
Aggregation Methods for Markov Decision Problems with
Perfect and Imperfect State Information

Kim Hammar (khammar1@asu.edu), Yuchao Li (yuchaoli@asu.edu),
and Dimitri P. Bertsekas (dimitrib@mit.edu)

Based on
Section 3.6 of “A Course in Reinforcement Learning: 2nd Edition", by D.P. Bertsekas

as well as the upcoming work by Y. Li, K. Hammar, and D.P. Bertsekas

Hammar et. al IDS Cornell Talk May 7, 2025 1 / 31

Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

The Aggregation Methodology
1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem based on these states.
3 Solve the aggregate problem using some computational method.
4 Use the solution to the aggregate problem to compute a cost function approximation

for the original problem.

Hammar et. al IDS Cornell Talk May 7, 2025 2 / 31

Outline

1 Aggregation for Perfect State Information Problems

2 Aggregation for Imperfect State Information Problems

3 Illustrative Example and Computational Experiments

Hammar et. al IDS Cornell Talk May 7, 2025 3 / 31

Recap of Markov Decision Problems (MDP)

i j
pij(u), g(i , u, j)

State space: X = {1, . . . , n}, states are denoted by i , j.
Control constraint set: U(i).
Probability of transitioning from state i to j given control u: pij(u).

▶ Equivalent formulation: xk+1 = f (xk , uk , wk).

Cost of transitioning from state i to j given control u: g(i , u, j).
Cost-to-go from state i : J(i).
Discount factor: α.

Hammar et. al IDS Cornell Talk May 7, 2025 5 / 31

Approximation in Value Space

Simple choice roblem approximation

Simple choices Parametric approximation

odel Predictive Control

Aggregation onte-Carlo Tree Search

Aggregation Adaptive simulation Monte-Carlo Tree Search

)
Computation of J̃ :

Monte Carlo tree search First Step “Future”Monte Carlo tree search First Step “Future”

ange of Weighted Projections

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy

Optimal policy: µ∗ can be computed via

µ∗(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i , u, j) + αJ∗(j)

)
, i = 1, . . . , n

where J∗ is the optimal cost function satisfying Bellman’s equation
When computing J∗ is intractable, aggregation computes some J̃ to approximate J∗

A suboptimal policy µ̃ can be computed online via

µ̃(ik) ∈ arg min
u∈U(ik)

n∑
j=1

pik j(u)
(
g(ik , u, j) + αJ̃(j)

)
upon reaching state ik at stage k

Hammar et. al IDS Cornell Talk May 7, 2025 6 / 31

Representative States

Introduce a subset A of the original states 1, . . . , n, called representative states.
We use i , j to denote original states and x , y to denote representative states. min

u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

Hammar et. al IDS Cornell Talk May 7, 2025 7 / 31

Aggregation Probabilities

For each state i we define aggregation probabilities {ϕix | x ∈ A}.
Intuitively, ϕix expresses similarity between states i and x , where ϕxx = 1.

j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x oarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy wit Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

Hammar et. al IDS Cornell Talk May 7, 2025 8 / 31

Dynamics of the Aggregate System

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j , . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that w the basis functions are the Q-factors
of the aggregate problem Q̂(y, u y S, u ∈ U .

Let us now apply Q-learnin the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

ĝ(x, u) =
n⌥

i=1

dxi

n⌥

j=1

pij(u)g(i, u, j)

, g(i, u, j)
atrix ⇥ y1 y2 y3 System Space State i µ(i, r) µ(·, r) Policy

Q̃µ(i, u, r) J̃µ(i, r) G(r) Transition Matrix P (r) Controller Control

Evaluate Approximate Cost Steady-State Distribution ⌅(r) Average
Cost ⇥(r)

⇧j1y1 ⇧j1y2 ⇧j1y3 j1 j2 j3 y1 y2 y3 Original State Space

⇥ =

�
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⇥
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1 2 3 4 5 6 7 8 9 x1 x2 x3 x4

⇤ |�| (1 ⇤)|�| l(1 ⇤)�| ⇤� O A B C |1 ⇤�|
Asynchronous Initial state Decision µ(i) x Initial state f(x, u,w)

Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
()
µ (⇥r)

Tµ(⇥r) ⇥r = �T
()
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projection Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation robabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregatio Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

Hammar et. al IDS Cornell Talk May 7, 2025 9 / 31

Formulating the Aggregate Dynamic Programming Problem

State space: A (the set of representative states).
Control constraint set: U(i) (the original control constraint set).
Transition probabilities and costs

p̂xy (u) =
n∑

i=1

pxi(u)ϕiy , for all representative states (x , y) and controls u,

ĝ(x , u) =
n∑

i=1

pxi (u)g(x , u, i), for all representative states x and controls u.

i j

x y
Representative states

p̂xy (u), ĝ(x , u)

Original system states
pij(u), g(i , u, j)

x = i ϕjy

Hammar et. al IDS Cornell Talk May 7, 2025 10 / 31

Solving the Aggregate Dynamic Programming Problem

The aggregate problem can be solved “exactly” using dynamic
programming/simulation; see [Ber19, Section 6.3]
The optimal cost from a representative state x in this problem is denoted by r∗

x .

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

States i

Cost

Representative states

Hammar et. al IDS Cornell Talk May 7, 2025 11 / 31

Cost Difference Between the Aggregate and Original Problems

The aggregate cost function r∗
x is only defined for representative states x ∈ A.

The optimal cost function J∗(i) is defined for the entire state space i = 1, . . . , n.
For a representative state x , we generally have r∗

x ̸= J∗(x).

y

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)

States i

Cost

Representative states

Hammar et. al IDS Cornell Talk May 7, 2025 12 / 31

Cost Difference Between the Aggregate and Original Problems

The aggregate cost function r∗
x is only defined for representative states x ∈ A.

The optimal cost function J∗(i) is defined for the entire state space i = 1, . . . , n.
For a representative state x , we generally have r∗

x ̸= J∗(x).

j

What is the cost for j?
Can interpolate from r∗

x and r∗
x′ .

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)

States i

Cost

Representative states

Hammar et. al IDS Cornell Talk May 7, 2025 12 / 31

Using the Aggregate Solution to Approximate the Original Problem

We obtain an approximate cost function J̃ for the original problem via interpolation:

J̃(i) =
∑
x∈A

ϕix r∗
x , i = 1, . . . , n.

Using this cost function, we can obtain a one-step lookahead policy:

µ̃(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i , u, j) + αJ̃(j)

)
, i = 1, 2, . . . , n

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Representative states

Hammar et. al IDS Cornell Talk May 7, 2025 13 / 31

Using the Aggregate Solution to Approximate the Original Problem

Approximating the Original Problem
We obtain an approximate cost function J̃ for the original problem via interpolation:

J̃(j) =
∑
y∈A

ϕjy r∗
y , j = 1, . . . , n.

Using this cost function, we can obtain a one-step lookahead policy:

µ(i) ∈ arg min
u∈U

{
n∑

j=1

pij(u)
(
g(i , u, j) + αJ̃(j)

)}
, i = 1, . . . , n.

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Representative states

What is the difference between the approximation J̃ and the optimal cost function J∗?

Hammar et. al IDS Cornell Talk May 7, 2025 13 / 31

Hard Aggregation

Consider the case where ϕjx = 0 for all representative states x except one.
Let Sx denote the set of states that aggregate to the representative state x .

▶ i.e., the footprint of x , where {1, . . . , n} =
⋃

x∈A Sx .

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

Footprint set of x (example)

x

Hammar et. al IDS Cornell Talk May 7, 2025 14 / 31

Structure of the Cost Function Approximation

In the case of hard aggregation, J̃(i)=
∑

x∈A ϕix r∗
x = r∗

y for all i ∈ Sy .

Hence, J̃ is piecewise constant.

r∗
x

r∗
x′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Sx Sx′ Sx′′

Hammar et. al IDS Cornell Talk May 7, 2025 15 / 31

Approximation Error Bound in the Case of Hard Aggregation [TR96]

Let ϵ be the maximum variation of J∗ within a footprint set Sx , i.e.,

ϵ = max
x∈A

max
i,j∈Sx

|J∗(i) − J∗(j)|.

We refer to the difference |J∗(i) − J̃(i)| as the approximation error .
This error is bounded as

|J∗(i) − J̃(i)| ≤ ϵ

1 − α
i = 1, . . . , n.

Takeway: choose the footprint sets so that ϵ is small.

States i

Cost

ϵ1
ϵ2

ϵ3

ϵ = max{ϵ1, ϵ2, ϵ3}

Hammar et. al IDS Cornell Talk May 7, 2025 16 / 31

General Aggregation and Approximation Error

Introduce a finite set of aggregate states A.
Each aggregate state x ∈ A is associated with a disjoint subset Ix ⊂ {1, . . . , n}.
An aggregation problem can be defined similarly; see Section 3.6.4 of the course
book [Ber25] for details

Aggregate states AState space {1, . . . , n}

x

i

Ix

Upcoming Work
We show that similar error bound also hold for general aggreation with soft aggregation

probabilities; i.e., ϕjx ̸= 0 for several x ∈ A [LHB25]

Hammar et. al IDS Cornell Talk May 7, 2025 17 / 31

Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, . . . , n}, observation space Z , and control constraint set U(i).
Each state transition (i , j) generates a cost g(i , u, j);
and an observation z with probability p(z | j, u).
Let b(i) denote the conditional probability that the state is i , given the history.
The belief state is defined as b =

(
b(1), b(2), . . . , b(n)

)
.

The belief b is updated using a belief estimator F (b, u, z).
Goal: Find a policy as a function of b that minimizes the cost.

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller k

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyry bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y b Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

zk bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Hammar et. al IDS Cornell Talk May 7, 2025 19 / 31

The Belief Space

The belief b resides in the belief space B, i.e., the n − 1 dimensional unit simplex.
For example, if the states are {0, 1}, then b ∈ [0, 1].

(b) 2-dimensional unit simplex.

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

(a) 1-dimensional unit simplex.
(1, 0) (0, 1)

0.4 0.6

(0.4, 0.6)

Hammar et. al IDS Cornell Talk May 7, 2025 20 / 31

Aggregation of the Belief Space into Representative Beliefs

We can obtain representative beliefs via uniform discretization of the belief space:

A =
{

b
∣∣ b ∈ B, b(i) = δi /ρ,

n∑
i=1

δi = ρ, δi ∈ {0, . . . , ρ}
}

,

where ρ serves as the discretization resolution.

Discretization resolution ρ = 1

B

Discretization resolution ρ = 5

B

Discretization resolution ρ = 10

B

Hammar et. al IDS Cornell Talk May 7, 2025 21 / 31

Hard Aggregation of the Belief Space

We can implement hard aggregation via the nearest neighbor mapping:

ϕby = 1 if and only if y is the nearest neighbor of b, where b ∈ B and y ∈ A.

Discretization resolution ρ = 1

B

Discretization resolution ρ = 5

B

Discretization resolution ρ = 10

B

Hammar et. al IDS Cornell Talk May 7, 2025 22 / 31

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

exit

rock 1

rock 3

rock 2

Hammar et. al IDS Cornell Talk May 7, 2025 24 / 31

Approximating Rocksample (4,3) via Representative Aggregation

The Rocksample (4,3) POMDP has a 127-dimensional belief space.
We discretize the belief space with three different resolutions:

▶ ρ = 1 leads to an aggregate problem with 128 representative beliefs.
▶ ρ = 2 leads to an aggregate problem with 8256 representative beliefs.
▶ ρ = 3 leads to an aggregate problem with 357760 representative beliefs.

good

bad

bad

Rocksample (4, 3)
exit

rock 1

rock 3

rock 2

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animation Setup

good

bad

bad

Rocksample (4, 3)

exit

rock 1

rock 3

rock 2

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animation Setup

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5
exit

rock 1

rock 3

rock 2

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animation Setup

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5
exit

rock 1

rock 3

rock 2

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animations of Control Policies Based on Aggregation with ρ = 1

Will be presented during the talk.

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animations of Control Policies Based on Aggregation with ρ = 2

Will be presented during the talk.

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Animations of Control Policies Based on Aggregation with ρ = 3

Will be presented during the talk.

Hammar et. al IDS Cornell Talk May 7, 2025 25 / 31

Computational Trade-Offs

The animations show that performance improves with the discretization resolution ρ.
This is not surprising. As ρ increases, ϵ decreases.
However, the computational complexity increases with the resolution ρ.

1 2 3 4 5 6 7 8

101

102

103

n = 2 n = 4 n = 8|A|

Discretization resolution ρ

Hammar et. al IDS Cornell Talk May 7, 2025 26 / 31

Comparison Between Aggregation and Other POMDP Methods

POMDP States n Observations |Z | Controls |U| Discount factor α

RS (4,4) 257 2 9 0.95
RS (5,5) 801 2 10 0.95
RS (5,7) 3201 2 12 0.95
RS (7,8) 12545 2 13 0.95
RS (10,10) 102401 2 15 0.95

Table: POMDPs used for the experimental evaluation.

Method Aggregation Point-based Heuristic search Policy-based Exact DP

Our method ✓

IP [CLZ13] ✓

PBVI [PGT06] ✓

SARSOP [Ong+10] ✓

POMCP [SV10] ✓

HSVI [SS12] ✓

AdaOPS [Wu+21] ✓

R-DESPOT [Som+13] ✓

POMCPOW [SK18] ✓

PPO [Sch+17] ✓

PPG [Cob+21] ✓

Table: Methods used for the experimental evaluation; all methods are based on approximation
schemes except IP, which uses exact dynamic programming.

Hammar et. al IDS Cornell Talk May 7, 2025 27 / 31

Comparison Between Aggregation and Other POMDP Methods

Method
POMDP RS (4,4) RS (5,5) RS (5,7) RS (7,8) RS (10, 10)

Aggregation -17.15/2.4 -18.12/125.5 -17.51/189.1 -14.71/202 -11.59/500
IP N/A N/A N/A N/A N/A
PBVI -8.24/300 -9.05/300 N/A N/A N/A
SARSOP -17.92/10−2 -19.24/58.5 N/A N/A N/A
POMCP -8.64/1.6 -8.80/1.6 -9.81/1.6 -9.46/1.6 -8.98/1.6
HSVI -17.92/10−2 -19.24/6.2 -24.69/721.3 N/A N/A
PPO -8.57/300 -8.15/300 -8.76/300 -7.35/300 -4.59/1000
PPG -8.57/300 -8.24/300 -8.76/300 -7.35/300 -4.41/1000
AdaOPS -16.95/1.6 -17.39/1.6 -16.14/1.6 -15.99/1.6 -15.29/1.6
R-DESPOT -12.07/1.6 -12.09/1.6 -12.00/1.6 -13.14/1.6 -10.41/1.6
POMCPOW -8.60/1.6 -8.47/1.6 -8.26/1.6 -8.14/1.6 -7.88/1.6

Table: Evaluation results on the benchmark POMDPs; the first number in each cell is the total
discounted cost; the second is the compute time in minutes (online methods were given 1 second
planning time per control); cells with N/A indicate cases where a result could not be obtained for
computational reasons. RS(m,l) stands for an instance of Rocksample with an m × m grid and l
rocks.

Performance can be further enhanced by combining with other RL methods, such as
rollout [Ham+25]

Hammar et. al IDS Cornell Talk May 7, 2025 27 / 31

Thank you!

Hammar et. al IDS Cornell Talk May 7, 2025 28 / 31

References I

[Ber19] Dimitri P. Bertsekas. Reinforcement Learning and Optimal Control. Athena
Scientific, 2019.

[Ber25] Dimitri P. Bertsekas. A Course in Reinforcement Learning. 2nd. Athena
Scientific, 2025.

[CLZ13] Anthony R Cassandra, Michael L Littman, and Nevin Lianwen Zhang.
“Incremental pruning: A simple, fast, exact method for partially observable
Markov decision processes”. In: arXiv preprint arXiv:1302.1525 (2013).

[Cob+21] Karl W Cobbe et al. “Phasic policy gradient”. In: International Conference
on Machine Learning. PMLR. 2021, pp. 2020–2027.

[Ham+25] Kim Hammar et al. “Adaptive Network Security Policies via Belief
Aggregation and Rollout”. In: arXiv preprint upcoming (2025).

[LHB25] Yuchao Li, Kim Hammar, and Dimitri P. Bertsekas. “Feature-Based Belief
Aggregation for Partially Observable Markov Decision Problems”. In: arXiv
preprint upcoming (2025).

[Ong+10] Sylvie CW Ong et al. “Planning under uncertainty for robotic tasks with
mixed observability”. In: The International Journal of Robotics Research
29.8 (2010), pp. 1053–1068.

Hammar et. al IDS Cornell Talk May 7, 2025 29 / 31

References II

[PGT06] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. “Anytime point-based
approximations for large POMDPs”. In: Journal of Artificial Intelligence
Research 27 (2006), pp. 335–380.

[Sch+17] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[SK18] Zachary N. Sunberg and Mykel J. Kochenderfer. “Online Algorithms for
POMDPs with Continuous State, Action, and Observation Spaces”. In:
Proceedings of the 28th International Conference on Automated Planning
and Scheduling (ICAPS). 2018. url: https://www.aaai.org/ocs/index.
php/ICAPS/ICAPS18/paper/viewFile/17734/16986.

[Som+13] Adhiraj Somani et al. “DESPOT: Online POMDP planning with
regularization”. In: Advances in neural information processing systems 26
(2013).

[SS12] Trey Smith and Reid Simmons. “Heuristic search value iteration for
POMDPs”. In: arXiv preprint arXiv:1207.4166 (2012).

[SV10] David Silver and Joel Veness. “Monte-Carlo Planning in Large POMDPs”.
In: Advances in Neural Information Processing Systems. Vol. 23. 2010.

Hammar et. al IDS Cornell Talk May 7, 2025 30 / 31

https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/viewFile/17734/16986
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/viewFile/17734/16986

References III

[TR96] John N. Tsitsiklis and Benjamin van Roy. “Feature-based methods for large
scale dynamic programming”. In: Machine Learning 22.1 (Mar. 1996),
pp. 59–94.

[Wu+21] Chenyang Wu et al. “Adaptive online packing-guided search for POMDPs”.
In: Advances in Neural Information Processing Systems 34 (2021),
pp. 28419–28430.

Hammar et. al IDS Cornell Talk May 7, 2025 31 / 31

	Aggregation for Perfect State Information Problems
	Aggregation for Imperfect State Information Problems
	Illustrative Example and Computational Experiments
	References

