KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

On the Proof of the Law of the Unconscious Statistician

Yuchao Li

September 25, 2018

1 PROBLEM STATEMENT

Probability space is given as $(\Omega, \mathcal{F}, \mathbf{P})$ with elementary outcome ω . A random variable (r.v.) defined on the probability space is *X*. Then with a Borel function $g : \mathbf{R} \to \mathbf{R}$, we know g(X) is \mathcal{F}_X -measurable and therefore a r.v. as well. The Law of the Unconscious Statistician (LOTUS) gives the following result

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) dF_X(x).$$
(1.1)

By [Hand Note 2], we know the left-hand side is defined as Lebesgue integral while the righthand side is defined as Lebesgue-Stieltje integral. Prove Eq. (1.1).

2 ELABORATION

Denote Y = g(X), then obviously we have E[Y] = E[g(X)]. We prove the cases when $g(x) \ge 0$, namely $Y \ge 0$. P.317 [1] provides the outline of the proof, here we fill in more details.

1. First, when g is simple, Y would be a simple r.v., [2] provides the proof for this case, namely for any simple g_m , the following equation

$$E[g_m(X(\omega))] = \int_{-\infty}^{\infty} g_m(x) dF_X(x) \text{ (Lebesgue-Stieltjes)}$$
(2.1)

holds. Notice that by saying g_m is simple, we mean that there are Borel sets $G_1, G_2, ..., G_m$ that are a partition of **R**, namely $\cup_{k=1}^m G_m = \mathbf{R}$ such that

$$g_m(x) = g_k$$
, if $x \in G_k$ for $k = 1, 2, ..., m$. (2.2)

2. For some non negative g, since Y = g(X) is a r.v., then its expectation is defined as a Lebesgue integral, refer to [Hand Note 2] and [2, 3, 4] for definition. Then to proof LOTUS is to show that

(Lebesgue)
$$\int_{\Omega} Y(\omega) d\mathbf{P}(\omega) = \int_{-\infty}^{\infty} g(x) dF_X(x)$$
 (Lebesgue-Stieltjes) (2.3)

provided that $Y(\omega) = g(X(\omega))$. Again, the left hand side is by definition given as

(Lebesgue)
$$\int_{\Omega} Y(\omega) d\mathbf{P}(\omega) = \lim_{n \to \infty} E[Y_n(\omega)]$$
 (2.4)

where Y_n is given as

$$Y_{n}(\omega) = \begin{cases} \frac{k-1}{2^{n}}, & \frac{k-1}{2^{n}} \le Y(\omega) < \frac{k}{2^{n}}, \ k = 1, 2, ..., n2^{n} \\ n, & Y(\omega) \ge n. \end{cases}$$
(2.5)

Plugging in $Y(\omega) = g(X(\omega))$, we have

$$Y_{n}(\omega) = \begin{cases} \frac{k-1}{2^{n}}, & \frac{k-1}{2^{n}} \le g(X(\omega)) < \frac{k}{2^{n}}, \ k = 1, 2, ..., n2^{n} \\ n, & g(X(\omega)) \ge n. \end{cases}$$
(2.6)

Denote $f_n : \mathbf{R}_+ \cup \{0\} \to \mathbf{R}$ as

$$f_n(z) = \begin{cases} \frac{k-1}{2^n}, & \frac{k-1}{2^n} \le z < \frac{k}{2^n}, \ k = 1, 2, ..., n2^n, \\ n, & z \ge n. \end{cases}$$
(2.7)

We know f_n is Borel function for any fixed n. Then we define g_n as

$$g_n(x) = f_n(g(x)). \tag{2.8}$$

It can be shown that due to f_n being simple and g Borel, g_n is a simple function, fulfilling the condition given in Eq. (2.2). What's more, $g_n(x) \uparrow g(x)$ pointwise. Then, we have

$$g_n(X(\omega)) = \begin{cases} \frac{k-1}{2^n}, & \frac{k-1}{2^n} \le g(X(\omega)) < \frac{k}{2^n}, \ k = 1, 2, ..., n2^n \\ n, & g(X(\omega)) \ge n. \end{cases}$$
(2.9)

Compare Eqs. (2.6) and (2.9), we see that $Y_n(\omega) = g_n(X(\omega))$. Substituting $Y_n(\omega)$ with $g_n(X(\omega))$ in Eq. (2.4), we have

(Lebesgue)
$$\int_{\Omega} Y(\omega) d\mathbf{P}(\omega) = \lim_{n \to \infty} E[g_n(X(\omega))].$$
(2.10)

The first part has shown for any simple g_n , we have $E[g_n(X(\omega))] = \int_{-\infty}^{\infty} g_n(x) dF_X(x)$, plug it into Eq. (2.10), we have

(Lebesgue)
$$\int_{\Omega} Y(\omega) d\mathbf{P}(\omega) = \lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(x) dF_X(x)$$
 (2.11)

where for each *n*, $\int_{-\infty}^{\infty} g_n(x) dF_X(x)$ is Lebesgue-Stieltjes integral.

3. Recall the definition of Lebesgue-Stieltjes integral, given as Eq. (2.9) of [Hand Note 2], which is

(Lebesgue-Stieltjes)
$$\int_{-\infty}^{\infty} g(x) dF_X(x) = \int_{-\infty}^{\infty} g(Y(r)) d\tilde{\mathbf{P}}(r)$$
 (Lebesgue). (2.12)

where Y(r) = r is the canoical r.v. of *X* defined on (**R**, \mathscr{B}), $\tilde{\mathbf{P}}$ is the probability measure of the probability space (**R**, \mathscr{B} , $\tilde{\mathbf{P}}$), which is induced by the canoical r.v. of *X*, refer to Steps 3 and 4 of [Hand Note 2] for more details. Since for each n, $\int_{-\infty}^{\infty} g_n(x) dF_X(x)$ is Lebesgue-Stieltjes integral, then by Eq. (2.12), we have

(Lebesgue-Stieltjes)
$$\int_{-\infty}^{\infty} g_n(x) dF_X(x) = \int_{-\infty}^{\infty} g_n(r) d\tilde{\mathbf{P}}(r)$$
 (Lebesgue). (2.13)

Similarly, for g, we have

(Lebesgue-Stieltjes)
$$\int_{-\infty}^{\infty} g(x) dF_X(x) = \int_{-\infty}^{\infty} g(r) d\tilde{\mathbf{P}}(r)$$
 (Lebesgue). (2.14)

Recall that $g_n \uparrow g$ point-wise and g_n is defined by Eq. (2.8), due to Lemma 2.1, P. 34, and Definition 2.5 (Lebegue integral), P. 35 in [3], we know by definition, the Lebesgue integral of a non-simple g is given as

(Lebesgue)
$$\int_{-\infty}^{\infty} g(r) d\tilde{\mathbf{P}}(r) = \lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(r) d\tilde{\mathbf{P}}(r)$$
 (2.15)

where the right-hand side is limit of Lebesgue integrals. Due to Eq. (2.13), we have

(Lebesgue)
$$\int_{-\infty}^{\infty} g(r) d\tilde{\mathbf{P}}(r) = \lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(x) dF_X(x)$$
 (2.16)

where the right-hand side now is the limit of Lebesgue-Stieltjes integrals.

Substitute $\lim_{n\to\infty} \int_{-\infty}^{\infty} g_n(x) dF_X(x)$ due to Eq. (2.14) and substitute $\int_{-\infty}^{\infty} g(r) d\tilde{\mathbf{P}}(r)$ due to Eq. (2.11), and we can rewrite Eq. (2.16) as

(Lebesgue)
$$\int_{\Omega} Y(\omega) d\mathbf{P}(\omega) = \int_{-\infty}^{\infty} g_n(x) dF_X(x)$$
 (Lebesgue-Stieltjes)

which is our goal Eq. (2.3). This concludes the proof.

Remark. Above discussion has established the case when g is nonnegative. For general case, we define $E[g(X)] = E[g^+(X)] - E[g^-(X)]$.

REFERENCES

- [1] Eugene Wong and Bruce Hajek, *Stochastic processes in engineering systems*, Springer Science & Business Media, 1985.
- [2] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
- [3] Allan Gut, Probability: A graduate course, 2nd Edition, Springer & Verlag, 2012.
- [4] Bruce Hajek, Random processes for engineers, Cambridge University Press, 2015.