Discrete Part of a Measure

Yuchao Li

August 11, 2018

1 Problem statement

We denote a probability measure on $(\mathbf{R}, \mathscr{B})$ as μ and its probability mass function as p where

$$
\begin{equation*}
p(x) \stackrel{\operatorname{def}}{=} \mu(\{x\}),-\infty<x<\infty \tag{1.1}
\end{equation*}
$$

Due to Lemma 2.5.2 in [1], we can define a discrete part of μ as

$$
\begin{equation*}
\mu_{D}(A)=\sum_{x \in A \mid p(x)>0} p(x), A \in \mathscr{B} . \tag{1.2}
\end{equation*}
$$

Prove that μ_{D} is a measure on $(\mathbf{R}, \mathscr{B})$.

2 Elaboration

Apparently, the part we need to prove is

$$
\begin{equation*}
\mu_{D}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu_{D}\left(A_{i}\right) \tag{2.1}
\end{equation*}
$$

where $\left(A_{i}\right)_{i=1}^{\infty}$ is pairwise disjoint and $A_{i} \in \mathscr{B} \forall i$. To do so, we denote $A=\cup_{i=1}^{\infty} A_{i}$ and $B=$ $\{x \in A: p(x)>0\}$. Then $B=\{x \in A: \mu(\{x\})>0\}$. Apparently, it can be shown that $B=\{x \in$ $A: \mu(\{x\})>0\} \in \mathscr{B} \forall A \in \mathscr{B}$ (by definition). Due to Lemma 2.5.2, B can only have countably many elements. If the cardinality of B is infinite, we order the elements of B in certain way as $x_{1}, x_{2}, \ldots, x_{n}, \ldots$, namely

$$
\begin{equation*}
B=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}=\cup_{i=1}^{\infty}\left\{x_{i}\right\} \tag{2.2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mu_{D}(A)=\sum_{x \in A \mid p(x)>0} p(x)=\sum_{x \in A \mid \mu(\{x\})>0} \mu(\{x\})=\sum_{i=1}^{\infty} \mu\left(\left\{x_{i}\right\}\right)=\mu\left(\cup_{i=1}^{\infty}\left\{x_{i}\right\}\right)=\mu(B) \tag{2.3}
\end{equation*}
$$

where the first equality is due to definition of $\mu_{D}(1.2)$; the second equality is due to definition of $p(1.1)$; the third equality is due to the fact that commutation of series does not change its sum, refer to the footnote in P. 22 of [2]; the fourth equality is due to that μ is a measure and $\left(\left\{x_{i}\right\}\right)_{i=1}^{\infty}$ are pairwise disjoint. If the cardinality of A is finite, then the proof is trivial.
To conclude, we have

$$
\begin{equation*}
\mu_{D}(A)=\mu(B) \tag{2.4}
\end{equation*}
$$

holds $\forall A \in \mathscr{B}$ and $B=\{x \in A: p(x)>0\}$ shall belong to \mathscr{B} and therefore $\mu(B)$ is defined. Denote $B_{i}=\left\{x \in A_{i}: p(x)>0\right\}$. Since $A=\cup_{i=1}^{\infty} A_{i}$, we can prove $B=\cup_{i=1}^{\infty} B_{i}$ (by definition) and B_{i} as pairwise disjoint. As a result of μ as a measure, we have

$$
\begin{equation*}
\mu(B)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right) . \tag{2.5}
\end{equation*}
$$

Since $\mu_{D}(A)=\mu(B)$ and $\mu_{D}\left(A_{i}\right)=\mu\left(B_{i}\right) \forall i$, we prove Eq. (2.1).

References

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
[2] Patrick Billingsley, Probability and measure, 3rd Edition, John Wiley \& Sons, 1995.

