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QUESTION 1

Q: Define and explain the concepts of total variation and bounded variation.
A: Let f be a real-valued function on interval [a,b], the total variation of f over [a,b], denoted
as V b

a f , is defined as

V b
a f = sup

{ n∑
k=1

| f (xk )− f (xk−1)|
}

where the supremum is taken over all partition of the interval [a,b], refer to [1] P. 117. For
definition of partition of an interval, refer to [2] Definition 11.1.10, P. 269.

QUESTION 2

Q: Define and explain the concepts of an absolutely continuous real-valued function.
A: Suppose that f is defined on R, f ′ exists almost everywhere and is Lebesgue integrable on
R, and

f (x) =
∫ x

∞
f ′(t )d t , −∞< x <∞.

Then f is absolutely continuous on R. This is [3] Definition 8.8, P. 293.

QUESTION 3

Q: Define and explain the concepts of discrete, continuous and absolutely continuous ran-
dom variables.
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A: Given a probability space (Ω,A ,P) and a random variable X defined on it, the random
variable is called

• discrete, if there is a countable set K ∈ B such that P(X ∈ K ) = 1. In fact, there exists a
countable K0 6= ; such that P(X ∈ K0) = 1, P(X = xi ) > 0 holds ∀xi ∈ K0, and ∀K where
P(X ∈ K ) = 1, it holds that K0 ⊆ K . Refer to [4] Lemma 2.5.2, P. 72.

• continuous, if P(X = x) = 0 holds for all x ∈R.

• absolutely continuous, if there is a nonnegative B−measurable function fX such that

µX (B) =
∫

B
fX (x)d x

holds for all B ∈B where µX is the distribution of X .

QUESTION 4

Q: Define the Radon-Nikodym derivative and relate it to the concept of an absolutely contin-
uous random variable.
A: If µ and ν are σ−finite on (Ω,A ) and ν¿ µ, then there is a nonnegative extended real-
valued A−measurable function f onΩ such that

ν(A) =
∫

A
f dµ

for any A ∈A . Further more, f is unique µ−a.e., and is named as Radon-Nikodym derivative
of ν w.r.t. µ, denoted as

f = dν

dµ
.

QUESTION 5

Q: Assume that { fn} is a sequence of functions that converges pointwise to f <∞. Prove that
V b

a f ≤ liminfn V b
a fn .

A: Since { fn} is the sequence of function that converges pointwise f <∞ on [a,b], then for
any x ∈ [a,b], we have limn→∞ fn(x) = f (x) <∞. With conventional definition of a sequence
being convergent, we know { fn} are real-valued functions on [a,b]. Otherwise we need to
assume that { fn} are real-valued functions on [a,b] such that V b

a fn are well-defined. Then we
have for any partition of [a,b] given by a = x0 < x1 < ... < xm−1 < xm = b, we have

f (xk )− f (xk−1) = lim
n→∞ fn(xk )− fn(xk−1) =⇒ f (xk )− f (xk−1) = liminf

n→∞ fn(xk )− fn(xk−1)

=⇒ | f (xk )− f (xk−1)| = liminf
n→∞ | fn(xk )− fn(xk−1)|

=⇒
m∑

k=1
| f (xk )− f (xk−1)| =

m∑
k=1

liminf
n→∞ | fn(xk )− fn(xk−1)|.
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By sum rule of limit, we have

m∑
k=1

| f (xk )− f (xk−1)| = liminf
n→∞

m∑
k=1

| fn(xk )− fn(xk−1)|.

By definition of total variation, we have
∑m

k=1 | fn(xk )− fn(xk−1)| ≤V b
a fn , as a result, we have

m∑
k=1

| f (xk )− f (xk−1)| ≤ liminf
n→∞ V b

a fn . (0.1)

Since 0.1 holds for any partition on [a,b], then it holds that

V b
a f = sup

{ m∑
k=1

| f (xk )− f (xk−1)|
}
≤ liminf

n→∞ V b
a fn .

QUESTION 6

Q: Give an example of a function f that is absolutely continuous on [0,1] but is such that f ′

is not Riemann integrable on [0,1]. That is, for such a function

f (x) = f (0)+
∫ x

0
f ′(x)d t

does not hold when the integral is Riemann integral.
A: Define function g : [0,1] → {0,1} to be

g (x) =
{

0, x ∈ [0,1]∩Q,

1, o.w..

Then it can be shown that g ∈L 1([0,1]) since we have∫
[0,x]

g (t )d t =
∫

[0,x]\Q
g (t )d t +

∫
[0,x]∩Q

g (t )d t =
∫

[0,x]\Q
g (t )d t +0 = x;

∫
{0}

g (t )d t = 0.

holds for x ∈ (0,1]. Then we define f : [0,1] →R as

f (x) =
∫

[0,x]
g (t )d t .

Then by First fundamental theorem of calculus for Lebesgue integral, [3] Theorem 8.5, P. 289,
it holds that f ′ = g λ-a.e. on [0,1] yet g is not Riemann integrable.

QUESTION 7

Q: Let X be a discrete random variable on (Ω,A ,P) with probability mass function pX (x) =
P({ω : X = x}). Letµ be a counting measure on (R,B), that isµ(B) = |B | (cardinality) for B ∈B.
Show that µX ¿µ and that

pX = dµX

dµ
.
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A: Since X is a discrete random variable on (Ω,A ,P), then there is a countable set K ∈B such
that P(X ∈ K ) = 1. For counting measure µ on (R,B), the only measure zero set is the empty
set, namely µ(;) = 0. Since µX (;) =µX (X ∈Rc ) = 0, so we have µX ¿µ.
Introduce measure space (K ,B|K ,µX |K ) and (K ,B|K ,µ|K ), then apparently we have µX |K ¿
µ|K , and both are σ-finite since K is countable. Then by Radon-Nikodym theorem, there

exists a nonnegative B|K -measurable extended real-valued function, denoted as
dµX |K
dµ|K

such
that it holds

µX |K (B) =
∫

B

dµX |K
dµ|K

dµ|K .

Since K is countable, then B ∈B|K is countable, then we have by definition that

µX |K (B) = P(X ∈ B) = ∑
xi∈B

pX (xi ) = ∑
xi∈B

pX (xi ) = ∑
xi∈B

pX (xi )µ|K ({xi }) =
∫

B
pX (xi )µ|K .

Therefore, we have that

pX (xi ) = dµX |K
dµ|K

µ|K −a.e..

However, since µ|K is the counting measure, we have it holds everywhere in (K ,B|K ). In fact,
we can show the above result holds for measure space (R,B). That is ∀A ∈B, we have

µX (A) =µX (A∩K )+µX (A \ K ) =µX |K (A∩K )+0 =µX |K (A∩K )

and since P(X ∉ K ) = 0, then we have

µX (A \ K ) = 0 = 0
∫

A\K
dµ=

∫
A\K

pX (x)dµ.
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