Monotonicity of Lebesgue Integration

Yuchao Li

August 13, 2018

1 Problem statement

Denote a probability space as $(\Omega, \mathscr{F}, \mathbf{P})$ and a r.v. defined upon it as X which is \mathscr{G}-measurable where $\mathscr{G} \subseteq \mathscr{F}$. In the proof of Lemma 3.5.1, P. 96 in [1], it states that

$$
\begin{equation*}
\varepsilon \mathbf{P}(X \geq \varepsilon)=\int_{\{X \geq \varepsilon\}} \varepsilon d \mathbf{P} \leq \int_{\{X \geq \varepsilon\}} X d \mathbf{P} . \tag{1.1}
\end{equation*}
$$

Suppose X is nonnegative random variable and $\varepsilon \geq 0$. Prove above result by its nature, namely considering the fact that the integral above is Lebesgue integration.
In addition, if $\mathbf{P}(X>\varepsilon)>0$, then we have

$$
\begin{equation*}
\varepsilon \mathbf{P}(X \geq \varepsilon)=\int_{\{X \geq \varepsilon\}} \varepsilon d \mathbf{P}<\int_{\{X \geq \varepsilon\}} X d \mathbf{P} . \tag{1.2}
\end{equation*}
$$

2 Elaboration

The first two steps in the following prove Eq. (1.1). The third step proves Eq. (1.2).

1. First, we prove the case where X is bounded.

Denote $E=[\varepsilon, \infty) \in \mathscr{B}$. Then, since X is a random variable, we have $A \in \mathscr{G}$ where event A is given as $A=X^{-1}(E)$. Then the first integral in Eq. (1.1) is a Lebesgue integral of a simple random variable, and the random variable is defined via indicator function as $\varepsilon \chi_{A}$. Then we have

$$
\begin{equation*}
\int_{\{X \geq \varepsilon\}} X d \mathbf{P}=E\left[\chi_{A} X\right] \tag{2.1}
\end{equation*}
$$

As for the second integral, refer to [Hand Note 2] and [1,2,3] for its definition. Note that as a Lesbegue integral, it is defined as a limit of the 'expectation' (over certain event, in this case A) of a series of simple random variables, given as

$$
X_{n}(\omega)= \begin{cases}\frac{k-1}{2^{n}}, & \frac{k-1}{2^{n}} \leq X(\omega)<\frac{k}{2^{n}}, k=1,2, \ldots, n 2^{n} \tag{2.2}\\ n, & X(\omega) \geq n\end{cases}
$$

Denote $E_{n, k}=\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right) \cap E$. Due to that X is bounded, we suppose it is bounded by $M \in \mathbf{N}_{+}$. Then for $n \geq M$, we define Z_{n} and Y_{n} as

$$
\begin{gather*}
Z_{n}(\omega)= \begin{cases}\frac{1}{2^{n}}, & X(\omega)<n \\
0, & X(\omega) \geq n\end{cases} \tag{2.3}\\
Y_{n}(\omega)= \begin{cases}\frac{k}{2^{n}}, & \frac{k-1}{2^{n}} \leq X(\omega)<\frac{k}{2^{n}}, k=1,2, \ldots, n 2^{n} \\
n, & X(\omega) \geq n,\end{cases} \tag{2.4}
\end{gather*}
$$

Then we have $Y_{n}=X_{n}+Z_{n}$ and $X_{n} \geq 0, Z_{n} \geq 0$. Then for $n \geq M$, due to $\mathbf{P}(\{X(\omega) \geq n\})=$ 0 , we have

$$
\begin{align*}
E\left[\chi_{A} X_{n}\right] & =\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)+n \mathbf{P}(\{X(\omega) \geq n\}) \tag{2.5a}\\
& =\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right) \\
E\left[\chi_{A} Z_{n}\right] & =\sum_{k=1}^{n 2^{n}} \frac{1}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)+n \mathbf{P}(\{X(\omega) \geq n\}) \tag{2.5b}\\
& =\sum_{k=1}^{n 2^{n}} \frac{1}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)
\end{align*}
$$

Due to linearity in Theorem 4.1, P.49, [2], since $\chi_{A} Y_{n}=\chi_{A} X_{n}+\chi_{A} Z_{n}$, we have

$$
\begin{equation*}
E\left[\chi_{A} Y_{n}\right]=E\left[\chi_{A} X_{n}\right]+E\left[\chi_{A} Z_{n}\right] \tag{2.6}
\end{equation*}
$$

Take limits on both sides of Eq. (2.6), due to definition of Lebesgue integral and the fact that $\mathbf{P}(\{X(\omega) \geq n\})=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\chi_{A} X_{n}\right]=\int_{\{X \geq \varepsilon\}} X d \mathbf{P} \tag{2.7}
\end{equation*}
$$

Since X is bounded by M, then $Z_{n}^{-1}([0, M])=\Omega$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\chi_{A} Z_{n}\right]=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0 \tag{2.8}
\end{equation*}
$$

As a result, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\chi_{A} Y_{n}\right]=\lim _{n \rightarrow \infty} E\left[\chi_{A} X_{n}\right]+\lim _{n \rightarrow \infty} E\left[\chi_{A} Z_{n}\right]=\lim _{n \rightarrow \infty} E\left[\chi_{A} X_{n}\right]=\int_{\{X \geq \varepsilon\}} X d \mathbf{P} \tag{2.9}
\end{equation*}
$$

It can be seen that $Y_{n}>X_{n} \geq \varepsilon$, then we have
$\sum_{k=1}^{n 2^{n}} \frac{k}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)+n \mathbf{P}(\{X(\omega) \geq n\})>\sum_{k=1}^{n 2^{n}} \varepsilon \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)+\varepsilon \mathbf{P}(\{X(\omega) \geq n\})$
for $\forall n \geq M$. Then we have

$$
\begin{equation*}
\sum_{k=1}^{n 2^{n}} \frac{k}{2^{n}} \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)>\sum_{k=1}^{n 2^{n}} \varepsilon \mathbf{P}\left(\chi_{A}(\omega) X(\omega) \in E_{n, k}\right)=\int_{\{X \geq \varepsilon\}} \varepsilon d \mathbf{P} \tag{2.11}
\end{equation*}
$$

Take limit of $n \rightarrow \infty$ on both sides of Eq. (2.11), we have the result.
2. Then we prove the case where $X \in \mathbf{R}$, which is more general than previous result.

For $n \geq \varepsilon$, define W_{n} as

$$
W_{n}(\omega)= \begin{cases}0, & X(\omega)<\varepsilon \text { or } X(\omega) \geq n+\varepsilon \tag{2.12}\\ \frac{k-1}{2^{n}}+\varepsilon, & \frac{k-1}{2^{n}}+\varepsilon \leq X(\omega)<\frac{k}{2^{n}}+\varepsilon, k=1,2, \ldots, n 2^{n}\end{cases}
$$

Then for any $W_{n}(\omega)$, denote $F_{n, k}=\left[\frac{k-1}{2^{n}}+\varepsilon, \frac{k}{2^{n}}+\varepsilon\right)$ for $k=1,2, \ldots, n 2^{n}$ and $F_{n, n 2^{n}+1}=$ $[n+\varepsilon, \infty)$

$$
\begin{equation*}
E\left[W_{n}\right]+\varepsilon \mathbf{P}(\{X(\omega) \geq n+\varepsilon\})=\sum_{k=1}^{n 2^{n}}\left(\left(\frac{k-1}{2^{n}}+\varepsilon\right) \mathbf{P}\left(X(\omega) \in F_{n, k}\right)\right)+\varepsilon \mathbf{P}(\{X(\omega) \geq n+\varepsilon\}) \tag{2.13}
\end{equation*}
$$

Since $\frac{k-1}{2^{n}}+\varepsilon \geq \varepsilon$ for $k=1,2, \ldots, n 2^{n}$, then we have

$$
\begin{equation*}
E\left[W_{n}\right]+\varepsilon \mathbf{P}(\{X(\omega) \geq n+\varepsilon\}) \geq \varepsilon\left(\sum_{k=1}^{n 2^{n}} \mathbf{P}\left(X(\omega) \in F_{n, k}\right)+\mathbf{P}(\{X(\omega) \geq n+\varepsilon\})\right)=\varepsilon \mathbf{P}(X \geq \varepsilon) \tag{2.14}
\end{equation*}
$$

Take limits on both sides of Eq. (2.14). Since W_{n} converge to $\chi_{A} X$ from below, due to Theorem 4.2 (Consistency), P.50, [2], we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[W_{n}\right]=E\left[\chi_{A} X\right]=\int_{\{X \geq \varepsilon\}} X d \mathbf{P} \tag{2.15}
\end{equation*}
$$

As for the limit of $\mathbf{P}(\{X(\omega) \geq n+\varepsilon\})$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{P}(\{X(\omega) \geq n+\varepsilon\})=\mathbf{P}\left(\cap_{i=1}^{\infty}\{X(\omega) \geq i+\varepsilon\}\right)=\mathbf{P}(\varnothing)=0 \tag{2.16}
\end{equation*}
$$

where the first equality is due to Theorem 1.4.9 (continuity from above) [1], while the second is due to that $X \in \mathbf{R}$. As a result, we have at last

$$
\begin{equation*}
\int_{\{X \geq \varepsilon\}} X d \mathbf{P} \geq \varepsilon \mathbf{P}(X \geq \varepsilon) . \tag{2.17}
\end{equation*}
$$

3. If $\mathbf{P}(X>\varepsilon)>0$, denote $B=X^{-1}((\varepsilon, \infty))$ and $C=X^{-1}(\varepsilon)$. Then we know $B \cup C=A$ and $\mathbf{P}(B)>0$. Since the following formula holds

$$
\begin{equation*}
\chi_{A}(\omega)=\chi_{B}(\omega)+\chi_{C}(\omega), \forall \omega \in \Omega, \tag{2.18}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\int_{\{X \geq \varepsilon\}} X d \mathbf{P}=E\left[\chi_{A} X\right]=E\left[\left(\chi_{B}+\chi_{C}\right) X\right]=E\left[\chi_{B} X\right]+E\left[\chi_{C} X\right] \tag{2.19}
\end{equation*}
$$

Since $E\left[\chi_{B} X\right]=\int_{\{X>\varepsilon\}} X d \mathbf{P}$ and $E\left[\chi_{C} X\right]=\int_{\{X=\varepsilon\}} X d \mathbf{P}$ by definition, according to Section 1.12.3, P. 44 [1], then we have

$$
\begin{equation*}
\int_{\{X \geq \varepsilon\}} X d \mathbf{P}=\int_{\{X>\varepsilon\}} X d \mathbf{P}+\int_{\{X=\varepsilon\}} X d \mathbf{P} \tag{2.20}
\end{equation*}
$$

Apparently, we have

$$
\begin{equation*}
\varepsilon \mathbf{P}(X=\varepsilon)=\int_{\{X=\varepsilon\}} X d \mathbf{P} \tag{2.21}
\end{equation*}
$$

Therefore the part left for proof is to show that

$$
\begin{equation*}
\varepsilon \mathbf{P}(X>\varepsilon)<\int_{\{X>\varepsilon\}} X d \mathbf{P} . \tag{2.22}
\end{equation*}
$$

Define $T_{n}(\omega)$ as

$$
T_{n}(\omega)= \begin{cases}0, & \chi_{B}(\omega) X(\omega)<\varepsilon \tag{2.23}\\ \frac{k-1}{2^{n}}+\varepsilon, & \frac{k-1}{2^{n}}+\varepsilon \leq \chi_{B}(\omega) X(\omega)<\frac{k}{2^{n}}+\varepsilon, k=1,2, \ldots, n 2^{n} \\ n+\varepsilon, & \chi_{B}(\omega) X(\omega) \geq n+\varepsilon\end{cases}
$$

Then we have

$$
\begin{equation*}
E\left[T_{n}\right]=\sum_{k=1}^{n 2^{n}+1}\left(\left(\frac{k-1}{2^{n}}+\varepsilon\right) \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{n, k}\right)\right) \tag{2.24}
\end{equation*}
$$

Since $\cap_{n=1}^{\infty}\left(F_{n, 1} \cap(\varepsilon, \infty)\right)=\varnothing$, then we have

$$
\begin{equation*}
\mathbf{P}\left(\chi_{B} X \in \cap_{n=1}^{\infty}\left(F_{n, 1} \cap(\varepsilon, \infty)\right)\right)=0 \tag{2.25}
\end{equation*}
$$

Since $F_{n, 1} \cap(\varepsilon, \infty)$ is decreasing with the increase of n, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{P}\left(\chi_{B} X \in\left(F_{n, 1} \cap(\varepsilon, \infty)\right)\right)=\mathbf{P}\left(\chi_{B} X \in \cap_{n=1}^{\infty}\left(F_{n, 1} \cap(\varepsilon, \infty)\right)\right)=0 \tag{2.26}
\end{equation*}
$$

Then we know $\forall \xi<\mathbf{P}(X>\varepsilon), \exists N$ such that $\mathbf{P}\left(\chi_{B} X \in\left(F_{n, 1} \cap(\varepsilon, \infty)\right)\right)<\xi$ holds $\forall n \geq N$. Then as a result, we have

$$
\begin{equation*}
\mathbf{P}\left(\chi_{B} X \in\left((\varepsilon, \infty) \backslash F_{n, 1}\right)\right)=\mathbf{P}(B)-\mathbf{P}\left(\chi_{B} X \in\left(F_{n, 1} \cap(\varepsilon, \infty)\right)\right)>\mathbf{P}(B)-\xi>0 \tag{2.27}
\end{equation*}
$$

holds $\forall n \geq N$. On the other hand, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} E\left[T_{n}\right] & \geq \sum_{k=1}^{N 2^{N}+1}\left(\left(\frac{k-1}{2^{N}}+\varepsilon\right) \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, k}\right)\right) \\
& \left.\geq \sum_{k=2}^{N 2^{N+1}}\left(\left(\frac{1}{2^{N}}+\varepsilon\right) \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, k}\right)\right)+\varepsilon \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, 1}\right)\right) \\
& \left.=\left(\frac{1}{2^{N}}+\varepsilon\right) \sum_{k=2}^{N 2^{N}+1} \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, k}\right)+\varepsilon \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, 1}\right)\right) \\
& \left.=\left(\frac{1}{2^{N}}+\varepsilon\right) \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in\left((\varepsilon, \infty) \backslash F_{N, 1}\right)\right)+\varepsilon \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in F_{N, 1}\right)\right) \\
& >\varepsilon \mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in(\varepsilon, \infty)\right) \tag{2.28}
\end{align*}
$$

where the first inequality is due to that T_{n} as simple r.v.'s are increasing and as a result of [Hand Note 1] $E\left[T_{n}\right]$ is increasing; the last inequality is due to $\frac{1}{2^{N}}+\varepsilon>\varepsilon$ and $\mathbf{P}\left(\chi_{B}(\omega) X(\omega) \in\left((\varepsilon, \infty) \backslash F_{N, 1}\right)\right)>0$. Therefore, we estabilished the result that

$$
\begin{equation*}
\varepsilon \mathbf{P}(X>\varepsilon)<\lim _{n \rightarrow \infty} E\left[T_{n}\right] . \tag{2.29}
\end{equation*}
$$

Due to Theorem 4.2 (Consistency), P.50, [2], $\lim _{n \rightarrow \infty} E\left[T_{n}\right]=E\left[\chi_{B} X\right]$. Therefore, the proof is done.

References

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
[2] Allan Gut, Probability: A graduate course, 2nd Edition, Springer \& Verlag, 2012.
[3] Bruce Hajek, Random processes for engineers, Cambridge University Press, 2015.

