KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Monotonicity of Lebesgue Integration

Yuchao Li

August 13, 2018

1 PROBLEM STATEMENT

Denote a probability space as $(\Omega, \mathcal{F}, \mathbf{P})$ and a r.v. defined upon it as *X* which is \mathcal{G} -measurable where $\mathcal{G} \subseteq \mathcal{F}$. In the proof of Lemma 3.5.1, P.96 in [1], it states that

$$\varepsilon \mathbf{P}(X \ge \varepsilon) = \int_{\{X \ge \varepsilon\}} \varepsilon d\mathbf{P} \le \int_{\{X \ge \varepsilon\}} X d\mathbf{P}.$$
 (1.1)

Suppose *X* is nonnegative random variable and $\varepsilon \ge 0$. Prove above result by its nature, namely considering the fact that the integral above is Lebesgue integration. In addition, if $P(X > \varepsilon) > 0$, then we have

$$\varepsilon \mathbf{P}(X \ge \varepsilon) = \int_{\{X \ge \varepsilon\}} \varepsilon d\mathbf{P} < \int_{\{X \ge \varepsilon\}} X d\mathbf{P}.$$
 (1.2)

2 ELABORATION

The first two steps in the following prove Eq. (1.1). The third step proves Eq. (1.2).

1. First, we prove the case where *X* is bounded.

Denote $E = [\varepsilon, \infty) \in \mathscr{B}$. Then, since *X* is a random variable, we have $A \in \mathscr{G}$ where event *A* is given as $A = X^{-1}(E)$. Then the first integral in Eq. (1.1) is a Lebesgue integral of a simple random variable, and the random variable is defined via indicator function as $\varepsilon \chi_A$. Then we have

$$\int_{\{X \ge \varepsilon\}} X d\mathbf{P} = E[\chi_A X] \tag{2.1}$$

As for the second integral, refer to [Hand Note 2] and [1, 2, 3] for its definition. Note that as a Lesbegue integral, it is defined as a limit of the 'expectation' (over certain event, in this case A) of a series of simple random variables, given as

$$X_{n}(\omega) = \begin{cases} \frac{k-1}{2^{n}}, & \frac{k-1}{2^{n}} \le X(\omega) < \frac{k}{2^{n}}, \ k = 1, 2, ..., n2^{n} \\ n, & X(\omega) \ge n. \end{cases}$$
(2.2)

Denote $E_{n,k} = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right] \cap E$. Due to that *X* is bounded, we suppose it is bounded by $M \in \mathbf{N}_+$. Then for $n \ge M$, we define Z_n and Y_n as

$$Z_n(\omega) = \begin{cases} \frac{1}{2^n}, & X(\omega) < n\\ 0, & X(\omega) \ge n. \end{cases}$$
(2.3)

$$Y_{n}(\omega) = \begin{cases} \frac{k}{2^{n}}, & \frac{k-1}{2^{n}} \le X(\omega) < \frac{k}{2^{n}}, \ k = 1, 2, ..., n2^{n} \\ n, & X(\omega) \ge n, \end{cases}$$
(2.4)

Then we have $Y_n = X_n + Z_n$ and $X_n \ge 0$, $Z_n \ge 0$. Then for $n \ge M$, due to $\mathbf{P}(\{X(\omega) \ge n\}) = 0$, we have

$$E[\chi_A X_n] = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) + n \mathbf{P}(\{X(\omega) \ge n\})$$
(2.5a)
$$= \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k})$$

$$E[\chi_A Z_n] = \sum_{k=1}^{n2^n} \frac{1}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) + n \mathbf{P}(\{X(\omega) \ge n\})$$
(2.5b)
$$= \sum_{k=1}^{n2^n} \frac{1}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k})$$

Due to linearity in Theorem 4.1, P.49, [2], since $\chi_A Y_n = \chi_A X_n + \chi_A Z_n$, we have

$$E[\chi_A Y_n] = E[\chi_A X_n] + E[\chi_A Z_n].$$
(2.6)

Take limits on both sides of Eq. (2.6), due to definition of Lebesgue integral and the fact that $\mathbf{P}({X(\omega) \ge n}) = 0$, we have

$$\lim_{n \to \infty} E[\chi_A X_n] = \int_{\{X \ge \varepsilon\}} X d\mathbf{P}.$$
(2.7)

Since *X* is bounded by *M*, then $Z_n^{-1}([0, M]) = \Omega$, then

$$\lim_{n \to \infty} E[\chi_A Z_n] = \lim_{n \to \infty} \frac{1}{2^n} = 0.$$
(2.8)

As a result, we have

$$\lim_{n \to \infty} E[\chi_A Y_n] = \lim_{n \to \infty} E[\chi_A X_n] + \lim_{n \to \infty} E[\chi_A Z_n] = \lim_{n \to \infty} E[\chi_A X_n] = \int_{\{X \ge \varepsilon\}} X d\mathbf{P}.$$
 (2.9)

It can be seen that $Y_n > X_n \ge \varepsilon$, then we have

$$\sum_{k=1}^{n2^n} \frac{k}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) + n \mathbf{P}(\{X(\omega) \ge n\}) > \sum_{k=1}^{n2^n} \varepsilon \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) + \varepsilon \mathbf{P}(\{X(\omega) \ge n\})$$
(2.10)

for $\forall n \ge M$. Then we have

$$\sum_{k=1}^{n2^n} \frac{k}{2^n} \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) > \sum_{k=1}^{n2^n} \varepsilon \mathbf{P}(\chi_A(\omega) X(\omega) \in E_{n,k}) = \int_{\{X \ge \varepsilon\}} \varepsilon d\mathbf{P}$$
(2.11)

Take limit of $n \rightarrow \infty$ on both sides of Eq. (2.11), we have the result.

2. Then we prove the case where $X \in \mathbf{R}$, which is more general than previous result. For $n \ge \varepsilon$, define W_n as

$$W_n(\omega) = \begin{cases} 0, & X(\omega) < \varepsilon \text{ or } X(\omega) \ge n + \varepsilon, \\ \frac{k-1}{2^n} + \varepsilon, & \frac{k-1}{2^n} + \varepsilon \le X(\omega) < \frac{k}{2^n} + \varepsilon, \ k = 1, 2, ..., n2^n. \end{cases}$$
(2.12)

Then for any $W_n(\omega)$, denote $F_{n,k} = \left[\frac{k-1}{2^n} + \varepsilon, \frac{k}{2^n} + \varepsilon\right)$ for $k = 1, 2, ..., n2^n$ and $F_{n,n2^n+1} = [n + \varepsilon, \infty)$

$$E[W_n] + \varepsilon \mathbf{P}(\{X(\omega) \ge n + \varepsilon\}) = \sum_{k=1}^{n2^n} \left((\frac{k-1}{2^n} + \varepsilon) \mathbf{P}(X(\omega) \in F_{n,k}) \right) + \varepsilon \mathbf{P}(\{X(\omega) \ge n + \varepsilon\})$$
(2.13)

Since $\frac{k-1}{2^n} + \varepsilon \ge \varepsilon$ for $k = 1, 2, ..., n2^n$, then we have

$$E[W_n] + \varepsilon \mathbf{P}(\{X(\omega) \ge n + \varepsilon\}) \ge \varepsilon \Big(\sum_{k=1}^{n2^n} \mathbf{P}(X(\omega) \in F_{n,k}) + \mathbf{P}(\{X(\omega) \ge n + \varepsilon\})\Big) = \varepsilon \mathbf{P}(X \ge \varepsilon).$$
(2.14)

Take limits on both sides of Eq. (2.14). Since W_n converge to $\chi_A X$ from below, due to Theorem 4.2 (Consistency), P.50, [2], we have

$$\lim_{n \to \infty} E[W_n] = E[\chi_A X] = \int_{\{X \ge \varepsilon\}} X d\mathbf{P}.$$
(2.15)

As for the limit of $\mathbf{P}(\{X(\omega) \ge n + \varepsilon\})$, we have

$$\lim_{n \to \infty} \mathbf{P}(\{X(\omega) \ge n + \varepsilon\}) = \mathbf{P}(\bigcap_{i=1}^{\infty} \{X(\omega) \ge i + \varepsilon\}) = \mathbf{P}(\phi) = 0$$
(2.16)

where the first equality is due to Theorem 1.4.9 (continuity from above) [1], while the second is due to that $X \in \mathbf{R}$. As a result, we have at last

$$\int_{\{X \ge \varepsilon\}} X d\mathbf{P} \ge \varepsilon \mathbf{P}(X \ge \varepsilon).$$
(2.17)

3. If $\mathbf{P}(X > \varepsilon) > 0$, denote $B = X^{-1}((\varepsilon, \infty))$ and $C = X^{-1}(\varepsilon)$. Then we know $B \cup C = A$ and $\mathbf{P}(B) > 0$. Since the following formula holds

$$\chi_A(\omega) = \chi_B(\omega) + \chi_C(\omega), \,\forall \omega \in \Omega,$$
(2.18)

then we have

$$\int_{\{X \ge \varepsilon\}} X d\mathbf{P} = E[\chi_A X] = E[(\chi_B + \chi_C) X] = E[\chi_B X] + E[\chi_C X]$$
(2.19)

Since $E[\chi_B X] = \int_{\{X > \varepsilon\}} X d\mathbf{P}$ and $E[\chi_C X] = \int_{\{X = \varepsilon\}} X d\mathbf{P}$ by definition, according to Section 1.12.3, P. 44 [1], then we have

$$\int_{\{X \ge \varepsilon\}} X d\mathbf{P} = \int_{\{X > \varepsilon\}} X d\mathbf{P} + \int_{\{X = \varepsilon\}} X d\mathbf{P}$$
(2.20)

Apparently, we have

$$\varepsilon \mathbf{P}(X = \varepsilon) = \int_{\{X = \varepsilon\}} X d\mathbf{P}.$$
 (2.21)

Therefore the part left for proof is to show that

$$\varepsilon \mathbf{P}(X > \varepsilon) < \int_{\{X > \varepsilon\}} X d\mathbf{P}.$$
 (2.22)

Define $T_n(\omega)$ as

$$T_{n}(\omega) = \begin{cases} 0, & \chi_{B}(\omega)X(\omega) < \varepsilon, \\ \frac{k-1}{2^{n}} + \varepsilon, & \frac{k-1}{2^{n}} + \varepsilon \leq \chi_{B}(\omega)X(\omega) < \frac{k}{2^{n}} + \varepsilon, \ k = 1, 2, ..., n2^{n}, \\ n + \varepsilon, & \chi_{B}(\omega)X(\omega) \geq n + \varepsilon. \end{cases}$$
(2.23)

Then we have

$$E[T_n] = \sum_{k=1}^{n2^n+1} \left(\left(\frac{k-1}{2^n} + \varepsilon \right) \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{n,k}) \right)$$
(2.24)

Since $\bigcap_{n=1}^{\infty} (F_{n,1} \cap (\varepsilon, \infty)) = \emptyset$, then we have

$$\mathbf{P}\Big(\chi_B X \in \bigcap_{n=1}^{\infty} \big(F_{n,1} \cap (\varepsilon, \infty) \big) \Big) = 0.$$
(2.25)

Since $F_{n,1} \cap (\varepsilon, \infty)$ is decreasing with the increase of *n*, we have

$$\lim_{n \to \infty} \mathbf{P}\Big(\chi_B X \in \big(F_{n,1} \cap (\varepsilon, \infty)\big)\Big) = \mathbf{P}\Big(\chi_B X \in \bigcap_{n=1}^{\infty} \big(F_{n,1} \cap (\varepsilon, \infty)\big)\Big) = 0.$$
(2.26)

Then we know $\forall \xi < \mathbf{P}(X > \varepsilon), \exists N \text{ such that } \mathbf{P}(\chi_B X \in (F_{n,1} \cap (\varepsilon, \infty))) < \xi \text{ holds } \forall n \ge N.$ Then as a result, we have

$$\mathbf{P}\Big(\chi_B X \in \big((\varepsilon, \infty) \setminus F_{n,1}\big)\Big) = \mathbf{P}(B) - \mathbf{P}\Big(\chi_B X \in \big(F_{n,1} \cap (\varepsilon, \infty)\big)\Big) > \mathbf{P}(B) - \xi > 0$$
(2.27)

4

holds $\forall n \ge N$. On the other hand, we have

$$\lim_{n \to \infty} E[T_n] \geq \sum_{k=1}^{N2^{N+1}} \left(\left(\frac{k-1}{2^N} + \varepsilon \right) \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,k}) \right)$$

$$\geq \sum_{k=2}^{N2^{N+1}} \left(\left(\frac{1}{2^N} + \varepsilon \right) \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,k}) \right) + \varepsilon \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,1}) \right)$$

$$= \left(\frac{1}{2^N} + \varepsilon \right) \sum_{k=2}^{N2^{N+1}} \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,k}) + \varepsilon \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,1}) \right)$$

$$= \left(\frac{1}{2^N} + \varepsilon \right) \mathbf{P} \left(\chi_B(\omega) X(\omega) \in \left((\varepsilon, \infty) \setminus F_{N,1} \right) \right) + \varepsilon \mathbf{P}(\chi_B(\omega) X(\omega) \in F_{N,1}) \right)$$

$$\geq \varepsilon \mathbf{P} \left(\chi_B(\omega) X(\omega) \in (\varepsilon, \infty) \right)$$
(2.28)

where the first inequality is due to that T_n as simple r.v.'s are increasing and as a result of [Hand Note 1] $E[T_n]$ is increasing; the last inequality is due to $\frac{1}{2^N} + \varepsilon > \varepsilon$ and $\mathbf{P}(\chi_B(\omega)X(\omega) \in ((\varepsilon, \infty) \setminus F_{N,1})) > 0$. Therefore, we estabilished the result that

$$\varepsilon \mathbf{P}(X > \varepsilon) < \lim_{n \to \infty} E[T_n]. \tag{2.29}$$

Due to Theorem 4.2 (Consistency), P.50, [2], $\lim_{n\to\infty} E[T_n] = E[\chi_B X]$. Therefore, the proof is done.

REFERENCES

- [1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
- [2] Allan Gut, Probability: A graduate course, 2nd Edition, Springer & Verlag, 2012.
- [3] Bruce Hajek, *Random processes for engineers*, Cambridge University Press, 2015.