Condition and decomposition of measures

Yuchao Li

January 24, 2019

Question 1

Q: Given $(\Omega, \mathscr{A}, \mathbf{P})$ and a random variable X, let $\mathbf{P}(E \mid X)=\mathbf{P}(E \mid \sigma(X))$ for $E \in \mathscr{A}$. Establish that there is a Borel measurable function $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that $\mathbf{P}(E \mid X)=g(X)$, \mathbf{P}-a.e., that is, as a function of $\omega \in \Omega, \mathbf{P}(E \mid X)$ has the form $\omega \rightarrow X(\omega) \rightarrow g(X(\omega))$ (P-a.e.). For $x \in \mathbb{R}$ and $E \in \mathscr{A}$, let $\mathbf{P}(E \mid X=x)=g(x)$; the conditional probability of E given $X=x$. Then, for any $E \in \mathscr{A}$ and $B \in \mathscr{B}$, prove that

$$
\mathbf{P}(\{X \in B\} \cap E)=\int_{B} \mathbf{P}(E \mid X=x) d \mu_{X} .
$$

A: Given a r.v. X, then r.v. X has distribution μ_{X} defined on $(\mathbb{R}, \mathscr{B})$. Namely for any $B \in \mathscr{B}$, we have $\mu_{X}(B)=\mathbf{P}(\{X \in B\})$. In addition, given $E \in \mathscr{A}$, we define a set function v_{E} on $(\mathbb{R}, \mathscr{B})$ such that $v_{E}(B)=\mathbf{P}(\{X \in B\} \cap E)$. It can be shown that v_{E} is in fact a measure on $(\mathbb{R}, \mathscr{B})$. Then since $\{X \in B\} \cap E \subseteq\{X \in B\}$, we have $v_{E} \leq \mu_{X}$ holds $\forall B \in \mathscr{B}$ and $v_{E} \ll \mu_{X}$. Besides, both v_{E} and μ_{X} are finite, then by Radon-Nikodym theorem, we have $g=\frac{d v_{E}}{d \mu_{X}} \mu_{X}$ a.e.. Namely, if $\hat{g}=\frac{d v_{E}}{d \mu_{X}}$, then $\hat{g} \neq g$ in a μ_{X} null set. Denote such set as $A \in \mathscr{B}$, then $\mu_{X}(A)=0$, namely $\mu_{X}(A)=\mathbf{P}(X \in A)=0$. Therefore, $\hat{g}(X)$ and $g(X)$, defined on Ω, can differ in $\{X \in A\}$, which is \mathbf{P} null set.

Question 2

Q: Assume that X and Y are discrete random variables with joint pmf $p(x, y)$. Define

$$
p(y \mid x)= \begin{cases}p(x, y) / p(x), & p(x)>0 \\ 0, & \text { o.w.. }\end{cases}
$$

Show that

$$
\mathbf{P}(\{Y=y\} \mid X=x)=p(y \mid x),
$$

where $\mathbf{P}(\{Y \in B\} \mid X=x)$ is defined as in Question 1. Also determine $\mathbf{P}(\{Y=y\} \mid X)$.
A: Since both X and Y are discrete r.v., then there exists a countable set K such that $\mathbf{P}(X \in$ $K)=1$, then we can directly see that μ_{X} is a discrete measure. Then by definition, $\forall B \in \mathscr{B}$ we have

$$
\begin{equation*}
\mathbf{P}(\{Y=y\} \cap\{X \in B\})=\sum_{x_{i} \in B \cap K} p\left(x_{i}, y\right) . \tag{0.1}
\end{equation*}
$$

On the other hand, by Question 5, we have that

$$
\begin{align*}
\mathbf{P}(\{Y=y\} \cap\{X \in B\}) & =\int_{B} \mathbf{P}(\{Y=y\} \mid X=x) d \mu_{X} \\
& =\sum_{x_{i} \in B \cap K} \mathbf{P}\left(\{Y=y\} \mid X=x_{i}\right) p\left(x_{i}\right) . \tag{0.2}
\end{align*}
$$

Comparing Eqs. (0.1) and (0.2), we can see that $\mathbf{P}(\{Y=y\} \mid X=x)=p(y \mid x)$.

Question 3

Q: Assume that X and Y are jointly absolutely continuous random variables with joint pdf $f(x, y)$. Define

$$
f(y \mid x)= \begin{cases}f(x, y) / f(x), & f(x)>0 \\ 0, & \text { o.w. }\end{cases}
$$

Show that for each $B \in \mathscr{B}$,

$$
\mathbf{P}(\{Y \in B\} \mid X=x)=\int_{B} f(y \mid x) d y
$$

where $\mathbf{P}(\{Y \in B\} \mid X=x)$ is defined as in Question 1. Also determine $\mathbf{P}(\{Y \in B\} \mid X)$.
A: Since both X and Y are continuous r.v.s, then we can see that μ_{X} and μ_{Y} are absolutely measure. Then by definition, $\forall A, B \in \mathscr{B}$ we have

$$
\begin{equation*}
\mathbf{P}(\{Y \in B\} \cap\{X \in A\})=\int_{A} \int_{B} f(x, y) d y d x . \tag{0.3}
\end{equation*}
$$

On the other hand, by Question 5, we have that

$$
\begin{equation*}
\mathbf{P}(\{Y \in B\} \cap\{X \in A\})=\int_{A} \mathbf{P}(\{Y \in B\} \mid X=x) d \mu_{X} \tag{0.4}
\end{equation*}
$$

Denote $v(A)=\mathbf{P}(\{Y \in B\} \cap\{X \in A\})$ as a set function defined on $(\mathbb{R}, \mathscr{B})$, it can be seen that v in fact is a measure and $v \ll \mu_{X}$. Besides, we have $\frac{d v}{d \mu_{X}}(x)=\mathbf{P}(\{Y \in B\} \mid X=x) \mu_{X}$ a.e.. Due to properties of Radon-Nikodym derivative, we have $v \ll \mu_{X} \ll \lambda$, and $\frac{d v}{d \lambda}=\frac{d v}{d \mu_{X}} \frac{d \mu_{X}}{d \lambda}$, refer to [Note 12], then we have

$$
\begin{equation*}
\mathbf{P}(\{Y \in B\} \cap\{X \in A\})=\int_{A} \mathbf{P}(\{Y \in B\} \mid X=x) f(x) d x \tag{0.5}
\end{equation*}
$$

Alternatively, we can also apply Proposition 9.1, P. 318, [1], which in fact can be proved by the above arguments. Comparing Eqs. (0.3) and (0.5), the proof is done.

Question 4

Q: Given $(\Omega, \mathscr{A}, \mathbf{P})$ and a r.v. X such that $E\left(X^{2}\right)<\infty$. Given $\mathscr{G} \subset \mathscr{A}$ let $\mathscr{F}=\{$ all \mathscr{G}-measurable functions $\}$. Show that $\hat{Y}(\omega)=E[X \mid \mathscr{G}]$ is a \mathbf{P}-a.e. unique solution to the problem: find $Y \in \mathscr{F}$ to minimize $E\left[(X-Y)^{2}\right]$.
A: Denote $\hat{Y}=E[x \mid \mathscr{G}]$ and $\tilde{Y}=Y-\hat{Y}$ where $Y \in \mathscr{F}$ is some arbitrary r.v.. Then we have

$$
\begin{aligned}
E\left[(X-Y)^{2}\right] & =E\left[E\left[(X-Y)^{2} \mid \mathscr{G}\right]\right] \\
& =E\left[E\left[X^{2}-2 X Y+Y^{2} \mid \mathscr{G}\right]\right] \\
& =E\left[E\left[X^{2} \mid \mathscr{G}\right]\right]+E\left[E\left[Y^{2} \mid \mathscr{G}\right]\right]-2 E[E[X Y \mid \mathscr{G}]] \\
& =E\left[X^{2}\right]+E\left[Y^{2}\right]-2 E[Y E[X \mid \mathscr{G}]] \\
& =E\left[X^{2}\right]+E\left[Y^{2}\right]-2 E[Y \hat{Y}] \\
& =E\left[X^{2}\right]+E\left[(\hat{Y}+\tilde{Y})^{2}-2 \hat{Y}(\hat{Y}+\tilde{Y})\right] \\
& =E\left[X^{2}\right]+E\left[\hat{Y}^{2}+\tilde{Y}^{2}+2 \hat{Y} \tilde{Y}-2 \hat{Y}^{2}-2 \hat{Y} \tilde{Y}\right] \\
& =E\left[X^{2}\right]+E\left[\tilde{Y}^{2}-\hat{Y}^{2}\right] \\
& =E\left[X^{2}\right]-E\left[\hat{Y}^{2}\right]+E\left[\tilde{Y}^{2}\right]
\end{aligned}
$$

The minimal is obtained if $E\left[\tilde{Y}^{2}\right]=0$.

References

[1] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.
[2] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

