KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Monotonicity of Means of Simple Random Variables

Yuchao Li

August 5, 2018

1 PROBLEM STATEMENT

Probability space is given as $(\Omega, \mathscr{F}, \mathbf{P})$. For two simple random variables *X* and *Y*, if $X(\omega) \le Y(\omega) \ \forall \omega \in \Omega$, prove that $E[X] \le E[Y]$.

2 ELABORATION

Since *X* and *Y* are simple random variables, we assume that *X* takes values from $x_1 < x_2 < ... < x_m$. As a result, Ω has a partition (A_i) where $A_i = \{\omega \in \Omega : X(\omega) = x_i\}$. Simularly, we define $y_1 < y_2 < ... < y_n$ and (B_i) . Then we mix (x_i) and (y_i) together and order them as

$$x_1 < \dots < x_{l_1} \le y_1 < \dots < y_{p_1} < x_{l_1+1} < \dots < x_{l_2} \le y_{p_1+1} < \dots < y_{p_2} < x_{l_2+1} < (\text{or } \le) \dots < (\text{or } \le)y_n.$$
(2.1)

where $l_k = m$ and $p_k = n$ and k is the number that (x_i) and (y_i) are grouped into due to the ordering and the number of groups of (x_i) and (y_i) must be the same (since the line starts with x_1 and ends with y_n). Note that between x_i and x_j (i < j), it should always be <. The same for y_i and y_j . Between x_a and y_b $(x_a$ in front), it should be \leq and between y_b and x_a $(y_b$ in front), it should be <. This means if $x_a = y_b$, we require x_a in the front. The reason would be obvious later.

Due to (1) $X(\omega) \le Y(\omega) \ \forall \omega \in \Omega$, and (2) when $x_a = y_b$, we require x_a in the front, we have

$$\cup_{i=1}^{p_q} B_i \subseteq \bigcup_{i=1}^{l_q} A_i, \ q = 1, 2, ..., k.$$
(2.2)

Define $A_j^{(1)} = A_j \cap (\cup_{i=1}^{p_1} B_i)$ for $j = 1, ..., l_1$. Then we have

$$\cup_{i=1}^{l_1} A_i^{(1)} = \cup_{i=1}^{p_1} B_i \tag{2.3}$$

and as a result, we have

$$\sum_{i=1}^{l_1} x_i \mathbf{P}(\{\omega \in A_i^{(1)}\}) \le y_1 \sum_{i=1}^{l_1} \mathbf{P}(\{\omega \in A_i^{(1)}\}) = y_1 \sum_{i=1}^{p_1} \mathbf{P}(\{\omega \in B_i\}) < \sum_{i=1}^{p_1} y_i \mathbf{P}(\{\omega \in B_i\}).$$
(2.4)

Similarly, we define $A_j^{(2)} = A_j \cap (\bigcup_{i=p_1+1}^{p_2} B_i)$ for $j = 1, ..., l_2$. Then we have

$$\cup_{i=1}^{l_2} A_i^{(2)} = \bigcup_{i=l_1+1}^{p_2} B_i \tag{2.5}$$

and as a result, we have

$$\sum_{i=1}^{l_2} x_i \mathbf{P}(\{\omega \in A_i^{(2)}\}) \le y_{p_1+1} \sum_{i=1}^{l_2} \mathbf{P}(\{\omega \in A_i^{(2)}\}) = y_{p_1+1} \sum_{i=p_1+1}^{p_2} \mathbf{P}(\{\omega \in B_i\}) < \sum_{i=p_1+1}^{p_2} y_i \mathbf{P}(\{\omega \in B_i\}).$$
(2.6)

Continue *k* steps, we would get *k* inequalities like Eqs. (2.4) and (2.6). Sum them up, we get the result. Note that E[X] = E[Y] iff m = n and $X(\omega) = Y(\omega) \ \forall \omega \in \Omega$.

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.