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1 PROBLEM STATEMENT

Probability space is given as (Ω, F , P) with elementary outcome ω. A random variable (r.v.)
defined on the probability space is X . Then with a Borel function g : R → R, we know g (X ) is
FX -measurable and therefore a r.v. as well. The Law of the Unconscious Statistician (LOTUS)
gives the following result

E [g (X )] =
∫ ∞

−∞
g (x)dFX (x). (1.1)

By [Hand Note 2], we know the left-hand side is defined as Lebesgue integral while the right-
hand side is defined as Lebesgue-Stieltje integral. Prove Eq. (1.1).

2 ELABORATION

Denote Y = g (X ), then obviously we have E [Y ] = E [g (X )]. We prove the cases when g (x) ≥ 0,
namely Y ≥ 0. P.317 [1] provides the outline of the proof, here we fill in more details.

1. First, when g is simple, Y would be a simple r.v., [2] provides the proof for this case,
namely for any simple gm , the following equation

E [gm
(
X (ω)

)
] =

∫ ∞

−∞
gm(x)dFX (x) (Lebesgue-Stieltjes) (2.1)

holds. Notice that by saying gm is simple, we mean that there are Borel sets G1, G2, ..., Gm

that are a partition of R, namely ∪m
k=1Gm = R such that

gm(x) = gk , if x ∈Gk fork = 1, 2, ..., m. (2.2)
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2. For some non negative g , since Y = g (X ) is a r.v., then its expectation is defined as
a Lebesgue integral, refer to [Hand Note 2] and [2, 3, 4] for definition. Then to proof
LOTUS is to show that

(Lebesgue)
∫
Ω

Y (ω)dP(ω) =
∫ ∞

−∞
g (x)dFX (x) (Lebesgue-Stieltjes) (2.3)

provided that Y (ω) = g
(
X (ω)

)
. Again, the left hand side is by definition given as

(Lebesgue)
∫
Ω

Y (ω)dP(ω) = lim
n→∞E [Yn(ω)] (2.4)

where Yn is given as

Yn(ω) =
{

k−1
2n , k−1

2n ≤ Y (ω) < k
2n , k = 1, 2, ..., n2n

n, Y (ω) ≥ n.
(2.5)

Plugging in Y (ω) = g
(
X (ω)

)
, we have

Yn(ω) =
{

k−1
2n , k−1

2n ≤ g
(
X (ω)

)< k
2n , k = 1, 2, ..., n2n

n, g
(
X (ω)

)≥ n.
(2.6)

Denote fn : R+∪ {0} → R as

fn(z) =
{

k−1
2n , k−1

2n ≤ z < k
2n , k = 1, 2, ..., n2n ,

n, z ≥ n.
(2.7)

We know fn is Borel function for any fixed n. Then we define gn as

gn(x) = fn
(
g (x)

)
. (2.8)

It can be shown that due to fn being simple and g Borel, gn is a simple function, ful-
filling the condition given in Eq. (2.2). What’s more, gn(x) ↑ g (x) pointwise. Then, we
have

gn
(
X (ω)

)={
k−1
2n , k−1

2n ≤ g
(
X (ω)

)< k
2n , k = 1, 2, ..., n2n

n, g
(
X (ω)

)≥ n.
(2.9)

Compare Eqs. (2.6) and (2.9), we see that Yn(ω) = gn
(
X (ω)

)
. Substituting Yn(ω) with

gn
(
X (ω)

)
in Eq. (2.4), we have

(Lebesgue)
∫
Ω

Y (ω)dP(ω) = lim
n→∞E [gn

(
X (ω)

)
]. (2.10)

The first part has shown for any simple gn , we have E [gn
(
X (ω)

)
] = ∫ ∞

−∞ gn(x)dFX (x),
plug it into Eq. (2.10), we have

(Lebesgue)
∫
Ω

Y (ω)dP(ω) = lim
n→∞

∫ ∞

−∞
gn(x)dFX (x) (2.11)

where for each n,
∫ ∞
−∞ gn(x)dFX (x) is Lebesgue-Stieltjes integral.
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3. Recall the definition of Lebesgue-Stieltjes integral, given as Eq. (2.9) of [Hand Note 2],
which is

(Lebesgue-Stieltjes)
∫ ∞

−∞
g (x)dFX (x) =

∫ ∞

−∞
g
(
Y (r )

)
d P̃(r ) (Lebesgue). (2.12)

where Y (r ) = r is the canoical r.v. of X defined on (R, B), P̃ is the probability measure
of the probability space (R, B, P̃), which is induced by the canoical r.v. of X , refer to
Steps 3 and 4 of [Hand Note 2] for more details. Since for each n,

∫ ∞
−∞ gn(x)dFX (x) is

Lebesgue-Stieltjes integral, then by Eq. (2.12), we have

(Lebesgue-Stieltjes)
∫ ∞

−∞
gn(x)dFX (x) =

∫ ∞

−∞
gn(r )d P̃(r ) (Lebesgue). (2.13)

Similarly, for g , we have

(Lebesgue-Stieltjes)
∫ ∞

−∞
g (x)dFX (x) =

∫ ∞

−∞
g (r )d P̃(r ) (Lebesgue). (2.14)

Recall that gn ↑ g point-wise and gn is defined by Eq. (2.8), due to Lemma 2.1, P. 34,
and Definition 2.5 (Lebegue integral), P. 35 in [3], we know by definition, the Lebesgue
integral of a non-simple g is given as

(Lebesgue)
∫ ∞

−∞
g (r )d P̃(r ) = lim

n→∞

∫ ∞

−∞
gn(r )d P̃(r ) (2.15)

where the right-hand side is limit of Lebesgue integrals. Due to Eq. (2.13), we have

(Lebesgue)
∫ ∞

−∞
g (r )d P̃(r ) = lim

n→∞

∫ ∞

−∞
gn(x)dFX (x) (2.16)

where the right-hand side now is the limit of Lebesgue-Stieltjes integrals.

Substitute limn→∞
∫ ∞
−∞ gn(x)dFX (x) due to Eq. (2.14) and substitute

∫ ∞
−∞ g (r )d P̃(r ) due

to Eq. (2.11), and we can rewrite Eq. (2.16) as

(Lebesgue)
∫
Ω

Y (ω)dP(ω) =
∫ ∞

−∞
gn(x)dFX (x) (Lebesgue-Stieltjes)

which is our goal Eq. (2.3). This concludes the proof.

Remark. Above discussion has established the case when g is nonnegative. For general case,
we define E [g (X )] = E [g+(X )]−E [g−(X )].
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