KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Condition and decomposition of measures

Yuchao Li

January 24, 2019

QUESTION 1

Q: Given $(\Omega, \mathcal{A}, \mathbf{P})$ and a random variable *X*, let $\mathbf{P}(E|X) = \mathbf{P}(E|\sigma(X))$ for $E \in \mathcal{A}$. Establish that there is a Borel measurable function $g : \mathbb{R} \to \mathbb{R}^+$ such that $\mathbf{P}(E|X) = g(X)$, **P**-a.e., that is, as a function of $\omega \in \Omega$, $\mathbf{P}(E|X)$ has the form $\omega \to X(\omega) \to g(X(\omega))$ (**P**-a.e.). For $x \in \mathbb{R}$ and $E \in \mathcal{A}$, let $\mathbf{P}(E|X = x) = g(x)$; the conditional probability of *E* given X = x. Then, for any $E \in \mathcal{A}$ and $B \in \mathcal{B}$, prove that

$$\mathbf{P}(\{X \in B\} \cap E) = \int_B \mathbf{P}(E|X=x) d\mu_X.$$

A: Given a r.v. *X*, then r.v. *X* has distribution μ_X defined on (\mathbb{R}, \mathscr{B}). Namely for any $B \in \mathscr{B}$, we have $\mu_X(B) = \mathbf{P}(\{X \in B\})$. In addition, given $E \in \mathscr{A}$, we define a set function v_E on (\mathbb{R}, \mathscr{B}) such that $v_E(B) = \mathbf{P}(\{X \in B\} \cap E)$. It can be shown that v_E is in fact a measure on (\mathbb{R}, \mathscr{B}). Then since $\{X \in B\} \cap E \subseteq \{X \in B\}$, we have $v_E \leq \mu_X$ holds $\forall B \in \mathscr{B}$ and $v_E \ll \mu_X$. Besides, both v_E and μ_X are finite, then by Radon-Nikodym theorem, we have $g = \frac{dv_E}{d\mu_X} \mu_X$ a.e.. Namely, if $\hat{g} = \frac{dv_E}{d\mu_X}$, then $\hat{g} \neq g$ in a μ_X null set. Denote such set as $A \in \mathscr{B}$, then $\mu_X(A) = 0$, namely $\mu_X(A) = \mathbf{P}(X \in A) = 0$. Therefore, $\hat{g}(X)$ and g(X), defined on Ω , can differ in $\{X \in A\}$, which is \mathbf{P} null set.

QUESTION 2

Q: Assume that *X* and *Y* are discrete random variables with joint pmf p(x, y). Define

$$p(y|x) = \begin{cases} p(x, y)/p(x), & p(x) > 0, \\ 0, & \text{o.w..} \end{cases}$$

Show that

$$P({Y = y}|X = x) = p(y|x)$$

where $\mathbf{P}(\{Y \in B\}|X = x)$ is defined as in Question 1. Also determine $\mathbf{P}(\{Y = y\}|X)$. A: Since both *X* and *Y* are discrete r.v., then there exists a countable set *K* such that $\mathbf{P}(X \in K) = 1$, then we can directly see that μ_X is a discrete measure. Then by definition, $\forall B \in \mathscr{B}$ we have

$$\mathbf{P}(\{Y = y\} \cap \{X \in B\}) = \sum_{x_i \in B \cap K} p(x_i, y).$$
(0.1)

On the other hand, by Question 5, we have that

$$\mathbf{P}(\{Y = y\} \cap \{X \in B\}) = \int_{B} \mathbf{P}(\{Y = y\} | X = x) d\mu_{X}$$
$$= \sum_{x_{i} \in B \cap K} \mathbf{P}(\{Y = y\} | X = x_{i}) p(x_{i}).$$
(0.2)

Comparing Eqs. (0.1) and (0.2), we can see that $P(\{Y = y\}|X = x) = p(y|x)$.

QUESTION 3

Q: Assume that *X* and *Y* are jointly absolutely continuous random variables with joint pdf f(x, y). Define

$$f(y|x) = \begin{cases} f(x, y) / f(x), & f(x) > 0, \\ 0, & \text{o.w..} \end{cases}$$

Show that for each $B \in \mathcal{B}$,

$$\mathbf{P}(\{Y \in B\} | X = x) = \int_B f(y|x) dy,$$

where $\mathbf{P}(\{Y \in B\} | X = x)$ is defined as in Question 1. Also determine $\mathbf{P}(\{Y \in B\} | X)$. A: Since both *X* and *Y* are continuous r.v.'s, then we can see that μ_X and μ_Y are absolutely measure. Then by definition, $\forall A, B \in \mathcal{B}$ we have

$$\mathbf{P}(\{Y \in B\} \cap \{X \in A\}) = \int_A \int_B f(x, y) dy dx.$$
(0.3)

On the other hand, by Question 5, we have that

$$\mathbf{P}(\{Y \in B\} \cap \{X \in A\}) = \int_{A} \mathbf{P}(\{Y \in B\} | X = x) d\mu_X.$$
(0.4)

Denote $v(A) = \mathbf{P}(\{Y \in B\} \cap \{X \in A\})$ as a set function defined on $(\mathbb{R}, \mathscr{B})$, it can be seen that v in fact is a measure and $v \ll \mu_X$. Besides, we have $\frac{dv}{d\mu_X}(x) = \mathbf{P}(\{Y \in B\} | X = x) \ \mu_X$ a.e.. Due to properties of Radon-Nikodym derivative, we have $v \ll \mu_X \ll \lambda$, and $\frac{dv}{d\lambda} = \frac{dv}{d\mu_X} \frac{d\mu_X}{d\lambda}$, refer to [Note 12], then we have

$$\mathbf{P}(\{Y \in B\} \cap \{X \in A\}) = \int_{A} \mathbf{P}(\{Y \in B\} | X = x) f(x) dx$$

$$(0.5)$$

Alternatively, we can also apply Proposition 9.1, P. 318, [1], which in fact can be proved by the above arguments. Comparing Eqs. (0.3) and (0.5), the proof is done.

QUESTION 4

Q: Given $(\Omega, \mathcal{A}, \mathbf{P})$ and a r.v. *X* such that $E(X^2) < \infty$. Given $\mathcal{G} \subset \mathcal{A}$ let $\mathcal{F} = \{ \text{all } \mathcal{G} \text{-measurable functions} \}$. Show that $\hat{Y}(\omega) = E[X|\mathcal{G}]$ is a **P**-a.e. unique solution to the problem: find $Y \in \mathcal{F}$ to minimize $E[(X - Y)^2]$.

A: Denote $\hat{Y} = E[x|\mathcal{G}]$ and $\tilde{Y} = Y - \hat{Y}$ where $Y \in \mathcal{F}$ is some arbitrary r.v.. Then we have

$$\begin{split} E[(X - Y)^2] &= E[E[(X - Y)^2|\mathcal{G}]] \\ &= E[E[X^2 - 2XY + Y^2|\mathcal{G}]] \\ &= E[E[X^2|\mathcal{G}]] + E[E[Y^2|\mathcal{G}]] - 2E[E[XY|\mathcal{G}]] \\ &= E[X^2] + E[Y^2] - 2E[YE[X|\mathcal{G}]] \\ &= E[X^2] + E[Y^2] - 2E[Y\hat{Y}] \\ &= E[X^2] + E[(\hat{Y} + \tilde{Y})^2 - 2\hat{Y}(\hat{Y} + \tilde{Y})] \\ &= E[X^2] + E[(\hat{Y}^2 + \tilde{Y}^2 + 2\hat{Y}\tilde{Y} - 2\hat{Y}^2 - 2\hat{Y}\tilde{Y}] \\ &= E[X^2] + E[\tilde{Y}^2 - \hat{Y}^2] \\ &= E[X^2] - E[\hat{Y}^2] + E[\tilde{Y}^2] \end{split}$$

The minimal is obtained if $E[\tilde{Y}^2] = 0$.

References

- [1] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.
- [2] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.