KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Karhunen-Loéve Expansion and Mean Square Integral

Yuchao Li

January 26, 2019

1 PROBLEM STATEMENT

Given a Hilbert space $L_2(\Omega, \mathscr{F}, \mathbf{P})$, define a sequence of continuous random processes (r.p.'s) $\{X_i(t)\}_{i=1}^{\infty}$ for $t \in [0, T]$. Besides, we assume that $\forall t$, it holds that $X_n(t) \xrightarrow{2} X(t)$. We further assume that $Y_n = \int_0^T X_n(t) dt$ exists $\forall n$ and $Y = \int_0^T X(t) dt$ exists where those integrals are mean square integrals, namely, for example, Y is defined as

$$\sum_{i=1}^m X(t_i)(t_i - t_{i-1}) \xrightarrow{2} \int_0^T X(t) dt$$

where $0 = t_0 < t_1 < ... < t_m = T$ and $\max_i |t_i - t_{i-1}| \to 0$ as $m \to \infty$, as in Definition 9.2.1, P. 237, [1]. Prove that if $X_n(t)$ is the partial sum of *X*'s Karhunen-Loéve expansion, then it holds that $Y_n \xrightarrow{2} Y$. By stating that $X_n(t)$ is the partial sum of *X*'s Karhunen-Loéve expansion, we mean that X(t) is constructed in the following way. Given an i.i.d sequence of random variables (r.v.'s) $\{Z_i\}_{i=1}^{\infty}$ in $L_2(\Omega, \mathscr{F}, \mathbf{P})$ with zero means, $X_n(t)$ is defined as $X_n(t) = \sum_{i=1}^n \sqrt{\lambda_i} Z_i e_i(t)$ where $e_i : \mathbb{R} \to \mathbb{R}$ is some continuous function. If it holds that $\sum_{i=1}^{\infty} \lambda_i < \infty$, then $\{X_i(t)\}_{i=1}^{\infty}$ is convergent in $L_2(\Omega, \mathscr{F}, \mathbf{P}) \forall t$. The r.v. it converges to at time *t* is defined as X(t). We also use the symbol $\sum_{i=1}^{\infty} \sqrt{\lambda_i} Z_i e_i(t)$ to denote X(t). By such construction, all the assumptions above are fulfilled. For details of such construction, refer to Section 7.4.2, P. 196 and Example 9.1.8, P. 234, [1].

2 ELABORATION

We first compute $E[|Y_n - Y|^2]$ as follows.

$$E[|Y_n - Y|^2] = E[\left(\int_0^T X_n(t)dt - \int_0^T X(t)dt\right)^2]$$

= $E[\left(\int_0^T X_n(t) - X(t)dt\right)^2]$
= $E[\left(\lim_{\Delta} \sum_{i=1}^m (X_n(t_i) - X(t_i))(t_i - t_{i-1}))^2\right]$

where in the second equality, we apply the linearity property of mean square integral, Theorem 9.2.2 (a), P. 239, [1], and the auxiliary notion \lim_{Δ} refers to mean square convergence as $0 = t_0 < t_1 < ... < t_m = T$ and $\max_i |t_i - t_{i-1}| \to 0$ as $m \to \infty$. Then we introduce some predefined partitions on [0, T] fulfilling above requirements, denoted as $\{P_i\}_{i=1}^{\infty}$, and its corresponding r.v. sequences, $\{\Delta Y_{n,i}\}_{i=1}^{\infty}$, namely $\Delta Y_{n,m} = \sum_{i=1}^{m} (X_n(t_i) - X(t_i))(t_i - t_{i-1})$. By definition, we have $\Delta Y_{n,m} \xrightarrow{2} \int_0^T X_n(t) - X(t) dt = Y_n - Y$ as $m \to \infty$. As a result, we have

$$E[|Y_n - Y|^2] = E[(\lim_{m \to \infty} \Delta Y_{n,m})^2].$$

By Theorem 7.3.1 (c) and Theorem 7.3.3, P. 195, [1] we know that if $X_k \xrightarrow{2} X$, then we have $E[X^2] = \lim_{\min(m,k)\to\infty} E[X_m X_k]$, then we proceed the calculation as

$$\begin{split} E[|Y_n - Y|^2] &= \lim_{\min(m,k) \to \infty} & E[\Delta Y_{n,m} \Delta Y_{n,k}] \\ &= \lim_{\min(m,k) \to \infty} & E[\sum_{i=1}^m \sum_{j=1}^k \left(X_n(t_i) - X(t_i) \right) \left(X_n(t_j) - X(t_j) \right) (t_i - t_{i-1}) (t_j - t_{j-1})] \\ &= \lim_{\min(m,k) \to \infty} & \sum_{i=1}^m \sum_{j=1}^k E[\left(X_n(t_i) - X(t_i) \right) \left(X_n(t_j) - X(t_j) \right)] (t_i - t_{i-1}) (t_j - t_{j-1}) \\ &= \lim_{\min(m,k) \to \infty} & \sum_{i=1}^m \sum_{j=1}^k \left(R_{X_n}(t_i, t_j) + R_X(t_i, t_j) \right) \\ &- E[X_n(t_i) X(t_j)] - E[X(t_i) X_n(t_j)] (t_i - t_{i-1}) (t_j - t_{j-1}). \end{split}$$

where $R_{X_n}(\cdot, \cdot)$ and $R_X(\cdot, \cdot)$ are autocorrelation functions of X_n and X respectively. Since $X_n(t) \xrightarrow{2} X(t)$, then Theorem 7.3.1 (d), P. 195, [1], we have

$$\begin{split} E[X(t_i)X_n(t_j)] &= \lim_{m \to \infty} E[X_m(t_i)X_n(t_j)] \\ &= \lim_{l \to \infty} E[X_{n+l}(t_i)X_n(t_j)] \\ &= \lim_{l \to \infty} E[X_n(t_i)X_n(t_j) + (X_{n+l}(t_i) - X_n(t_i))X_n(t_j)] \\ &= E[X_n(t_i)X_n(t_j)] + \lim_{l \to \infty} E[(X_{n+l}(t_i) - X_n(t_i))X_n(t_j)] \\ &= R_{X_n}(t_i, t_j) + \lim_{l \to \infty} E[(X_{n+l}(t_i) - X_n(t_i))X_n(t_j)]. \end{split}$$

2

Due to construction of Karhunen-Loéve expansion, we have $E[(X_{n+l}(t_i) - X_n(t_i))X_n(t_j)] = 0$. As a result, we have $E[X(t_i)X_n(t_j)] = R_{X_n}(t_i, t_j)$. Similarly, $E[X_n(t_i)X(t_j)] = R_{X_n}(t_i, t_j)$. Then we proceed with the computation as

$$E[|Y_n - Y|^2] = \lim_{\min(m,k) \to \infty} \sum_{i=1}^m \sum_{j=1}^k \left(R_{X_n}(t_i, t_j) + R_X(t_i, t_j) - 2R_{X_n}(t_i, t_j) \right) (t_i - t_{i-1})(t_j - t_{j-1})$$

$$= \lim_{\min(m,k) \to \infty} \sum_{i=1}^m \sum_{j=1}^k \left(R_X(t_i, t_j) - R_{X_n}(t_i, t_j) \right) (t_i - t_{i-1})(t_j - t_{j-1})$$

$$= \int_0^T \int_0^T R_X(u, s) - R_{X_n}(u, s) du ds$$

where the integral is Riemann integral due to its definition. Since we assume both $X_n(t)$ and X(t) are integrable over [0, *T*], the Riemann integral above exists due to Theorem 9.2.1, P. 237, [1]. Then we have

$$\lim_{n \to \infty} E[|Y_n - Y|^2] = \lim_{n \to \infty} \int_0^T \int_0^T R_X(u, s) - R_{X_n}(u, s) du ds$$
$$= \int_0^T \int_0^T R_X(u, s) du ds - \lim_{n \to \infty} \int_0^T \int_0^T R_{X_n}(u, s) du ds$$

Due to Mercer's theorem, Theorem 7.2.2, P. 249, [2], $R_{X_n}(u, s)$ converges uniformly in u, s to $R_X(u, s)$. Then due to Theorem 2.8, P. 75, [3], we know that the above limit is well defined and we have that

$$\lim_{n \to \infty} E[|Y_n - Y|^2] = \int_0^T \int_0^T R_X(u, s) du ds - \lim_{n \to \infty} \int_0^T \int_0^T R_{X_n}(u, s) du ds$$
$$= \int_0^T \int_0^T R_X(u, s) du ds - \int_0^T \int_0^T \lim_{n \to \infty} R_{X_n}(u, s) du ds$$
$$= \int_0^T \int_0^T R_X(u, s) - \lim_{n \to \infty} R_{X_n}(u, s) du ds$$
$$= \int_0^T \int_0^T R_X(u, s) - R_X(u, s) du ds$$

which concludes the proof.

REFERENCES

- [1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
- [2] Bruce Hajek, Random processes for engineers, Cambridge University Press, 2015.
- [3] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.