
KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Expectation of Random Variables with respect to
Dsitribution

Yuchao Li

August 7, 2018

1 PROBLEM STATEMENT

Probability space is given as (Ω, F , P) with elementary outcome ω. For a nonnegative ran-
dom variable X , its expectation can be calculated by

E [X ] =
∫ ∞

0
xdFX (x). (1.1)

2 ELABORATION

1. First, we recall the definition of the expection of a nonnegative random variable, namely
E [X ], given X . This follows the approach of [1].

For the given random variable X , we define Xn as

Xn(ω) =
{

k−1
2n , k−1

2n ≤ X (ω) < k
2n , k = 1, 2, ..., n2n

n, X (ω) ≥ n.
(2.1)

Denote fn : R+∪ {0} → R as

fn(x) =
{

k−1
2n , k−1

2n ≤ x < k
2n , k = 1, 2, ..., n2n ,

n, x ≥ n.
(2.2)

we can show that fn is a Borel function. Since X is a random variable, then Xn = fn(X )
is a random variable. Further we can see that in fact Xn is a simple random variable.
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Then, it can be shown (refer to [1, 2]) that Xn(ω) → X (ω) as n →∞ ∀ω. Based on Xn ,
the expectation E [X ] is defined as a Lebesgue integral (refer to [1]) that

E [X ] = lim
n→∞

n2n∑
k=1

k −1

2n P(
k −1

2n ≤ X (ω) < k

2n ). (2.3)

Note that compared to [2], the term nP(X ≥ n) does not show up in the definition.
Clearly, the term makes no difference if X (ω) < M ∀ω. In this case, we would have that
limn→∞ nP(X ≥ n) = 0. Since ∃N > M such that ∀n > N that X < n ∀ω. Therefore,
P(X ≥ n) = 0 ∀n > N . As a result, limn→∞ nP(X ≥ n) = 0. If X (ω) < M ∀ω does not hold,
due to Theorem 4.2 (Consistency), P.50, [1], we have

lim
n→∞E [Xn] = E [X ] (2.4)

where on the left hand side nP(X ≥ n) appears while on the right-hand side, due to
definition Eq. (2.3), nP(X ≥ n) does not appear.

Regarding the convergence related to the definition, refer to [1, 2, 3].

Eq. (2.3) by definition is also rewritten as

E [X ] =
∫
Ω

X (ω)dP(ω) (Lebesgue). (2.5)

2. Second, we show that for two random variables, X defined on (Ω, F , P) and Y defined
on (Ω′, F ′, P′). If FX (a) = FY (a) ∀a ∈ R, then E [X ] = E [Y ].

Since FX (a) = FY (a), namely P(X ≤ a) = P′(Y ≤ a). One can show for any Borel set A,
P(A) = P′(A). As a result, P( k−1

2n ≤ X (ω) < k
2n ) = P′( k−1

2n ≤ Y (ω′) < k
2n ) ∀n, k. Therefore,

the constructed Xn and Yn used to define E [X ] and E [Y ], as shown in the previous step,
would have the property that

E [Xn] = E [Yn], ∀n. (2.6)

Take limits on both sides of Eq. (2.6), we get E [X ] = E [Y ], namely

(Lebesgue)
∫
Ω

X (ω)dP(ω) =
∫
Ω′

Y (ω′)dP′(ω′) (Lebesgue) (2.7)

3. Then we define the canoical random variable. Since X is a random variable on (Ω, F , P)
with distribution function FX . Then we can find a probability space (R, B, P̃) where
B is Borel sigma field and P̃((a, b]) = FX (b)−FX (a). By extension theorem, P̃ is well
defined. Then define Y : R → R as a random variable on (R, B, P̃) and is given by
Y (y) = y . Then the distribution function of Y , written as FY , would have the property
that FY (a) = FX (a) ∀a ∈ R. As a direct result of step 2, we have

(Lebesgue)
∫ ∞

−∞
Y (r )d P̃(r ) =

∫
Ω

X (ω)dP(ω) (Lebesgue). (2.8)

Please refer to Prop. 1.4 [3] for origin.
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4. Finally, according to Sec. 11.5.4 [3], if FX is a distribution function, a Lebesgue-Stieltjes
integration of FX is defined by the Lebesgue integration of its caniocal random variable,
namely

(Lebesgue-Stieltjes)
∫ ∞

−∞
g (x)dFX (x) =

∫ ∞

−∞
g
(
Y (r )

)
d P̃(r ) (Lebesgue). (2.9)

where Y (r ) = r as introduced above. Set g (x) = x, then we get

(Lebesgue-Stieltjes)
∫ ∞

−∞
xdFX (x) =

∫ ∞

−∞
Y (r )d P̃(r ) (Lebesgue). (2.10)

Combine Eqs. (2.5), (2.8) and (2.10), we have

E [X ] =
∫ ∞

−∞
xdFX (x) (Lebesgue-Stieltjes). (2.11)

Note in the Eq. (2.9), if g is continuous (in our case, g (x) = x is continuous) and the
integral is finite, then the Lebesgue-Stieltjes integration and Riemann-Stieltjes integra-
tion (conventional one) agrees [3]. This is the reason we can calculate in most cases the
expection E [X ] as

E [X ] =
∫ ∞

−∞
xdFX (x) (Riemann-Stieltjes). (2.12)

Remark. Above discussion has established the case when X is nonnegative. For general case,
we define E [X ] = E [X +]−E [X −]. Notice that the Xn used to setablish E [X ] in [3] is given as

Xn(ω)

{
k−1
2n , k−1

2n ≤ X (ω) < k
2n , k = 1, 2, ..., n2n

0, X (ω) ≥ n,
(2.13)

which is different from Eq. (2.1) from [1]. And [3] gives a better definition of X + and X −. How-
ever, it should be understood that double counting P(X = 0) in both E [X +] and E [X −] does not
alter the true value of E [X ] since its contribution to E [X ] would be 0 anyway.
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