Karhunen-Loéve Expansion and Mean Square Integral

Yuchao Li

January 26, 2019

1 Problem statement

Given a Hilbert space $L_{2}(\Omega, \mathscr{F}, \mathbf{P})$, define a sequence of continuous random processes (r.p.s) $\left\{X_{i}(t)\right\}_{i=1}^{\infty}$ for $t \in[0, T]$. Besides, we assume that $\forall t$, it holds that $X_{n}(t) \xrightarrow{2} X(t)$. We further assume that $Y_{n}=\int_{0}^{T} X_{n}(t) d t$ exists $\forall n$ and $Y=\int_{0}^{T} X(t) d t$ exists where those integrals are mean square integrals, namely, for example, Y is defined as

$$
\sum_{i=1}^{m} X\left(t_{i}\right)\left(t_{i}-t_{i-1}\right) \xrightarrow{2} \int_{0}^{T} X(t) d t
$$

where $0=t_{0}<t_{1}<\ldots<t_{m}=T$ and $\max _{i}\left|t_{i}-t_{i-1}\right| \rightarrow 0$ as $m \rightarrow \infty$, as in Definition 9.2.1, P. 237, [1]. Prove that if $X_{n}(t)$ is the partial sum of X 's Karhunen-Loéve expansion, then it holds that $Y_{n} \xrightarrow{2} Y$. By stating that $X_{n}(t)$ is the partial sum of X 's Karhunen-Loéve expansion, we mean that $X(t)$ is constructed in the following way. Given an i.i.d sequence of random variables (r.v.'s) $\left\{Z_{i}\right\}_{i=1}^{\infty}$ in $L_{2}(\Omega, \mathscr{F}, \mathbf{P})$ with zero means, $X_{n}(t)$ is defined as $X_{n}(t)=\sum_{i=1}^{n} \sqrt{\lambda_{i}} Z_{i} e_{i}(t)$ where $e_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is some continuous function. If it holds that $\sum_{i=1}^{\infty} \lambda_{i}<\infty$, then $\left\{X_{i}(t)\right\}_{i=1}^{\infty}$ is convergent in $L_{2}(\Omega, \mathscr{F}, \mathbf{P}) \forall t$. The r.v. it converges to at time t is defined as $X(t)$. We also use the symbol $\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} Z_{i} e_{i}(t)$ to denote $X(t)$. By such construction, all the assumptions above are fulfilled. For details of such construction, refer to Section 7.4.2, P. 196 and Example 9.1.8, P. 234, [1].

2 Elaboration

We first compute $E\left[\left|Y_{n}-Y\right|^{2}\right]$ as follows.

$$
\begin{aligned}
E\left[\left|Y_{n}-Y\right|^{2}\right] & =E\left[\left(\int_{0}^{T} X_{n}(t) d t-\int_{0}^{T} X(t) d t\right)^{2}\right] \\
& =E\left[\left(\int_{0}^{T} X_{n}(t)-X(t) d t\right)^{2}\right] \\
& =E\left[\left(\lim _{\triangle} \sum_{i=1}^{m}\left(X_{n}\left(t_{i}\right)-X\left(t_{i}\right)\right)\left(t_{i}-t_{i-1}\right)\right)^{2}\right]
\end{aligned}
$$

where in the second equality, we apply the linearity property of mean square integral, Theorem 9.2.2 (a), P. 239, [1], and the auxiliary notion $\lim _{\triangle}$ refers to mean square convergence as $0=t_{0}<t_{1}<\ldots<t_{m}=T$ and $\max _{i}\left|t_{i}-t_{i-1}\right| \rightarrow 0$ as $m \rightarrow \infty$. Then we introduce some predefined partitions on $[0, T]$ fulfilling above requirements, denoted as $\left\{P_{i}\right\}_{i=1}^{\infty}$, and its corresponding r.v. sequences, $\left\{\Delta Y_{n, i}\right\}_{i=1}^{\infty}$, namely $\Delta Y_{n, m}=\sum_{i=1}^{m}\left(X_{n}\left(t_{i}\right)-X\left(t_{i}\right)\right)\left(t_{i}-t_{i-1}\right)$. By definition, we have $\Delta Y_{n, m} \xrightarrow{2} \int_{0}^{T} X_{n}(t)-X(t) d t=Y_{n}-Y$ as $m \rightarrow \infty$. As a result, we have

$$
E\left[\left|Y_{n}-Y\right|^{2}\right]=E\left[\left(\lim _{m \rightarrow \infty} \Delta Y_{n, m}\right)^{2}\right]
$$

By Theorem 7.3.1 (c) and Theorem 7.3.3, P. 195, [1] we know that if $X_{k} \xrightarrow{2} X$, then we have $E\left[X^{2}\right]=\lim _{\min (m, k) \rightarrow \infty} E\left[X_{m} X_{k}\right]$, then we proceed the calculation as

$$
\begin{array}{rll}
E\left[\left|Y_{n}-Y\right|^{2}\right]= & \lim _{\min (m, k) \rightarrow \infty} & E\left[\Delta Y_{n, m} \Delta Y_{n, k}\right] \\
= & \lim _{\min (m, k) \rightarrow \infty} & E\left[\sum_{i=1}^{m} \sum_{j=1}^{k}\left(X_{n}\left(t_{i}\right)-X\left(t_{i}\right)\right)\left(X_{n}\left(t_{j}\right)-X\left(t_{j}\right)\right)\left(t_{i}-t_{i-1}\right)\left(t_{j}-t_{j-1}\right)\right] \\
= & \lim _{\min (m, k) \rightarrow \infty} & \sum_{i=1}^{m} \sum_{j=1}^{k} E\left[\left(X_{n}\left(t_{i}\right)-X\left(t_{i}\right)\right)\left(X_{n}\left(t_{j}\right)-X\left(t_{j}\right)\right)\right]\left(t_{i}-t_{i-1}\right)\left(t_{j}-t_{j-1}\right) \\
= & \lim _{\min (m, k) \rightarrow \infty} & \sum_{i=1}^{m} \sum_{j=1}^{k}\left(R_{X_{n}}\left(t_{i}, t_{j}\right)+R_{X}\left(t_{i}, t_{j}\right)\right. \\
& \left.-E\left[X_{n}\left(t_{i}\right) X\left(t_{j}\right)\right]-E\left[X\left(t_{i}\right) X_{n}\left(t_{j}\right)\right]\right)\left(t_{i}-t_{i-1}\right)\left(t_{j}-t_{j-1}\right) .
\end{array}
$$

where $R_{X_{n}}(\cdot, \cdot)$ and $R_{X}(\cdot, \cdot)$ are autocorrelation functions of X_{n} and X respectively. Since $X_{n}(t) \xrightarrow{2}$ $X(t)$, then Theorem 7.3.1 (d), P. 195, [1], we have

$$
\begin{aligned}
E\left[X\left(t_{i}\right) X_{n}\left(t_{j}\right)\right] & =\lim _{m \rightarrow \infty} E\left[X_{m}\left(t_{i}\right) X_{n}\left(t_{j}\right)\right] \\
& =\lim _{l \rightarrow \infty} E\left[X_{n+l}\left(t_{i}\right) X_{n}\left(t_{j}\right)\right] \\
& =\lim _{l \rightarrow \infty} E\left[X_{n}\left(t_{i}\right) X_{n}\left(t_{j}\right)+\left(X_{n+l}\left(t_{i}\right)-X_{n}\left(t_{i}\right)\right) X_{n}\left(t_{j}\right)\right] \\
& =E\left[X_{n}\left(t_{i}\right) X_{n}\left(t_{j}\right)\right]+\lim _{l \rightarrow \infty} E\left[\left(X_{n+l}\left(t_{i}\right)-X_{n}\left(t_{i}\right)\right) X_{n}\left(t_{j}\right)\right] \\
& =R_{X_{n}}\left(t_{i}, t_{j}\right)+\lim _{l \rightarrow \infty} E\left[\left(X_{n+l}\left(t_{i}\right)-X_{n}\left(t_{i}\right)\right) X_{n}\left(t_{j}\right)\right]
\end{aligned}
$$

Due to construction of Karhunen-Loéve expansion, we have $E\left[\left(X_{n+l}\left(t_{i}\right)-X_{n}\left(t_{i}\right)\right) X_{n}\left(t_{j}\right)\right]=0$. As a result, we have $E\left[X\left(t_{i}\right) X_{n}\left(t_{j}\right)\right]=R_{X_{n}}\left(t_{i}, t_{j}\right)$. Similarly, $E\left[X_{n}\left(t_{i}\right) X\left(t_{j}\right)\right]=R_{X_{n}}\left(t_{i}, t_{j}\right)$. Then we proceed with the computation as

$$
\begin{aligned}
E\left[\left|Y_{n}-Y\right|^{2}\right] & =\lim _{\min (m, k) \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{k}\left(R_{X_{n}}\left(t_{i}, t_{j}\right)+R_{X}\left(t_{i}, t_{j}\right)-2 R_{X_{n}}\left(t_{i}, t_{j}\right)\right)\left(t_{i}-t_{i-1}\right)\left(t_{j}-t_{j-1}\right) \\
& =\lim _{\min (m, k) \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{k}\left(R_{X}\left(t_{i}, t_{j}\right)-R_{X_{n}}\left(t_{i}, t_{j}\right)\right)\left(t_{i}-t_{i-1}\right)\left(t_{j}-t_{j-1}\right) \\
& =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s)-R_{X_{n}}(u, s) d u d s
\end{aligned}
$$

where the integral is Riemann integral due to its definition. Since we assume both $X_{n}(t)$ and $X(t)$ are integrable over $[0, T]$, the Riemann integral above exists due to Theorem 9.2.1, P. 237, [1]. Then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left[\left|Y_{n}-Y\right|^{2}\right] & =\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{0}^{T} R_{X}(u, s)-R_{X_{n}}(u, s) d u d s \\
& =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s) d u d s-\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{0}^{T} R_{X_{n}}(u, s) d u d s
\end{aligned}
$$

Due to Mercer's theorem, Theorem 7.2.2, P. 249, [2], $R_{X_{n}}(u, s)$ converges uniformly in u, s to $R_{X}(u, s)$. Then due to Theorem 2.8, P. 75, [3], we know that the above limit is well defined and we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left[\left|Y_{n}-Y\right|^{2}\right] & =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s) d u d s-\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{0}^{T} R_{X_{n}}(u, s) d u d s \\
& =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s) d u d s-\int_{0}^{T} \int_{0}^{T} \lim _{n \rightarrow \infty} R_{X_{n}}(u, s) d u d s \\
& =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s)-\lim _{n \rightarrow \infty} R_{X_{n}}(u, s) d u d s \\
& =\int_{0}^{T} \int_{0}^{T} R_{X}(u, s)-R_{X}(u, s) d u d s
\end{aligned}
$$

which concludes the proof.

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
[2] Bruce Hajek, Random processes for engineers, Cambridge University Press, 2015.
[3] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.

