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Introduction (1)
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Problem of interest
▶ Problem data: x ∈ X , u ∈ U(x) ⊂ U, xk+1 = f (xk , uk), g(xk , uk) ∈ [0,∞].

▶ For every policy µ : X → U so that µ(x) ∈ U(x) for all x , its cost function is

Jµ(x0) =
∞∑

k=0

g
(
xk , µ(xk)

)
.

▶ The goal is to obtain the optimal policy µ∗ such that Jµ∗ equals the optimal cost:

J∗(x0) = min
uk∈U(xk ), k=0,1,...

xk+1=f (xk ,uk ), k=0,1,...

∞∑

k=0

g(xk , uk).
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Introduction (2)

Approximation in value space

▶ Bellman’s equation hold (cf. [Str66], [Ber15])

J∗(x) = min
u∈U(x)

(
g(x , u) + J∗

(
f (x , u)

))
, µ∗(x) ∈ arg min

u∈U(x)

(
g(x , u) + J∗

(
f (x , u)

))
.

▶ To overcome the curse of dimensionality, approximation in value space involves

Off-line ‘training’: J̄(x); On-line ‘play’: µ̃(x) ∈ arg min
u∈U(x)

(
g(x , u) + J̄

(
f (x , u)

))
.

Rollout: Using the cost function Jµ of a base policy µ as J̄

▶ Fundamental property: sequential improvement condition (introduced in [BTW97])

min
u∈U(x)

{
g(x , u) + Jµ

(
f (x , u)

)}
≤ Jµ(x),

which hold regardless of the nature of state and control spaces, and dynamics.
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Background: Theory

Theory on exact methods

▶ Related dynamic programming (DP) theory started with [Str66].

▶ Monotonicity property: If J ≤ J̄, then g(x , u) + J
(
f (x , u)

)
≤ g(x , u) + J̄

(
f (x , u)

)
.

▶ Fixed point equations: For all policies µ, we have

Jµ(x) = g
(
x , µ(x)

)
+ Jµ

(
f
(
x , µ(x)

))
, ∀x ∈ X .

▶ Upper bounds: For all policies µ and some nonnegative function J̃ : X → [0,∞],

g
(
x , µ(x)

)
+ J̃

(
f
(
x , µ(x)

))
≤ J̃(x), ∀x ∈ X , implies Jµ(x) ≤ J̃(x), ∀x ∈ X .

Theory on computation

▶ When J̄ = Jµ, the on-line ‘play’ step µ̃(x) ∈ argminu∈U(x)

(
g(x , u) + J̄

(
f (x , u)

))
is

known to be one step of Newton’s method with starting point Jµ for solving Bellman’s
equation (cf. [Kle68], [PoA69], [Hew71], [PuB79]).

▶ Even when approximation J̄ ≈ Jµ is involved, similar interpretation of on-line ‘play’ as one
step of Newton’s or Newton-like method holds true ([Ber20], [Ber21])!
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Background: Suboptimal Schemes (1)
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Rollout and related methods
▶ J̄ = Jµ or J̄ ≈ Jµ, e.g., J̄(xℓ) =

∑ℓ+m−1
k=ℓ g(xk , µ(xk)) + Ĵ(xℓ+m), with base policy µ.

▶ One step lookahead: µ̃(x) ∈ argminu∈U(x)

(
g(x , u) + J̄

(
f (x , u)

))
; or ℓ-step lookahead:

µ̃(x0) ∈ argminu∈U(x0)

(
g(x0, u) + minuk , k=1,...,ℓ−1

(∑ℓ−1
k=1 g(xk , uk) + J̄(xℓ)

))

▶ Key theoretical concern: The rollout policy µ̃ outperforms the base policy µ, e.g.,

Jµ̃(x) ≤ Jµ(x), for all x .
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Background: Suboptimal Schemes (2)

J̃(x) = min
{uk}ℓ−1

k=0

ℓ+m−1∑

k=0

g(xk, uk) +G(xℓ+m)

s. t. xk+1 = f(xk, uk), k = 0, ..., ℓ+m− 1,

xk ∈ C, uk ∈ U(xk), k = 0, ..., ℓ+m− 1,

uk = µ(xk), k = ℓ, ..., ℓ+m− 1,

xℓ+m ∈ Cℓ+m

x0 = x.

ON-LINE
PLAY

OFF-LINE
TRAINING

base policy 
terminal constraint

 terminal cost

Model predictive control (MPC)

▶ Off-line training: the terminal cost G , the terminal constraint Cℓ+m & the base policy µ.

▶ On-line play: solving the numerical optimization problem.
▶ Key theoretical concerns:

▶ Recursive feasibility of the numerical problem: related to µ and Cℓ+m

▶ Stability of the closed loop system: using J̃ as Lyapunov function

▶ Close connections with DP and rollout (cf. [KeG88], [Ber05]).
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Main results (1)

Basic form of data-driven rollout
▶ Exact rollout: J̄ = Jµ, and we have Jµ̃ ≤ Jµ. However, we need to obtain the values of

Jµ(x) for all x ∈ X .

▶ What if we can only compute Jµ(x) for x ∈ S , where S ⊂ X? Can we still get Jµ̃ ≤ Jµ?

▶ The answer is YES! But only for some S (key inspiration [RoB18]):

x ∈ S =⇒ f
(
x , µ(x)

)
∈ S .

▶ The effective J̄ is given as
J̄(x) = Jµ(x) + δS(x),

where δS(·) is an indicator function. This ensures the sequential improvement condition
holds, which in turn guarantees that Jµ̃ ≤ Jµ. True for broad class of problems!

▶ The conventional Lyapunov function J̃ is an upper-bound of Jµ̃; the recursive feasibility is
implied by the sequential improvement condition.

▶ Enlarging the size of S improves the bound J̃, not necessarily the cost function Jµ̃.
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Main results (2)

Extensions
▶ If some constraint C∞ is imposed on the entire trajectory {(xk , uk)}∞k=0, then state

augmentation (cf. [Ber20]) can be used, and the method remains valid.

▶ If there are multiple policies µ0, µ1, . . . , µn and multiple corresponding sets, a similar
method applies (use the policy that is pointwise ‘best’).

▶ Attaining minimum of
{
g(x , u) + Jµ

(
f (x , u)

)}
over u ∈ U(x) is sufficient to ensure

sequential improvement condition, but not necessary.

If µ(x) ∈ Ū(x) ⊂ U(x), then µ̃(x) ∈ arg min
u∈Ū(x)

{
g(x , u) + Jµ

(
f (x , u)

)}
≤ Jµ(x).

U(x)

Ū (x)

w

µ0(x) = (v0, w0) 

v

(ṽ, w0)

(ṽ, w̃)
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Illustrating example: The structure of the set S

A scalar linear quadratic problem

▶ Consider X = (−1, 1), U(x) = [−1, 1], xk+1 = 2xk + uk , and g(xk , uk) = x2k + u2k .

▶ A base policy is given as µ(x) = −sgn(x) if |x | > 1/2 and µ(x) = −2x otherwise.

▶ Examples of possible set S : discrete points, continuous range, or a mixture!
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10
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S S S

▶ We can collect pieces of the cost function Jµ and assemble them together to form the set
S , as long as the following condition is met:

x ∈ S =⇒ f
(
x , µ(x)

)
∈ S .
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Conclusion

▶ We highlighted the similarities and conections between rollout and MPC.

▶ A data-driven variant of exact rollout is introduced, and the fixed point equation plays a
central role for its analysis.

▶ The variant admits trajectory constrained, multiple policies and simplified extensions.

▶ A scalar linear quadratic regulation problem was used to illustrate the algorithm, while a
few other examples are provided in [LJM21].
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