Monotonicity of Means of Simple Random Variables

Yuchao Li

August 5, 2018

1 Problem statement

Probability space is given as $(\Omega, \mathscr{F}, \mathbf{P})$. For two simple random variables X and Y, if $X(\omega) \leq$ $Y(\omega) \forall \omega \in \Omega$, prove that $E[X] \leq E[Y]$.

2 Elaboration

Since X and Y are simple random variables, we assume that X takes values from $x_{1}<x_{2}<$ $\ldots<x_{m}$. As a result, Ω has a partition $\left(A_{i}\right)$ where $A_{i}=\left\{\omega \in \Omega: X(\omega)=x_{i}\right\}$. Simularly, we define $y_{1}<y_{2}<\ldots<y_{n}$ and $\left(B_{i}\right)$. Then we mix $\left(x_{i}\right)$ and $\left(y_{i}\right)$ together and order them as

$$
\begin{equation*}
x_{1}<\ldots<x_{l_{1}} \leq y_{1}<\ldots<y_{p_{1}}<x_{l_{1}+1}<\ldots<x_{l_{2}} \leq y_{p_{1}+1}<\ldots<y_{p_{2}}<x_{l_{2}+1}<(\text { or } \leq) \ldots<(\text { or } \leq) y_{n} . \tag{2.1}
\end{equation*}
$$

where $l_{k}=m$ and $p_{k}=n$ and k is the number that $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are grouped into due to the ordering and the number of groups of $\left(x_{i}\right)$ and $\left(y_{i}\right)$ must be the same (since the line starts with x_{1} and ends with y_{n}). Note that between x_{i} and $x_{j}(i<j)$, it should always be $<$. The same for y_{i} and y_{j}. Between x_{a} and $y_{b}\left(x_{a}\right.$ in front), it should be \leq and between y_{b} and $x_{a}\left(y_{b}\right.$ in front), it should be $<$. This means if $x_{a}=y_{b}$, we require x_{a} in the front. The reason would be obvious later.
Due to (1) $X(\omega) \leq Y(\omega) \forall \omega \in \Omega$, and (2) when $x_{a}=y_{b}$, we require x_{a} in the front, we have

$$
\begin{equation*}
\cup_{i=1}^{p_{q}} B_{i} \subseteq \cup_{i=1}^{l_{q}} A_{i}, q=1,2, \ldots, k \tag{2.2}
\end{equation*}
$$

Define $A_{j}^{(1)}=A_{j} \cap\left(\cup_{i=1}^{p_{1}} B_{i}\right)$ for $j=1, \ldots, l_{1}$. Then we have

$$
\begin{equation*}
\cup_{i=1}^{l_{1}} A_{i}^{(1)}=\cup_{i=1}^{p_{1}} B_{i} \tag{2.3}
\end{equation*}
$$

and as a result, we have

$$
\begin{equation*}
\sum_{i=1}^{l_{1}} x_{i} \mathbf{P}\left(\left\{\omega \in A_{i}^{(1)}\right\}\right) \leq y_{1} \sum_{i=1}^{l_{1}} \mathbf{P}\left(\left\{\omega \in A_{i}^{(1)}\right\}\right)=y_{1} \sum_{i=1}^{p_{1}} \mathbf{P}\left(\left\{\omega \in B_{i}\right\}\right)<\sum_{i=1}^{p_{1}} y_{i} \mathbf{P}\left(\left\{\omega \in B_{i}\right\}\right) . \tag{2.4}
\end{equation*}
$$

Similarly, we define $A_{j}^{(2)}=A_{j} \cap\left(\cup_{i=p_{1}+1}^{p_{2}} B_{i}\right)$ for $j=1, \ldots, l_{2}$. Then we have

$$
\begin{equation*}
\cup_{i=1}^{l_{2}} A_{i}^{(2)}=\cup_{i=l_{1}+1}^{p_{2}} B_{i} \tag{2.5}
\end{equation*}
$$

and as a result, we have

$$
\begin{equation*}
\sum_{i=1}^{l_{2}} x_{i} \mathbf{P}\left(\left\{\omega \in A_{i}^{(2)}\right\}\right) \leq y_{p_{1}+1} \sum_{i=1}^{l_{2}} \mathbf{P}\left(\left\{\omega \in A_{i}^{(2)}\right\}\right)=y_{p_{1}+1} \sum_{i=p_{1}+1}^{p_{2}} \mathbf{P}\left(\left\{\omega \in B_{i}\right\}\right)<\sum_{i=p_{1}+1}^{p_{2}} y_{i} \mathbf{P}\left(\left\{\omega \in B_{i}\right\}\right) \tag{2.6}
\end{equation*}
$$

Continue k steps, we would get k inequalities like Eqs. (2.4) and (2.6). Sum them up, we get the result. Note that $E[X]=E[Y]$ iff $m=n$ and $X(\omega)=Y(\omega) \forall \omega \in \Omega$.

References

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

