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1 PROBLEM STATEMENT

Denote a probability space as (Q2, &%, P) and ar.v. defined upon it as X which is ¢-measurable
where ¢ < . In the proof of Lemma 3.5.1, P96 in [1], it states that

eP(X =¢) :f

edPsf XdP. (1.1)
(X=¢} {(X=¢}

Suppose X is nonnegative random variable and € = 0. Prove above result by its nature, namely
considering the fact that the integral above is Lebesgue integration.
In addition, if P(X > ¢€) > 0, then we have

eP(X =¢) :f

sdP<f XdP. (1.2)
{Xz¢} {Xze}

2 ELABORATION

The first two steps in the following prove Eq. (1.1). The third step proves Eq. (1.2).

1. First, we prove the case where X is bounded.

Denote E = [g, 00) € Z8. Then, since X is a random variable, we have A € ¢ where event
Ais given as A= X"!(E). Then the first integral in Eq. (1.1) is a Lebesgue integral of a
simple random variable, and the random variable is defined via indicator function as
exa. Then we have

f XdP = E[yaX] (2.1)
{X=¢}



As for the second integral, refer to [Hand Note 2] and [1, 2, 3] for its definition. Note that
as a Lesbegue integral, it is defined as a limit of the expectation’ (over certain event, in
this case A) of a series of simple random variables, given as

kel El o X(w) < £, k=1,2,..., n2"
Xpw) =1 *" 2 2 2.2)

Denote E, ;. = [%, zﬁn) N E. Due to that X is bounded, we suppose it is bounded by

M e N,. Then for n = M, we define Z,, and Y, as

o X)<n
Zn(w) = (2.3)
0, X(w)=n.
Lkl Xw)<£ k=1,2,.., n2"
Yplw)=<2%" 2 @) <3 " (2.4)
n, X(w)=n,

Then we have Y;,, = X,, + Z, and X;, =0, Z,, = 0. Then for n = M, due to P({X(w) = n}) =
0, we have

n2" 1. _ 1
ElxaXpl=), i PUa@)X(@) € By ) + nP(IX(w) = 1)) (2.52)
k=1

n2" k-1

-3

n
=1 2

P(ya(w)X(w) € Ep i)

n2"

ElyaZnl =) 27P(XA(w)X(w) € Ep k) + nP({X(w) = n}) (2.5b)
k=1

n2"

= Z z—nP(XA(w)X(w) € En,k)
k=1

Due to linearity in Theorem 4.1, P49, [2], since y a4 Y;, = xaXn + x4 Zn, we have
E[xaYnl = E[xaXnl+ ElxaZnl. (2.6)

Take limits on both sides of Eq. (2.6), due to definition of Lebesgue integral and the fact
that P({X (w) = n}) =0, we have

lim E[y Xyl =f XdP. 2.7
n—0o {X=¢}

Since X is bounded by M, then Z;l ([0, M]) =, then
. . 1
nh—r»IoloE[XAZ"] = r}grgoz—n =0. (2.8)
As aresult, we have

lim E[yaYnl = lim E(yaX,l + lim E[yaZ,] = lim E[yXy] =f XdP. (2.9)
n—oo n—oo n—oo n—oo {X=¢}



It can be seen that Y}, > X;, = ¢, then we have

n2" nan
> o P a@) X (@) € En ) +nP((X (@) 2 n}) > Y eP(ya() X () € Ep 1) +eP({X (0) = n})
k=1 k=1
(2.10)

for Vn = M. Then we have

n2" n2"

Y A PrA@X W) €Eyi) > ) eP(ra@)X (@) € Ep) = f edP (2.11)

=12 k=1 {X=¢}

Take limit of n — oo on both sides of Eq. (2.11), we have the result.

. Then we prove the case where X € R, which is more general than previous result.

For n = ¢, define W, as

0, Xw)<eor X(w)=n+e,
Wh@) =1, e f . (2.12)
ot & S tesX(w) < +g, k=1,2,..., n2".
Then for any W), (w), denote F,, ;. = [% + &, 2—’2 +¢€) for k=1,2,..,n2" and Fy pony1 =
[n+€, 00)
n2" -1
EW,]+eP({X(w)=n+¢g}) = Z ((2_” +e)P(X(w) € Fn,k)) +eP({X(w) =n+¢}) (2.13)
k=1
Since kz‘,,l +e=¢efork=1,2,.., n2", then we have
n2"
E[Wpl+eP({X() = n+e) =¢( ) P(X(w) € Fpp) +P({X(w) = n+e})) =eP(X = ).
k=1

(2.14)
Take limits on both sides of Eq. (2.14). Since W), converge to y 4 X from below, due to
Theorem 4.2 (Consistency), P50, [2], we have

lim E[W,]=E[yaX] :f XdP. (2.15)
n—oo {X=¢)

As for the limit of P({ X (w) = n + €}), we have
r}i_ggoP({X(w) z2n+e) =P(N2{X()zi+e) =P(@)=0 (2.16)

where the first equality is due to Theorem 1.4.9 (continuity from above) [1], while the
second is due to that X € R. As a result, we have at last

f XdPzeP(X z¢). (2.17)
{X=¢}



3. IfP(X >¢) >0, denote B = X !((g,00)) and C = X~!(g). Then we know Bu C = A and
P(B) > 0. Since the following formula holds

xalw) =xp(w) + yclw), Vw € Q, (2.18)
then we have

f{X }XdP =E[xyaX1=El(xp+xc)X]l=ElxpXl+ ElxcXl (2.19)

Since E[ypX] = [ix»¢ XdP and E[ycX] = [,x_,, XdP by definition, according to Sec-
tion 1.12.3, P. 44 [1], then we have

f XdPp :[ XdP+f Xdp (2.20)
{(X=¢} {(X>e} {X=¢}
Apparently, we have
eEP(X =¢) =[ Xdp. (2.21)
{X=¢}

Therefore the part left for proof is to show that

eP(X >¢) </ XdP. (2.22)
{X>¢}

Define T}, (w) as

0, ¥Bw)X(w) <¢,
Taw) =3 El+e, Elie<yp)X@ <&+ek=1,2,..,n2" (2.23)
n+e, Ypw)X(w)=n+e.

Then we have
n2"+1 _

BTyl = ). (5 +OP(xs@)X @) € Fyp) (2.24)
k=1

Since n"’;’:l (Fp,1 N (g, 00)) = @, then we have
P(xsX €5, (Fain (e, 00)) =0. (2.25)
Since Fj,,;1 N (g, oo) is decreasing with the increase of n, we have

lim P(xX € (Fn1 0 (2,00)) =P(xsX € 52, (Fa 0 (2, 00))) = 0. (2.26)

n—oo

Then we know V¢ < P(X > £), 3N such that P(ys X € (F,,1 1 (¢, 00))] < £ holds ¥n = N.
Then as a result, we have

P(XBX € ((e, 00) \Pn,l)) —P(B) - P()(BX € (Fu1n (e, oo))) SP(B)—E>0  (2.27)



holds ¥n = N. On the other hand, we have
N2N4+1 _

lim E[Ty] 2 1;1 ((2—N +&)P(yp() X () € Fy 1))

N2N 41

= ) ((2—N+s)P(xB(w)X(w)eFN,k))+eP(xB(w)X(w)eFN,l))
k=2

1 N2N+1
= (2—N +é) kgz P(xp(@)X(w) € Fy ) + €P(yp(@) X (w) € Fn,1))

1
=Gyt E)P(xg(w)X(w) € ((e,00) \FN,I)) +eP(yp(w) X (W) € Fy,1))
> eP(yp(w) X (w) € (¢, 00)) (2.28)

where the first inequality is due to that T, as simple r.vs are increasing and as a re-
sult of [Hand Note 1] E[T}] is increasing; the last inequality is due to ZLN +¢& > € and

P()( (@) X(w) € ((¢,00)\ F N,1)) > 0. Therefore, we estabilished the result that
eP(X >¢) < lim E[T,]. (2.29)
n—oo

Due to Theorem 4.2 (Consistency), P50, [2], lim,_. E[T;] = E[xpX]. Therefore, the
proofis done.
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