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1 PROBLEM STATEMENT

Given a Hilbert space L2(Ω, F , P), define a sequence of continuous random processes (r.p.’s)

{Xi (t )}∞
i=1

for t ∈ [0,T ]. Besides, we assume that ∀t , it holds that Xn(t )
2
−→ X (t ). We further

assume that Yn =
∫T

0 Xn(t )d t exists ∀n and Y =
∫T

0 X (t )d t exists where those integrals are

mean square integrals, namely, for example, Y is defined as

m
∑

i=1

X (ti )(ti − ti−1)
2
−→

∫T

0
X (t )d t

where 0 = t0 < t1 < ... < tm = T and maxi |ti − ti−1|→ 0 as m →∞, as in Definition 9.2.1, P. 237,

[1]. Prove that if Xn(t ) is the partial sum of X ’s Karhunen-Loéve expansion, then it holds that

Yn
2
−→ Y . By stating that Xn(t ) is the partial sum of X ’s Karhunen-Loéve expansion, we mean

that X (t ) is constructed in the following way. Given an i.i.d sequence of random variables

(r.v.’s) {Zi }∞
i=1

in L2(Ω, F , P) with zero means, Xn(t ) is defined as Xn(t ) =
∑n

i=1

√

λi Zi ei (t )

where ei : R→ R is some continuous function. If it holds that
∑∞

i=1λi <∞, then {Xi (t )}∞
i=1

is

convergent in L2(Ω, F , P) ∀t . The r.v. it converges to at time t is defined as X (t ). We also use

the symbol
∑

∞
i=1

√

λi Zi ei (t ) to denote X (t ). By such construction, all the assumptions above

are fulfilled. For details of such construction, refer to Section 7.4.2, P. 196 and Example 9.1.8,

P. 234, [1].
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2 ELABORATION

We first compute E [|Yn −Y |2] as follows.

E [|Yn −Y |
2] = E [(

∫T

0
Xn(t )d t −

∫T

0
X (t )d t )2]

= E [(

∫T

0
Xn(t )−X (t )d t )2]

= E [
(

lim
△

m
∑

i=1

(

Xn(ti )−X (ti )
)

(ti − ti−1)
)2

]

where in the second equality, we apply the linearity property of mean square integral, The-

orem 9.2.2 (a), P. 239, [1], and the auxiliary notion lim△ refers to mean square convergence

as 0 = t0 < t1 < ... < tm = T and maxi |ti − ti−1| → 0 as m → ∞. Then we introduce some

predefined partitions on [0,T ] fulfilling above requirements, denoted as {Pi }∞
i=1

, and its cor-

responding r.v. sequences, {∆Yn,i }∞
i=1

, namely ∆Yn,m =
∑m

i=1

(

Xn(ti )−X (ti )
)

(ti − ti−1). By def-

inition, we have ∆Yn,m
2
−→

∫T
0 Xn(t )−X (t )d t =Yn −Y as m →∞. As a result, we have

E [|Yn −Y |
2] =E [( lim

m→∞
∆Yn,m)2].

By Theorem 7.3.1 (c) and Theorem 7.3.3, P. 195, [1] we know that if Xk
2
−→ X , then we have

E [X 2] = limmin(m,k)→∞ E [Xm Xk ], then we proceed the calculation as

E [|Yn −Y |
2] = lim

min(m,k)→∞
E [∆Yn,m∆Yn,k ]

= lim
min(m,k)→∞

E [
m
∑

i=1

k
∑

j=1

(

Xn(ti )−X (ti )
)(

Xn(t j )−X (t j )
)

(ti − ti−1)(t j − t j−1)]

= lim
min(m,k)→∞

m
∑

i=1

k
∑

j=1

E [
(

Xn(ti )−X (ti )
)(

Xn(t j )−X (t j )
)

](ti − ti−1)(t j − t j−1)

= lim
min(m,k)→∞

m
∑

i=1

k
∑

j=1

(

RXn
(ti , t j )+RX (ti , t j )

−E [Xn(ti )X (t j )]−E [X (ti )Xn(t j )]
)

(ti − ti−1)(t j − t j−1).

where RXn
(·, ·) and RX (·, ·) are autocorrelation functions of Xn and X respectively. Since Xn (t )

2
−→

X (t ), then Theorem 7.3.1 (d), P. 195, [1], we have

E [X (ti )Xn(t j )] = lim
m→∞

E [Xm(ti )Xn(t j )]

= lim
l→∞

E [Xn+l (ti )Xn(t j )]

= lim
l→∞

E [Xn(ti )Xn(t j )+
(

Xn+l (ti )−Xn(ti )
)

Xn(t j )]

= E [Xn(ti )Xn(t j )]+ lim
l→∞

E [
(

Xn+l (ti )−Xn(ti )
)

Xn(t j )]

= RXn
(ti , t j )+ lim

l→∞
E [

(

Xn+l (ti )−Xn (ti )
)

Xn(t j )].
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Due to construction of Karhunen-Loéve expansion, we have E [
(

Xn+l (ti )−Xn(ti )
)

Xn(t j )] = 0.

As a result, we have E [X (ti )Xn(t j )] = RXn
(ti , t j ). Similarly, E [Xn(ti )X (t j )] = RXn

(ti , t j ). Then

we proceed with the computation as

E [|Yn −Y |
2] = lim

min(m,k)→∞

m
∑

i=1

k
∑

j=1

(

RXn
(ti , t j )+RX (ti , t j )−2RXn

(ti , t j )
)

(ti − ti−1)(t j − t j−1)

= lim
min(m,k)→∞

m
∑

i=1

k
∑

j=1

(

RX (ti , t j )−RXn
(ti , t j )

)

(ti − ti−1)(t j − t j−1)

=

∫T

0

∫T

0
RX (u, s)−RXn

(u, s)dud s

where the integral is Riemann integral due to its definition. Since we assume both Xn(t ) and

X (t ) are integrable over [0,T ], the Riemann integral above exists due to Theorem 9.2.1, P. 237,

[1]. Then we have

lim
n→∞

E [|Yn −Y |
2] = lim

n→∞

∫T

0

∫T

0
RX (u, s)−RXn

(u, s)dud s

=

∫T

0

∫T

0
RX (u, s)dud s − lim

n→∞

∫T

0

∫T

0
RXn

(u, s)dud s.

Due to Mercer’s theorem, Theorem 7.2.2, P. 249, [2], RXn
(u, s) converges uniformly in u, s to

RX (u, s). Then due to Theorem 2.8, P. 75, [3], we know that the above limit is well defined and

we have that

lim
n→∞

E [|Yn −Y |
2] =

∫T

0

∫T

0
RX (u, s)dud s − lim

n→∞

∫T

0

∫T

0
RXn

(u, s)dud s

=

∫T

0

∫T

0
RX (u, s)dud s −

∫T

0

∫T

0
lim

n→∞
RXn

(u, s)dud s

=

∫T

0

∫T

0
RX (u, s)− lim

n→∞
RXn

(u, s)dud s

=

∫T

0

∫T

0
RX (u, s)−RX (u, s)dud s

which concludes the proof.
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