KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Monotonicity of Means of Random Variables

Yuchao Li

October 6, 2018

1 PROBLEM STATEMENT

Denote a probability space as $(\Omega, \mathscr{F}, \mathbf{P})$ and two random variables (r.v.'s) defined upon it as *X* and *Y* where $X \leq Y$ holds $\forall \omega \in \Omega$. Then it holds for any type of r.v.'s that

$$E[X] \le E[Y] \tag{1.1}$$

Prove above result by its nature, namely considering the fact that the expectation is defined via Lebesgue integration.

2 ELABORATION

We only prove the case when both *X* and *Y* are non-negative r.v.'s. Here we prove three different cases.

- 1. First, we prove the case when both *X* and *Y* are simple. Then the proof is given in [Hand Note 1].
- 2. Second, if *X* is simple while *Y* is not, then suppose $\{X(\omega)|\omega \in \Omega\} = \{x_1, ..., x_m\}$. We can partition Ω into *m* parts depending on x_i and use the result in [Hand Note 4] to prove the monotonicity.
- 3. Third, if both *X* and *Y* are not simple, define

$$X_n(\omega) = \begin{cases} \frac{k-1}{2^n}, & \frac{k-1}{2^n} \le X(\omega) < \frac{k}{2^n}, \ k = 1, 2, ..., n2^n \\ n, & X(\omega) \ge n. \end{cases}$$
(2.1)

Similarly, define $Y_n(\omega)$. Since $X \leq Y \ \forall \omega \in \Omega$, we have $X \leq Y \ \forall \omega \in \Omega$. Then by [Hand Note 1], we have

$$E[X_n] \le E[Y_n]. \tag{2.2}$$

By Theorem 4.2 (Consistency), P.50, [2], we know $\lim_{n\to\infty} E[X_n] = E[X]$ and $\lim_{n\to\infty} E[y_n] = E[Y]$. Take limits on both sides of Eq. (2.2), we get the result.

Remark. When *X* < *Y*, the monitonicity also carry to the expectation, namely

$$E[X] < E[Y]. \tag{2.3}$$

Denoting Z = Y - X. Then $Z > 0 \forall \omega \in \Omega$. Then E[Z] > 0 can be shown as a result of [Hand Note 4] claim, and this strict monotonicity is proved in step 3.

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

[2] Allan Gut, Probability: A graduate course, 2nd Edition, Springer & Verlag, 2012.

[3] Bruce Hajek, *Random processes for engineers*, Cambridge University Press, 2015.