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1 PROBLEM STATEMENT

Probability space is given as (Ω, F , P). Suppose X and Y are random variables (r.v.’s) defined
on the same probability space (Ω, F , P). Suppose also that E [X ] <∞, E [Y ] <∞. By [Note 12]
and [Note 13], we know Z = X Y is also a r.v. defined on the same probability space. Suppose
E [Z ] <∞. If X and Y are independent, then by the Proposition B.21, P. 493 [1] or Exercise 3,
P. 44 [2] we have

E [X Y ] = E [X ]E [Y ]. (1.1)

Considering also the product probability space introduced in Section 9.1 and 9.2, P. 64, [3].
Elaborate the direct consequence from Eq. (1.1) regarding integration over the probability
space.

2 ELABORATION

Since Z = X Y is F -measurable. Then we have

E [Z ] =
∫
Ω

Z dP =
∫
Ω

X Y dP. (2.1)

Similarly, we have

E [X ] =
∫
Ω

X dP, (2.2)

E [Y ] =
∫
Ω

Y dP. (2.3)
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Then due to Eq. (2.1), we have∫
Ω

X Y dP =
∫
Ω

X dP
∫
Ω

Y dP =
∫
ΩX

∫
ΩY

X Y dPX dPY (2.4)

whereΩX =ΩY =Ω and PX = PY = P. Namely, if X and Y are independent, when calculating
the expectation, even they are defined on the same probability space, they can be regarded as
being defined on two probability spaces, both of which are duplicate of original probability
space.

Remark. This shall not come as a surprise. Althogh the symbol following the integration
∫

is
Ω, one shall be aware the integral is defined as Lebesgue integral, refer to [Hand Note 2], which
is the limit of expectations of simple r.v.’s. For simple r.v.’s, the operation of taking expectation
is conducted via events, so all that matters are the events A where A ∈ F , not the elementary
outcome ω, where ω ∈Ω. As a result, if X and Y are independent, then ∀A ∈FX and ∀B ∈FY

where FX and FY are sigma fields generated by X and Y respectively, we have

P(A∩B) = P(A)P(B).

So the relation expressed by Eq. (2.4) would always hold for simple r.v.’s Xn and Yn where Xn ↑ X
and Yn ↑ Y . So would be their limits.
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