Independence between Sigma-fields

Yuchao Li

September 7, 2018

1 Problem statement

Probability space is given as $(\Omega, \mathscr{F}, \mathbf{P})$. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent random variables (r.v.'s). To distinguish between mutual independence and pairwise independence, refer to Definition 3.1 and its follow up Warning in [1]. Denote the sigma-field generated by X_{i} as $\sigma\left(X_{i}\right)$ and the sigma field generated by a sequence of of r.v.'s $\left(X_{i}\right)_{i=1}^{m}$ as $\sigma\left(\left(X_{i}\right)_{i=1}^{m}\right)$. Prove that the sigma-filds $\sigma\left(\left(X_{i}\right)_{i=1}^{n-1}\right)$ and $\sigma\left(X_{n}\right)$ are independent.

2 Elaboration

To show $\sigma\left(\left(X_{i}\right)_{i=1}^{n-1}\right)$ and $\sigma\left(X_{n}\right)$ are independent, by Definition 1.6.1, [2], we need to show that $\forall A \in \sigma\left(\left(X_{i}\right)_{i=1}^{n-1}\right)$ and $\forall B \in \sigma\left(X_{n}\right)$, the condition

$$
\begin{equation*}
\mathbf{P}(A \cap B)=\mathbf{P}(A) \cap \mathbf{P}(B) \tag{2.1}
\end{equation*}
$$

always holds. We proceed by four steps.

1. For those $A^{(1)} \in \cup_{i=1}^{n-1} \sigma\left(X_{i}\right)$, by independence between X_{i} and X_{n} where $i=1,2, \ldots, n-1$, we know Eq. (2.1) holds $\forall B \in \sigma\left(X_{n}\right)$.
2. For those $A^{(2)}=\cup_{k=1}^{j} A_{k}^{(1)}$ where $A_{k}^{(1)} \in \cup_{i=1}^{n-1} \sigma\left(X_{i}\right)$ and $A^{(2)} \notin \cup_{i=1}^{n-1} \sigma\left(X_{i}\right)$, we first group $A_{k}^{(1)}$ by which $\sigma\left(X_{i}\right)$ it belongs to. Then $A^{(2)}=\cup_{m=1}^{n-1} S_{m}^{(1)}$ where $S_{m}^{(1)}=\cup_{p \in \mathscr{P}(m)} A_{p}^{(1)}$ where $\mathscr{P}(m)=\left\{p \in \mathbf{N} \mid A_{p}^{(1)} \in \sigma\left(X_{m}\right)\right\}$. Then as a direct result, we have $S_{m}^{(1)} \in \sigma\left(X_{m}\right)$. So our goal is to prove

$$
\mathbf{P}\left(A^{(2)} B\right)=\mathbf{P}\left(A^{(2)}\right) \mathbf{P}(B)
$$

Since $A^{(2)}=\cup_{m=1}^{n-1} S_{m}^{(1)}$, we need to show

$$
\begin{equation*}
\mathbf{P}\left(\left(\cup_{m=1}^{n-1} S_{m}^{(1)}\right) \cap B\right)=\mathbf{P}\left(\cup_{m=1}^{n-1} S_{m}^{(1)}\right) \mathbf{P}(B) \tag{2.2}
\end{equation*}
$$

Then we start with the case $\mathbf{P}\left(\left(\cup_{m=1}^{2} S_{m}^{(1)}\right) \cap B\right)=\mathbf{P}\left(\cup_{m=1}^{2} S_{m}^{(1)}\right) \mathbf{P}(B)$.

$$
\begin{align*}
\mathbf{P}\left(\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \cap B\right) & =\mathbf{P}\left(\left(S_{1}^{(1)} \cap B\right) \cup\left(S_{2}^{(1)} \cap B\right)\right) \\
& =\mathbf{P}\left(S_{1}^{(1)} \cap B\right)+\mathbf{P}\left(S_{2}^{(1)} \cap B\right)-\mathbf{P}\left(\left(S_{1}^{(1)} \cap B\right) \cap\left(S_{2}^{(1)} \cap B\right)\right) \\
& =\mathbf{P}\left(S_{1}^{(1)} \cap B\right)+\mathbf{P}\left(S_{2}^{(1)} \cap B\right)-\mathbf{P}\left(S_{1}^{(1)} \cap S_{2}^{(1)} \cap B\right) . \tag{2.3}
\end{align*}
$$

Since X_{1}, \ldots, X_{n} are mutually independent, Eq. (2.3) can proceed as follows.

$$
\begin{align*}
\mathbf{P}\left(\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \cap B\right) & =\mathbf{P}\left(S_{1}^{(1)}\right) \mathbf{P}(B)+\mathbf{P}\left(S_{2}^{(1)}\right) \mathbf{P}(B)-\mathbf{P}\left(S_{1}^{(1)}\right) \mathbf{P}\left(S_{2}^{(1)}\right) \mathbf{P}(B) \\
& =\left(\mathbf{P}\left(S_{1}^{(1)}\right)+\mathbf{P}\left(S_{2}^{(1)}\right)-\mathbf{P}\left(S_{1}^{(1)}\right) \mathbf{P}\left(S_{2}^{(1)}\right)\right) \mathbf{P}(B) \\
& =\mathbf{P}\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \mathbf{P}(B) . \tag{2.4}
\end{align*}
$$

So we show Eq. (2.2) for the case $\cup_{m=3}^{n-1} S_{m}^{(1)}=\varnothing$. To proceed to the case $\mathbf{P}\left(\left(\cup_{m=1}^{3} S_{m}^{(1)}\right) \cap\right.$ $B)=\mathbf{P}\left(\cup_{m=1}^{3} S_{m}^{(1)}\right) \mathbf{P}(B)$, we need to show that $S_{1}^{(1)} \cup S_{2}^{(1)}, S_{3}^{(1)}$ and B are mutually independent. Indeed, we can show that

$$
\begin{align*}
\mathbf{P}\left(\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \cap S_{3}^{(1)} \cap B\right)= & \mathbf{P}\left(\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \cap\left(S_{3}^{(1)} \cap B\right)\right) \\
= & \mathbf{P}\left(\left(S_{1}^{(1)} \cap S_{3}^{(1)} \cap B\right) \cup\left(S_{2}^{(1)} \cap S_{3}^{(1)} \cap B\right)\right) \\
= & \mathbf{P}\left(S_{1}^{(1)} \cap S_{3}^{(1)} \cap B\right)+\mathbf{P}\left(S_{2}^{(1)} \cap S_{3}^{(1)} \cap B\right)- \\
& \mathbf{P}\left(\left(S_{1}^{(1)} \cap S_{3}^{(1)} \cap B\right) \cap\left(S_{2}^{(1)} \cap S_{3}^{(1)} \cap B\right)\right) \\
= & \mathbf{P}\left(S_{1}^{(1)} \cap S_{3}^{(1)} \cap B\right)+\mathbf{P}\left(S_{2}^{(1)} \cap S_{3}^{(1)} \cap B\right)-\mathbf{P}\left(S_{1}^{(1)} \cap S_{2}^{(1)} \cap S_{3}^{(1)} \cap B\right) . \tag{2.5}
\end{align*}
$$

Since X_{1}, \ldots, X_{n} are mutully independent, Eq. (2.5) can proceed as follows.

$$
\begin{align*}
\mathbf{P}\left(\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \cap S_{3}^{(1)} \cap B\right) & =\left(\mathbf{P}\left(S_{1}^{(1)}\right)+\mathbf{P}\left(S_{2}^{(1)}\right)-\mathbf{P}\left(S_{1}^{(1)}\right) \mathbf{P}\left(S_{2}^{(1)}\right)\right) \mathbf{P}\left(S_{3}^{(1)}\right) \mathbf{P}(B) \\
& =\left(\mathbf{P}\left(S_{1}^{(1)}\right)+\mathbf{P}\left(S_{2}^{(1)}\right)-\mathbf{P}\left(S_{1}^{(1)} \cap S_{2}^{(1)}\right)\right) \mathbf{P}\left(S_{3}^{(1)}\right) \mathbf{P}(B) \\
& =\mathbf{P}\left(S_{1}^{(1)} \cup S_{2}^{(1)}\right) \mathbf{P}\left(S_{3}^{(1)}\right) \mathbf{P}(B) \tag{2.6}
\end{align*}
$$

Therefore, we can proceed like Eqs. (2.3) and (2.4) till $n-1$ to prove Eq. (2.2).
3. Denote the collection of $A^{(2)}$ as \mathscr{C}. Due to how $A^{(2)}$ is defined, we know $\mathscr{C} \cap\left(\cup_{i=1}^{n-1}\right.$ $\left.\sigma\left(X_{i}\right)\right)=\varnothing$. Define $A^{(3)}=\cup_{j=1}^{\infty} A_{j}, A_{j} \in \mathscr{C} \cup\left(\cup_{i=1}^{n-1} \sigma\left(X_{i}\right)\right)$. Denote $\cup_{j=1}^{k} A_{j}=S_{k}$. Then we know $S_{k} \in \mathscr{C} \cup\left(\cup_{i=1}^{n-1} \sigma\left(X_{i}\right)\right)$ and $S_{1} \subseteq S_{2} \subseteq \ldots \subseteq S_{n} \subseteq \ldots$. Then we know $\cup_{j=1}^{k} A_{j}=\cup_{j=1}^{k} S_{j}$ and $\cup_{j=1}^{\infty} A_{j}=\cup_{j=1}^{\infty} S_{j}$.

$$
\begin{align*}
\mathbf{P}\left(A^{(3)} \cap B\right) & =\mathbf{P}\left(\left(\cup_{j=1}^{\infty} A_{j}\right) \cap B\right) \\
& =\mathbf{P}\left(\left(\cup_{j=1}^{\infty} S_{j}\right) \cap B\right) . \tag{2.7}
\end{align*}
$$

We can show that $\left(\cup_{j=1}^{k} S_{j}\right) \cap B=\cup_{j=1}^{k}\left(S_{j} \cap B\right)$ and $\left(\cup_{j=1}^{\infty} S_{j}\right) \cap B=\cup_{j=1}^{\infty}\left(S_{j} \cap B\right)$. Denote $C_{j}=S_{j} \cap B$. Then we have $C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{n} \subseteq \ldots$.

$$
\begin{align*}
\mathbf{P}\left(A^{(3)} \cap B\right) & =\mathbf{P}\left(\cup_{j=1}^{\infty}\left(S_{j} \cap B\right)\right) \\
& =\mathbf{P}\left(\cup_{j=1}^{\infty} C_{j}\right) . \tag{2.8}
\end{align*}
$$

Due to continuity from below in [2], as a direct result of $C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{n} \subseteq \ldots$, we have

$$
\begin{align*}
\mathbf{P}\left(A^{(3)} \cap B\right) & =\lim _{j \rightarrow \infty} \mathbf{P}\left(C_{j}\right) \\
& =\lim _{j \rightarrow \infty} \mathbf{P}\left(S_{j} \cap B\right) . \tag{2.9}
\end{align*}
$$

Since $S_{j} \in \mathscr{C} \cup\left(\cup_{i=1}^{n-1} \sigma\left(X_{i}\right)\right)$, by the proof of step 1 and 2, we have $\mathbf{P}\left(S_{j} \cap B\right)=\mathbf{P}\left(S_{j}\right) \mathbf{P}(B)$ $\forall j$. Therefore, we can proceed as follows.

$$
\begin{align*}
\mathbf{P}\left(A^{(3)} \cap B\right) & =\lim _{j \rightarrow \infty}\left(\mathbf{P}\left(S_{j}\right) \mathbf{P}(B)\right) \\
& =\left(\lim _{j \rightarrow \infty} \mathbf{P}\left(S_{j}\right)\right) \mathbf{P}(B) \\
& =\mathbf{P}\left(\cup_{j=1}^{\infty} S_{j}\right) \mathbf{P}(B) . \tag{2.10}
\end{align*}
$$

Since $A^{(3)}=\cup_{j=1}^{\infty} S_{j}$, we have the result.
4. Similar steps can be applied to proceed for any $A \in \sigma\left(\left(X_{i}\right)_{i=1}^{n-1}\right)$ which does not belong to first three categories.

REFERENCES

[1] Jean Jacod and Philip Protter, Probability essentials, 2nd Edition, Springer Science \& Business Media, 2012.
[2] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

