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1 PROBLEM STATEMENT

Denote a probability space as (Ω, F , P) and a r.v. defined upon it as X which is G -measurable
where G ⊆F . In the proof of Lemma 3.5.1, P.96 in [1], it states that

εP(X ≥ ε) =
∫

{X≥ε}
εdP ≤

∫
{X≥ε}

X dP. (1.1)

Suppose X is nonnegative random variable and ε≥ 0. Prove above result by its nature, namely
considering the fact that the integral above is Lebesgue integration.
In addition, if P(X > ε) > 0, then we have

εP(X ≥ ε) =
∫

{X≥ε}
εdP <

∫
{X≥ε}

X dP. (1.2)

2 ELABORATION

The first two steps in the following prove Eq. (1.1). The third step proves Eq. (1.2).

1. First, we prove the case where X is bounded.

Denote E = [ε, ∞) ∈B. Then, since X is a random variable, we have A ∈G where event
A is given as A = X −1(E). Then the first integral in Eq. (1.1) is a Lebesgue integral of a
simple random variable, and the random variable is defined via indicator function as
εχA . Then we have ∫

{X≥ε}
X dP = E [χA X ] (2.1)
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As for the second integral, refer to [Hand Note 2] and [1, 2, 3] for its definition. Note that
as a Lesbegue integral, it is defined as a limit of the ’expectation’ (over certain event, in
this case A) of a series of simple random variables, given as

Xn(ω) =
{

k−1
2n , k−1

2n ≤ X (ω) < k
2n , k = 1, 2, ..., n2n

n, X (ω) ≥ n.
(2.2)

Denote En,k = [ k−1
2n , k

2n )∩E . Due to that X is bounded, we suppose it is bounded by
M ∈ N+. Then for n ≥ M , we define Zn and Yn as

Zn(ω) =
{

1
2n , X (ω) < n

0, X (ω) ≥ n.
(2.3)

Yn(ω) =
{

k
2n , k−1

2n ≤ X (ω) < k
2n , k = 1, 2, ..., n2n

n, X (ω) ≥ n,
(2.4)

Then we have Yn = Xn +Zn and Xn ≥ 0, Zn ≥ 0. Then for n ≥ M , due to P({X (ω) ≥ n}) =
0, we have

E [χA Xn] =
n2n∑
k=1

k −1

2n P(χA(ω)X (ω) ∈ En,k )+nP({X (ω) ≥ n}) (2.5a)

=
n2n∑
k=1

k −1

2n P(χA(ω)X (ω) ∈ En,k )

E [χA Zn] =
n2n∑
k=1

1

2n P(χA(ω)X (ω) ∈ En,k )+nP({X (ω) ≥ n}) (2.5b)

=
n2n∑
k=1

1

2n P(χA(ω)X (ω) ∈ En,k )

Due to linearity in Theorem 4.1, P.49, [2], since χAYn =χA Xn +χA Zn , we have

E [χAYn] = E [χA Xn]+E [χA Zn]. (2.6)

Take limits on both sides of Eq. (2.6), due to definition of Lebesgue integral and the fact
that P({X (ω) ≥ n}) = 0, we have

lim
n→∞E [χA Xn] =

∫
{X≥ε}

X dP. (2.7)

Since X is bounded by M , then Z−1
n ([0, M ]) =Ω, then

lim
n→∞E [χA Zn] = lim

n→∞
1

2n = 0. (2.8)

As a result, we have

lim
n→∞E [χAYn] = lim

n→∞E [χA Xn]+ lim
n→∞E [χA Zn] = lim

n→∞E [χA Xn] =
∫

{X≥ε}
X dP. (2.9)
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It can be seen that Yn > Xn ≥ ε, then we have

n2n∑
k=1

k

2n P(χA(ω)X (ω) ∈ En,k )+nP({X (ω) ≥ n}) >
n2n∑
k=1

εP(χA(ω)X (ω) ∈ En,k )+εP({X (ω) ≥ n})

(2.10)
for ∀n ≥ M . Then we have

n2n∑
k=1

k

2n P(χA(ω)X (ω) ∈ En,k ) >
n2n∑
k=1

εP(χA(ω)X (ω) ∈ En,k ) =
∫

{X≥ε}
εdP (2.11)

Take limit of n →∞ on both sides of Eq. (2.11), we have the result.

2. Then we prove the case where X ∈ R, which is more general than previous result.

For n ≥ ε, define Wn as

Wn(ω) =
{

0, X (ω) < ε or X (ω) ≥ n +ε,
k−1
2n +ε, k−1

2n +ε≤ X (ω) < k
2n +ε, k = 1, 2, ..., n2n .

(2.12)

Then for any Wn(ω), denote Fn,k = [ k−1
2n + ε, k

2n + ε) for k = 1, 2, ..., n2n and Fn,n2n+1 =
[n +ε, ∞)

E [Wn]+εP({X (ω) ≥ n+ε}) =
n2n∑
k=1

(
(

k −1

2n +ε)P(X (ω) ∈ Fn,k )
)+εP({X (ω) ≥ n+ε}) (2.13)

Since k−1
2n +ε≥ ε for k = 1, 2, ..., n2n , then we have

E [Wn]+εP({X (ω) ≥ n +ε}) ≥ ε( n2n∑
k=1

P(X (ω) ∈ Fn,k )+P({X (ω) ≥ n +ε})
)= εP(X ≥ ε).

(2.14)
Take limits on both sides of Eq. (2.14). Since Wn converge to χA X from below, due to
Theorem 4.2 (Consistency), P.50, [2], we have

lim
n→∞E [Wn] = E [χA X ] =

∫
{X≥ε}

X dP. (2.15)

As for the limit of P({X (ω) ≥ n +ε}), we have

lim
n→∞P({X (ω) ≥ n +ε}) = P(∩∞

i=1{X (ω) ≥ i +ε}) = P(;) = 0 (2.16)

where the first equality is due to Theorem 1.4.9 (continuity from above) [1], while the
second is due to that X ∈ R. As a result, we have at last∫

{X≥ε}
X dP ≥ εP(X ≥ ε). (2.17)
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3. If P(X > ε) > 0, denote B = X −1((ε, ∞)) and C = X −1(ε). Then we know B ∪C = A and
P(B) > 0. Since the following formula holds

χA(ω) =χB (ω)+χC (ω), ∀ω ∈Ω, (2.18)

then we have ∫
{X≥ε}

X dP = E [χA X ] = E [(χB +χC )X ] = E [χB X ]+E [χC X ] (2.19)

Since E [χB X ] = ∫
{X>ε} X dP and E [χC X ] = ∫

{X=ε} X dP by definition, according to Sec-
tion 1.12.3, P. 44 [1], then we have∫

{X≥ε}
X dP =

∫
{X>ε}

X dP+
∫

{X=ε}
X dP (2.20)

Apparently, we have

εP(X = ε) =
∫

{X=ε}
X dP. (2.21)

Therefore the part left for proof is to show that

εP(X > ε) <
∫

{X>ε}
X dP. (2.22)

Define Tn(ω) as

Tn(ω) =


0, χB (ω)X (ω) < ε,
k−1
2n +ε, k−1

2n +ε≤χB (ω)X (ω) < k
2n +ε, k = 1, 2, ..., n2n ,

n +ε, χB (ω)X (ω) ≥ n +ε.

(2.23)

Then we have

E [Tn] =
n2n+1∑

k=1

(
(

k −1

2n +ε)P(χB (ω)X (ω) ∈ Fn,k )
)

(2.24)

Since ∩∞
n=1(Fn,1 ∩ (ε, ∞)) =;, then we have

P
(
χB X ∈∩∞

n=1

(
Fn,1 ∩ (ε, ∞)

))= 0. (2.25)

Since Fn,1 ∩ (ε, ∞) is decreasing with the increase of n, we have

lim
n→∞P

(
χB X ∈ (

Fn,1 ∩ (ε, ∞)
))= P

(
χB X ∈∩∞

n=1

(
Fn,1 ∩ (ε, ∞)

))= 0. (2.26)

Then we know ∀ξ< P(X > ε), ∃N such that P
(
χB X ∈ (

Fn,1 ∩ (ε, ∞)
)) < ξ holds ∀n ≥ N .

Then as a result, we have

P
(
χB X ∈ (

(ε, ∞) \ Fn,1
))= P(B)−P

(
χB X ∈ (

Fn,1 ∩ (ε, ∞)
))> P(B)−ξ> 0 (2.27)
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holds ∀n ≥ N . On the other hand, we have

lim
n→∞E [Tn] ≥

N 2N+1∑
k=1

(
(

k −1

2N
+ε)P(χB (ω)X (ω) ∈ FN ,k )

)
≥

N 2N+1∑
k=2

(
(

1

2N
+ε)P(χB (ω)X (ω) ∈ FN ,k )

)+εP(χB (ω)X (ω) ∈ FN ,1)
)

= (
1

2N
+ε)

N 2N+1∑
k=2

P(χB (ω)X (ω) ∈ FN ,k )+εP(χB (ω)X (ω) ∈ FN ,1)
)

= (
1

2N
+ε)P

(
χB (ω)X (ω) ∈ (

(ε, ∞) \ FN ,1
))+εP(χB (ω)X (ω) ∈ FN ,1)

)
> εP

(
χB (ω)X (ω) ∈ (ε, ∞)

)
(2.28)

where the first inequality is due to that Tn as simple r.v.’s are increasing and as a re-
sult of [Hand Note 1] E [Tn] is increasing; the last inequality is due to 1

2N + ε > ε and

P
(
χB (ω)X (ω) ∈ (

(ε, ∞) \ FN ,1
))> 0. Therefore, we estabilished the result that

εP(X > ε) < lim
n→∞E [Tn]. (2.29)

Due to Theorem 4.2 (Consistency), P.50, [2], limn→∞ E [Tn] = E [χB X ]. Therefore, the
proof is done.
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