Differentiation and Radon-Nikodym theorem

Yuchao Li

January 17, 2019

Question 1

Q: Define and explain the concepts of total variation and bounded variation.
A: Let f be a real-valued function on interval $[a, b]$, the total variation of f over $[a, b]$, denoted as $V_{a}^{b} f$, is defined as

$$
V_{a}^{b} f=\sup \left\{\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|\right\}
$$

where the supremum is taken over all partition of the interval [a, b], refer to [1] P. 117. For definition of partition of an interval, refer to [2] Definition 11.1.10, P. 269.

Question 2

Q: Define and explain the concepts of an absolutely continuous real-valued function.
A: Suppose that f is defined on \mathbb{R}, f^{\prime} exists almost everywhere and is Lebesgue integrable on \mathbb{R}, and

$$
f(x)=\int_{\infty}^{x} f^{\prime}(t) d t, \quad-\infty<x<\infty .
$$

Then f is absolutely continuous on \mathbb{R}. This is [3] Definition 8.8, P. 293.

Question 3

Q: Define and explain the concepts of discrete, continuous and absolutely continuous random variables.

A: Given a probability space $(\Omega, \mathscr{A}, \mathbf{P})$ and a random variable X defined on it, the random variable is called

- discrete, if there is a countable set $K \in \mathbb{B}$ such that $\mathbf{P}(X \in K)=1$. In fact, there exists a countable $K_{0} \neq \varnothing$ such that $\mathbf{P}\left(X \in K_{0}\right)=1, \mathbf{P}\left(X=x_{i}\right)>0$ holds $\forall x_{i} \in K_{0}$, and $\forall K$ where $\mathbf{P}(X \in K)=1$, it holds that $K_{0} \subseteq K$. Refer to [4] Lemma 2.5.2, P. 72.
- continuous, if $\mathbf{P}(X=x)=0$ holds for all $x \in \mathbb{R}$.
- absolutely continuous, if there is a nonnegative \mathscr{B}-measurable function f_{X} such that

$$
\mu_{X}(B)=\int_{B} f_{X}(x) d x
$$

holds for all $B \in \mathbb{B}$ where μ_{X} is the distribution of X.

Question 4

Q: Define the Radon-Nikodym derivative and relate it to the concept of an absolutely continuous random variable.
A: If μ and v are σ-finite on (Ω, \mathscr{A}) and $v \ll \mu$, then there is a nonnegative extended realvalued \mathscr{A}-measurable function f on Ω such that

$$
v(A)=\int_{A} f d \mu
$$

for any $A \in \mathscr{A}$. Further more, f is unique μ-a.e., and is named as Radon-Nikodym derivative of v w.r.t. μ, denoted as

$$
f=\frac{d v}{d \mu}
$$

Question 5

Q: Assume that $\left\{f_{n}\right\}$ is a sequence of functions that converges pointwise to $f<\infty$. Prove that $V_{a}^{b} f \leq \liminf _{n} V_{a}^{b} f_{n}$.
A: Since $\left\{f_{n}\right\}$ is the sequence of function that converges pointwise $f<\infty$ on $[a, b]$, then for any $x \in[a, b]$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)<\infty$. With conventional definition of a sequence being convergent, we know $\left\{f_{n}\right\}$ are real-valued functions on $[a, b]$. Otherwise we need to assume that $\left\{f_{n}\right\}$ are real-valued functions on $[a, b]$ such that $V_{a}^{b} f_{n}$ are well-defined. Then we have for any partition of $[a, b]$ given by $a=x_{0}<x_{1}<\ldots<x_{m-1}<x_{m}=b$, we have

$$
\begin{aligned}
& f\left(x_{k}\right)-f\left(x_{k-1}\right)=\lim _{n \rightarrow \infty} f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right) \Longrightarrow f\left(x_{k}\right)-f\left(x_{k-1}\right)=\liminf _{n \rightarrow \infty} f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right) \\
& \Longrightarrow\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|=\liminf _{n \rightarrow \infty}\left|f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right)\right| \\
& \Longrightarrow \sum_{k=1}^{m}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|=\sum_{k=1}^{m} \liminf _{n \rightarrow \infty}\left|f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right)\right|
\end{aligned}
$$

By sum rule of limit, we have

$$
\sum_{k=1}^{m}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|=\liminf _{n \rightarrow \infty} \sum_{k=1}^{m}\left|f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right)\right| .
$$

By definition of total variation, we have $\sum_{k=1}^{m}\left|f_{n}\left(x_{k}\right)-f_{n}\left(x_{k-1}\right)\right| \leq V_{a}^{b} f_{n}$, as a result, we have

$$
\begin{equation*}
\sum_{k=1}^{m}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq \liminf _{n \rightarrow \infty} V_{a}^{b} f_{n} \tag{0.1}
\end{equation*}
$$

Since 0.1 holds for any partition on $[a, b]$, then it holds that

$$
V_{a}^{b} f=\sup \left\{\sum_{k=1}^{m}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|\right\} \leq \liminf _{n \rightarrow \infty} V_{a}^{b} f_{n}
$$

Question 6

Q: Give an example of a function f that is absolutely continuous on $[0,1]$ but is such that f^{\prime} is not Riemann integrable on $[0,1]$. That is, for such a function

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(x) d t
$$

does not hold when the integral is Riemann integral.
A: Define function $g:[0,1] \rightarrow\{0,1\}$ to be

$$
g(x)= \begin{cases}0, & x \in[0,1] \cap \mathbb{Q} \\ 1, & \text { o.w. }\end{cases}
$$

Then it can be shown that $g \in \mathscr{L}^{1}([0,1])$ since we have

$$
\int_{[0, x]} g(t) d t=\int_{[0, x] \backslash \mathbb{Q}} g(t) d t+\int_{[0, x] \cap \mathbb{Q}} g(t) d t=\int_{[0, x] \backslash \mathbb{Q}} g(t) d t+0=x ; \int_{\{0\}} g(t) d t=0
$$

holds for $x \in(0,1]$. Then we define $f:[0,1] \rightarrow \mathbb{R}$ as

$$
f(x)=\int_{[0, x]} g(t) d t
$$

Then by First fundamental theorem of calculus for Lebesgue integral, [3] Theorem 8.5, P. 289, it holds that $f^{\prime}=g \lambda$-a.e. on $[0,1]$ yet g is not Riemann integrable.

Question 7

Q: Let X be a discrete random variable on $(\Omega, \mathscr{A}, \mathbf{P})$ with probability mass function $p_{X}(x)=$ $\mathbf{P}(\{\omega: X=x\})$. Let μ be a counting measure on $(\mathbb{R}, \mathscr{B})$, that is $\mu(B)=|B|$ (cardinality) for $B \in \mathscr{B}$. Show that $\mu_{X} \ll \mu$ and that

$$
p_{X}=\frac{d \mu_{X}}{d \mu}
$$

A: Since X is a discrete random variable on $(\Omega, \mathscr{A}, \mathbf{P})$, then there is a countable set $K \in \mathscr{B}$ such that $\mathbf{P}(X \in K)=1$. For counting measure μ on $(\mathbb{R}, \mathscr{B})$, the only measure zero set is the empty set, namely $\mu(\varnothing)=0$. Since $\mu_{X}(\varnothing)=\mu_{X}\left(X \in \mathbb{R}^{c}\right)=0$, so we have $\mu_{X} \ll \mu$.
Introduce measure space ($K, \mathscr{B}_{\mid K}, \mu_{X \mid K}$) and ($K, \mathscr{B}_{\mid K}, \mu_{\mid K}$), then apparently we have $\mu_{X \mid K} \ll$ $\mu_{\mid K}$, and both are σ-finite since K is countable. Then by Radon-Nikodym theorem, there exists a nonnegative $\mathscr{B}_{\mid K}$-measurable extended real-valued function, denoted as $\frac{d \mu_{X \mid K}}{d \mu_{\mid K}}$ such that it holds

$$
\mu_{X \mid K}(B)=\int_{B} \frac{d \mu_{X \mid K}}{d \mu_{\mid K}} d \mu_{\mid K}
$$

Since K is countable, then $B \in \mathscr{B}_{\mid K}$ is countable, then we have by definition that

$$
\mu_{X \mid K}(B)=\mathbf{P}(X \in B)=\sum_{x_{i} \in B} p_{X}\left(x_{i}\right)=\sum_{x_{i} \in B} p_{X}\left(x_{i}\right)=\sum_{x_{i} \in B} p_{X}\left(x_{i}\right) \mu_{\mid K}\left(\left\{x_{i}\right\}\right)=\int_{B} p_{X}\left(x_{i}\right) \mu_{\mid K}
$$

Therefore, we have that

$$
p_{X}\left(x_{i}\right)=\frac{d \mu_{X \mid K}}{d \mu_{\mid K}} \mu_{\mid K}-\text { a.e.. }
$$

However, since $\mu_{\mid K}$ is the counting measure, we have it holds everywhere in ($K, \mathscr{B}_{\mid K}$). In fact, we can show the above result holds for measure space $(\mathbb{R}, \mathscr{B})$. That is $\forall A \in \mathscr{B}$, we have

$$
\mu_{X}(A)=\mu_{X}(A \cap K)+\mu_{X}(A \backslash K)=\mu_{X \mid K}(A \cap K)+0=\mu_{X \mid K}(A \cap K)
$$

and since $\mathbf{P}(X \notin K)=0$, then we have

$$
\mu_{X}(A \backslash K)=0=0 \int_{A \backslash K} d \mu=\int_{A \backslash K} p_{X}(x) d \mu
$$

References

[1] Elias M. Stein and Rami Shakarchi, Real analysis: Measure theory, integration, and Hilbert spaces, Princeton University Press, 2009.
[2] Terence Tao, Analysis I, Springer, 2006.
[3] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.
[4] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

