KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Random Variables Generated by Indexing

Yuchao Li

September 5, 2018

1 PROBLEM STATEMENT

Probability space is given as $(\Omega, \mathcal{F}, \mathbf{P})$. Suppose *I*, $X_1, X_2, ..., X_n, ...$ are independent positive integar valued random variables (r.v.). Prove the following are also r.v.'s.

- 1. X_I ;
- 2. $S_n = \sum_{i=1}^n X_i$ for any fixed *n*;
- 3. *S*_{*I*}.

2 ELABORATION

To show X_I , S_n and S_I are r.v.'s, we need to show they are \mathscr{F} -measurable.

1. Since *I*, *X*₁, *X*₂, ..., *X_n*, ... are positive integar valued, so we have $X_I : \Omega \to \mathbf{N}$ where **N** is the set of positive integers. Then we have

$$\{X_I = x\} = \bigcup_{i=1}^{\infty} (\{X_i = x\} \cap \{I = i\}).$$
(2.1)

Since X_i is r.v. $\forall i \in \mathbb{N}$, $\{X_i = x\} \in \mathscr{F}$. Similarly, $\{I = i\} \in \mathscr{F}$. Since \mathscr{F} is a sigma field, by closure under intersection, we know $\{X_i = x\} \cap \{I = i\} \in \mathscr{F}$. By closure under countable union, $\{X_I = x\} \in \mathscr{F}$. Therefore, X_I is a r.v.

2. Here we provide a simple elaboration to give a flavor of the proof. Consider the case where n = 2 and we need to check, for example, if $\{S_2 = 3\} \in \mathcal{F}$. Since 3 = 1 + 2 = 2 + 1, therefore, we have

$$\{S_2 = 3\} = (\{X_1 = 1\} \cap \{X_2 = 2\}) \cup (\{X_1 = 2\} \cap \{X_2 = 1\}).$$
(2.2)

As a result, we have $\{S_2 = 3\} \in \mathcal{F}$. Generally for $\{S_n = i\}$, we can similarly distribute *i* to $X_1, X_2, ..., X_n$ and then it can be shown that $\{S_n = i\} \in \mathcal{F}$

3. By part 2, we know S_n is a positive integered r.v. for any fixed *n*. Then use the argument in part 1, where X_i is replaced by S_i , we get the proof.

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.