KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Topologies, metrics and standard spaces

Yuchao Li

January 31, 2019

QUESTION 1

Q: Given two topological spaces (Ω, \mathcal{T}) and (Γ, \mathcal{S}) , the two spaces are said to be homeomorphic if there is a function $f : \Omega \to \Gamma$ such that: f is one-to-one; f is continuous; f^{-1} is continuous. Prove that the (0, 1) and \mathbb{R} are homeomorphic. **A**: tan : $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$; define $g : (0, 1) \to (-\frac{\pi}{2}, \frac{\pi}{2})$ as $g(x) = -\frac{\pi}{2} + \pi x$, then $f = \tan \circ g$.

QUESTION 2

Q: Given two topological spaces (Ω, \mathcal{T}) and (Γ, \mathcal{S}) , and a function $f : \Omega \to \Gamma$, let χ be the set of all sequences that converges in (Ω, \mathcal{T}) . Prove that

- 1. *f* is continuous $\Rightarrow \lim_{n \to \infty} f(x_n) \rightarrow f(\lim_{n \to \infty} x)$ holds $\forall \{x_n\} \in \chi$;
- 2. If $\{\Omega, \mathcal{T}\}$ is metrizable, then *f* is continuous $\Leftrightarrow \lim_n f(x_n) \to f(\lim_n x)$ holds $\forall \{x_n\} \in \chi$.

A: Recall the definition of *f* being continuous: $\forall O \in \mathscr{S}$, it holds that $f^{-1}(O) \in \mathscr{T}$. As for $\{x_n\}$ where $x_n \in \Omega$ being convergent, denote $x = \lim_n x_n$, for each $O \in \mathscr{T}$ where $x \in O$, there is an *N* such that $x_n \in O$ for all n > N.

∀O ∈ 𝒴 where f(x) ∈ O, since f is continuous, then we have f⁻¹(O) ∈ 𝒯, besides, according to the definition of preimage, we also have x ∈ f⁻¹(O). Since {x_n} is convergent in (Ω, 𝒯), then ∃N such that x_n ∈ f⁻¹(O). Namely, with the same N, f(x_n) ∈ O holds ∀n > N. Since O is arbitrary open set in (Γ, 𝒴), we proved that {f(x_n)} is a convergent sequence in (Γ, 𝒴) and it converges to f(x).

2. The only if part has been proved in the previous step. For the if part, denote $f(\Omega) = \Re f$, then $\forall O \in \mathscr{S}$ where $O \cap \Re f = \emptyset$, $f^{-1}(O) = \emptyset \in \mathscr{T}$. When $O \in \mathscr{S}$ where $O \cap \Re f \neq \emptyset$, if $f^{-1}(O) \notin \mathscr{T}$, since (Ω, \mathscr{T}) is metrizable, then $\exists x \in f^{-1}(O)$ such that $B_r(x) \notin f^{-1}(O) \forall r > 0$. Namely we have $B_r(x) \setminus f^{-1}(O) \neq \emptyset \forall r > 0$. Construct $\{x_n\}$ such that $x_n \in B_{\frac{1}{n}} \setminus f^{-1}(O)$. Then by construction we have $x_n \notin f^{-1}(O) \forall n$ and $\lim_n x = x$. However, $\lim_n f(x) = f(\lim_n x)$, namely $\exists N$ such that $f(x_n) \in O \forall n > N$, or equivalently, $x_n \in f^{-1}(O) \forall n > N$. Therefore, the assumption is false, and $f^{-1}(O)$ is open.

REFERENCES

- [1] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.
- [2] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.