Policies Based on Aggregation with p =1

Will be presented during the talk. )
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Animations of Control Policies Based on Aggregation with p = 2

Will be presented during the talk. )
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Animations of Control Policies Based on Aggregation with p = 3

Will be presented during the talk. )
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Computational Trade-Offs

@ The animations show that performance improves with the discretization resolution p

@ This is not surprising. As p increases, € decreases.
@ However, the computational complexity increases with the resolution p.

—4—n=2 —»—n=4—4—-n=238

| Al
10°
10°
10' N & s
9 ‘ ‘ ‘ >
1 2 3 4 5 6 7 8
Discretization resolution p
May 7, 2025 26 /31
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Comparison Between Aggregation and Other POMDP Methods

POMDP States n Observations |Z| Controls |U| Discount factor «

RS (4,4) 257 2 9 0.95
RS (55) 801 2 10 0.95
RS (57) 3201 2 12 0.95
RS (7,8) 12545 2 13 0.95
RS (10,10) 102401 2 15 0.95

Table: POMDPs used for the experimental evaluation.

Method Aggregation  Point-based  Heuristic search  Policy-based  Exact DP

Our method v

IP [CLZ13] v
PBVI [PGTO06] v
SARSOP [Ong+10] v
POMCP [SV10]

HSVI [$S12]

AdaOPS [Wu+21]

R-DESPOT [Som+13]

POMCPOW [SK18]

PPO [Sch+17] v
PPG [Cob+21] v

SNENENENEN

Table: Methods used for the experimental evaluation; all methods are based on approximation
schemes except IP, which uses exact dynamic programming.
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Comparison Between Aggregation and Other POMDP Methods

POMDP

m RS (4.4) RS (5.5) RS (5.7) RS (7.8) RS (10, 10)
Aggregation -17.15/2.4  -18.12/1255 -17.51/189.1 -14.71/202 -11.59/500
IP N/A N/A N/A N/A N/A
PBVI -8.24/300  -9.05/300 N/A N/A N/A
SARSOP -17.92/1072  -19.24/58.5  N/A N/A N/A
POMCP -8.64/1.6 -8.80/1.6 -9.81/1.6 946/16  -8.98/1.6
HSVI -17.92/10°%  -19.24/62  -24.69/721.3 N/A N/A
PPO -8.57/300  -8.15/300 -8.76/300 -7.35/300  -4.59/1000
PPG -8.57/300  -8.24/300 -8.76/300 -7.35/300  -4.41/1000
AdaOPS -16.95/1.6  -17.39/1.6  -16.14/1.6  -15.99/1.6 -15.29/1.6
R-DESPOT -12.07/1.6  -12.09/1.6  -12.00/1.6  -13.14/16 -10.41/1.6
POMCPOW -8.60/1.6 -8.47/16 -8.26/1.6 -8.14/16  -7.88/1.6

Table: Evaluation results on the benchmark POMDPs; the first number in each cell is the total
discounted cost; the second is the compute time in minutes (online methods were given 1 second
planning time per control); cells with N/A indicate cases where a result could not be obtained for
computational reasons. RS(m,|) stands for an instance of Rocksample with an m x m grid and /
rocks.

Performance can be further enhanced by combining with other RL methods, such as
rollout [Ham+25] J
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Thank you!
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