Probability and random variables and the law of large numbers

Yuchao Li

December 17, 2018

Question 1

Q: Define/explain the concepts: probability space, event, probability, and independence (pairwise and mutual).
A: Given a measurable space (Ω, \mathscr{A}), a probability space is a measure space $(\Omega, \mathscr{A}, \mathbf{P})$ where \mathbf{P} is a probability measure defined on the aforementioned measurable space such that $\mathbf{P}(\Omega)=1$. A event is any $A \in \mathscr{A}$. Probability of event A is given as $\mathbf{P}(A)$. For two events $E, F \in \mathscr{A}$, we say they are independent if $\mathbf{P}(E \cap F)=\mathbf{P}(E) \mathbf{P}(F)$. For a collection of events A_{1}, \ldots, A_{n}, they are pairwise independent if $\mathbf{P}\left(A_{i} \cap A_{j}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right)$ for $i \neq j$; they are mutually independent if for any $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$, it holds that $\mathbf{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=\mathbf{P}\left(A_{i_{1}}\right) \cdots \mathbf{P}\left(A_{i_{k}}\right)$.

Question 2

Q: Define/explain the concepts: random variable, distribution, probability distribution function, expectation.
A: Given probability space $(\Omega, \mathscr{A}, \mathbf{P})$, a random variable is a \mathscr{A}-function $X: \Omega \rightarrow \mathbf{R}$. A distribution μ_{X} is an induced probability measure on $(\mathbf{R}, \mathscr{B})$ by random variable X. A probability distribution function is $F_{X}: \mathbf{R} \rightarrow[0,1]$ that $F_{X}(x)=\mu_{X}((-\infty, x])$. The expectation of X defined on the aforementioned probability space is given by $E[X]=\int_{\Omega} X d \mathbf{P}$.

Question 3

Q: Prove the Borel-Cantelli lemma.

A: Given a probability space $(\Omega, \mathscr{A}, \mathbf{P})$ and a sequence of events $\left\{A_{n}\right\}_{n=1}^{\infty}$, we denote $F_{n}=$ $\cup_{k=n}^{\infty} A_{k}$ where $F_{n} \downarrow$ and $E=\left\{A_{n}\right.$ i.o. $\}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}=\cap_{n=1}^{\infty} F_{n}$.

1. Since $F_{n} \downarrow$, we have

$$
\begin{equation*}
\mathbf{P}(E)=\mathbf{P}\left(\cap_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} \mathbf{P}\left(F_{n}\right)=\lim _{n \rightarrow \infty} \mathbf{P}\left(\cup_{k=n}^{\infty} A_{k}\right) \tag{0.1}
\end{equation*}
$$

Due to subadditivity of probability measure, we have

$$
\begin{equation*}
\mathbf{P}\left(\cup_{k=n}^{\infty} A_{k}\right) \leq \sum_{k=n}^{\infty} \mathbf{P}\left(A_{k}\right) \tag{0.2}
\end{equation*}
$$

Since $\sum_{k=1}^{\infty} \mathbf{P}\left(A_{k}\right)<\infty$, then if we denote $S_{n}=\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)$, which is the partial sum, then we know that $\lim _{n \rightarrow \infty} S_{n}=\sum_{k=1}^{\infty} \mathbf{P}\left(A_{k}\right)<\infty$, namely $\left\{S_{n}\right\}_{n=1}^{\infty}$ is convergent and consequently, Cauchy. As a result, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} \mathbf{P}\left(A_{k}\right)=0 \tag{0.3}
\end{equation*}
$$

which concludes the proof of this direction.
2. If $\left\{A_{n}\right\}_{n=1}^{\infty}$ are mutually independent, then we have

$$
\begin{equation*}
\mathbf{P}\left(\cap_{k=n}^{\infty} A_{k}^{c}\right)=\prod_{k=n}^{\infty} \mathbf{P}\left(A_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-\mathbf{P}\left(A_{k}\right)\right) \tag{0.4}
\end{equation*}
$$

Since $1-x \leq e^{-x}$, then we have

$$
\begin{equation*}
\prod_{k=n}^{\infty}\left(1-\mathbf{P}\left(A_{k}\right)\right) \leq \exp \left(-\sum_{k=n}^{\infty} \mathbf{P}\left(A_{k}\right)\right) \tag{0.5}
\end{equation*}
$$

Since $\sum_{k=1}^{\infty} \mathbf{P}\left(A_{k}\right)=\infty$, then we have $\sum_{k=n}^{\infty} \mathbf{P}\left(A_{k}\right)=\infty \forall n \in \mathbf{R}$. Therefore, by Eq. (0.4), we have

$$
\mathbf{P}\left(\cap_{k=n}^{\infty} A_{k}^{c}\right)=0 \forall n \in \mathbf{R} \Longrightarrow \mathbf{P}\left(\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}\right)=0
$$

By De Morgan's rules, we have

$$
\begin{equation*}
\mathbf{P}\left(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}\right)=1-\mathbf{P}\left(\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}\right)=1 \tag{0.6}
\end{equation*}
$$

Question 4

Q: Given (Ω, \mathscr{A}, P) and a sequence of random variables $\left\{X_{n}\right\}$, show that

$$
\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}=\cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \cap_{k=1}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X_{n+k}(\omega)\right|<\frac{1}{m}\right\}
$$

A: Denote a real sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n} \in \mathbf{R}$. Since the real line \mathbf{R} is complete, then we have that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent iff $\forall \varepsilon>0, \exists N_{\varepsilon}$ such that $\left|a_{i}-a_{j}\right|<\varepsilon$ holds $\forall i, j \geq N_{\varepsilon}$ (statement 1). Besides $\forall \varepsilon>0, \exists m_{\varepsilon} \in \mathbf{N}_{+}$such that $\varepsilon>\frac{1}{m_{\varepsilon}}$ and $\forall m \in \mathbf{N}_{+}, \exists \varepsilon_{m}>0$ such that
$\frac{1}{m}>\varepsilon_{m}$. Then we can see that for a real sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, statement 1 holds iff $\forall m \in \mathbf{N}_{+}$, $\exists N_{m}$ such that $\left|a_{i}-a_{j}\right|<\frac{1}{m}$ holds $\forall i, j \geq N_{m}$ (statement 2). Due to the triangle inequality, that is $\left|a_{i}-a_{j}\right| \leq\left|a_{i}-a_{l}\right|+\left|a_{l}-a_{j}\right|$, then we have statement 2 holds iff $\forall m \in \mathbf{N}_{+}, \exists n_{m}$ such that $\left|a_{n_{m}}-a_{n_{m}+k}\right|<\frac{1}{m}$ holds $\forall k \in \mathbf{N}_{+}$(statement 3). This is due to that statement 2 obviously implies statement 3 ; and if statement 3 holds, then $\forall m \in \mathbf{N}_{+}, \exists n_{2 m}$ such that $\left|a_{n_{2 m}}-a_{n_{2 m}+k}\right|<\frac{1}{2 m}$, which means $\forall i, j \geq n_{2 m}+1,\left|a_{i}-a_{j}\right| \leq\left|a_{n_{2 m}}-a_{i}\right|+\left|a_{n_{2 m}}-a_{j}\right|<\frac{1}{m}$
Then we proceed to prove the set equality, which is given as

$$
\begin{aligned}
\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\} & =\left\{\omega: \forall m \in \mathbf{N}_{+}, \exists n_{m} \text { such that }\left|X_{n_{m}}(\omega)-X_{n_{m}+k}(\omega)\right|<\frac{1}{m} \forall k \in \mathbf{N}_{+}\right\} \\
& =\cap_{m=1}^{\infty}\left\{\omega: \exists n_{m} \text { such that }\left|X_{n_{m}}(\omega)-X_{n_{m}+k}(\omega)\right|<\frac{1}{m} \forall k \in \mathbf{N}_{+}\right\} \\
& =\cap_{m=1}^{\infty} \cup_{n=1}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X_{n+k}(\omega)\right|<\frac{1}{m} \forall k \in \mathbf{N}_{+}\right\} \\
& =\cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \cap_{k=1}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X_{n+k}(\omega)\right|<\frac{1}{m}\right\} .
\end{aligned}
$$

For a similar result, please refer to P. 180, sidenote regarding Eq. (6.27) in [1].

QUESTION 5

Q: For mutually independent random variables $\left\{X_{n}\right\}$ with $E\left[X_{n}\right]=0$ and $\sum_{n} \operatorname{Var}\left[X_{n}\right]<\infty$ use the result in preceeding result and Kolmogorov's inequality (without proof) to show that $\sum_{n} X_{n}$ converges with probability one.
A: Given mutually independent random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ with $E\left[X_{i}\right]=0, \sum_{n} \operatorname{Var}\left[X_{n}\right]<\infty$, we denote $S_{n}=\sum_{i=1}^{n} X_{i}$. Then we have $\forall n, m \in \mathbf{N}_{+}$, it holds that

$$
\begin{aligned}
\mathbf{P}\left(\cup_{k=1}^{\infty}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) & =\lim _{l \rightarrow \infty} \mathbf{P}\left(\cup_{k=1}^{l}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) \\
& =\lim _{l \rightarrow \infty} \mathbf{P}\left(\left\{\max _{1 \leq k \leq l}\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) .
\end{aligned}
$$

Denote $T_{n, k}=\sum_{j=1}^{k} X_{n+j}=S_{n+k}-S_{n}$, then we have $E\left[T_{n, k}\right]=0$. By Kolmogorov inequality and $X_{n}{ }_{n=1}^{\infty}$ iid, we have

$$
\begin{aligned}
\mathbf{P}\left(\left\{\max _{1 \leq k \leq l}\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) & =\mathbf{P}\left(\left\{\max _{1 \leq k \leq l}\left|T_{n, k}-E\left[T_{n, k}\right]\right| \geq \frac{1}{m}\right\}\right) \\
& \leq m^{2} \operatorname{Var}\left[T_{n, l}\right] \\
& =m^{2} \sum_{k=1}^{l} \operatorname{Var}\left[X_{n+k}\right] .
\end{aligned}
$$

Then we have

$$
\begin{gathered}
\lim _{l \rightarrow \infty} \mathbf{P}\left(\left\{\max _{1 \leq k \leq l}\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) \leq \lim _{l \rightarrow \infty} m^{2} \sum_{k=1}^{l} \operatorname{Var}\left[X_{n+k}\right] \Longrightarrow \\
\mathbf{P}\left(\cup_{k=1}^{\infty}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) \leq m^{2} \sum_{k=1}^{\infty} \operatorname{Var}\left[X_{n+k}\right] .
\end{gathered}
$$

Since $\sum_{n} \operatorname{Var}\left[X_{n}\right]<\infty$, then we have

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\cup_{k=1}^{\infty}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{m}\right\}\right) \leq \lim _{n \rightarrow \infty} m^{2} \sum_{k=1}^{\infty} \operatorname{Var}\left[X_{n+k}\right]=0 \forall m \in \mathbf{N}_{+} .
$$

Denote $F=\cup_{m=1}^{\infty} \cap_{n=1}^{\infty} \cup_{k=1}^{\infty}\left\{\omega:\left|S_{n}(\omega)-S_{n+k}(\omega)\right| \geq \frac{1}{m}\right\}$, then we have

$$
\begin{aligned}
\mathbf{P}\left(\cap_{n=1}^{\infty} \cup_{k=1}^{\infty}\left\{\omega:\left|S_{n}(\omega)-S_{n+k}(\omega)\right| \geq \frac{1}{m}\right\}\right) & =\mathbf{P}\left(\cap_{n=1}^{\infty} \cap_{l=1}^{n} \cup_{k=1}^{\infty}\left\{\omega:\left|S_{l}(\omega)-S_{l+k}(\omega)\right| \geq \frac{1}{m}\right\}\right) \\
& =\lim _{n \rightarrow \infty} \mathbf{P}\left(\cap_{l=1}^{n} \cup_{k=1}^{\infty}\left\{\omega:\left|S_{l}(\omega)-S_{l+k}(\omega)\right| \geq \frac{1}{m}\right\}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathbf{P}\left(\cup_{k=1}^{\infty}\left\{\omega:\left|S_{n}(\omega)-S_{n+k}(\omega)\right| \geq \frac{1}{m}\right\}\right) \\
& =0 \forall m \in \mathbf{N}_{+} .
\end{aligned}
$$

Due to subadditivity of probability measure, we have

$$
\mathbf{P}(F) \leq \sum_{m=1}^{\infty} \mathbf{P}\left(\cap_{n=1}^{\infty} \cup_{k=1}^{\infty}\left\{\omega:\left|S_{n}(\omega)-S_{n+k}(\omega)\right| \geq \frac{1}{m}\right\}\right)=0 .
$$

Therefore, we have $\mathbf{P}\left(F^{c}\right)=1$, which concludes the proof.

Question 6

Q: Given an iid sequence of zero-mean random variables $\left\{X_{n}\right\}$, let $Y_{n}=X_{n} X_{\left\{\left|X_{n}\right|<n\right\}}$, show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \operatorname{Var}\left[Y_{n}\right]<\infty
$$

A: The proof here follows the approach given in P. 264 [2]. Since X_{i} is iid zero mean random variables, and $Y_{n}=X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}} \forall n$, then we have $E\left[Y_{n}\right]=E\left[X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}\right]=E\left[X_{1} \chi_{\left\{\left|X_{1}\right|<n\right\}}\right]$. Then we have $\lim _{n \rightarrow \infty} E\left[Y_{n}\right]=E\left[X_{1}\right]=0$ due to DCT. Refer to the aforementioned source for
details. Then we have

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \operatorname{Var}\left[Y_{n}\right] & =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\Omega}\left(X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}-E\left[X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}\right]\right)^{2} d \mathbf{P} \tag{0.7}\\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\Omega}\left(X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}\right)^{2} d \mathbf{P} \tag{0.8}\\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\Omega}\left(X_{1} \chi_{\left\{\left|X_{1}\right|<n\right\}}\right)^{2} d \mathbf{P} \tag{0.9}\\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\left\{\left|X_{1}\right|<n\right\}} X_{1}^{2} d \mathbf{P} \tag{0.10}\\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{m=1}^{n} \int_{\left\{m-1 \leq\left|X_{1}\right|<m\right\}} X_{1}^{2} d \mathbf{P} \tag{0.11}\\
& =\sum_{m=1}^{\infty} \int_{\left\{m-1 \leq\left|X_{1}\right|<m\right\}} X_{1}^{2} d \mathbf{P} \sum_{n=m}^{\infty} \frac{1}{n^{2}} \tag{0.12}\\
& \leq \sum_{m=1}^{\infty} m \int_{\left\{m-1 \leq\left|X_{1}\right|<m\right\}}\left|X_{1}\right| d \mathbf{P} \sum_{n=m}^{\infty} \frac{1}{n^{2}} \tag{0.13}\\
& \leq \sum_{m=1}^{\infty} m \int_{\left\{m-1 \leq\left|X_{1}\right|<m\right\}}\left|X_{1}\right| d \mathbf{P} \frac{2}{m} \tag{0.14}\\
& =2 \sum_{m=1}^{\infty} \int_{\left\{m-1 \leq\left|X_{1}\right|<m\right\}}\left|X_{1}\right| d \mathbf{P} \tag{0.15}\\
& =2 E\left[\left|X_{1}\right|\right]<\infty, \tag{0.16}
\end{align*}
$$

where in step (0.12), the summation is interchanged. The reason that the interchange is valid is due to the Tonelli's theorem. More precisely, if we denote $\left\{c_{n}\right\}_{n=1}^{\infty}$ where $c_{n}=\frac{1}{n^{2}}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ where $d_{n}=\int_{\left\{n-1 \leq\left|X_{1}\right|<n\right\}} X_{1}^{2} d \mathbf{P}$. Then we have $\forall n, 0 \leq c_{n}<\infty$ and $0 \leq d_{n}=$ $\int_{\left\{n-1 \leq\left|X_{1}\right|<n\right\}} X_{1}^{2} d \mathbf{P} \leq n \int_{\left\{n-1 \leq\left|X_{1}\right|<n\right\}}\left|X_{1}\right| d \mathbf{P}<\infty$ since $E\left[\left|X_{1}\right|\right]<\infty$. Then we define function $\mu: \mathbf{N}_{+} \times \mathbf{N}_{+} \rightarrow\{0,1\}$ as

$$
\mu(n, m)= \begin{cases}1, & m \leq n \\ 0, & \text { o.w. }\end{cases}
$$

Then we define $a_{m n}=c_{n} d_{m} \mu(n, m)$ which is nonnegative $\forall m, n$. Then we apply the technique used in P. 215, Example 6.12 b), Eq. (6.29), [2], by doing so we prove that the interchange of summation is valid. Regarding step (0.14), we apply that $\sum_{n=m}^{\infty} \frac{1}{n^{2}} \leq \frac{2}{m}$. This is because for $m \geq 2$, we have

$$
\begin{equation*}
\sum_{n=m}^{\infty} \frac{1}{n^{2}}<\sum_{n=m}^{\infty} \frac{1}{(n-1) n}=\frac{1}{m-1} \leq \frac{2}{m} \forall m \in \mathbf{N}_{+} \tag{0.17}
\end{equation*}
$$

In fact, the above inequality also holds when $m=1$.

Question 7

Q: Using above results and prove the (strong) law of large numbers.

A: First we prove a Lemma, that is given sequence $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$ and $\exists N<\infty$ such that $a_{n}=b_{n} \forall n>N$, and we assume that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{n}$ exists, then we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} b_{k}
$$

To prove it, we need another theorem, which states for any convergent sequence $\left\{c_{n}\right\}$, we introduce a new sequence $\left\{d_{n}\right\}$, which is given simply by removing finite number of elements of $\left\{c_{n}\right\}$, then $\left\{d_{n}\right\}$ is also convergent and converges to the same limit. With this theorem, we denote $c_{n}=\frac{1}{n+N} \sum_{k=1}^{n+N} a_{k}$. Then we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \frac{1}{n+N}\left(\sum_{k=1}^{N} a_{k}+\sum_{k=N+1}^{n+N} a_{k}\right)=0+\lim _{n \rightarrow \infty} \frac{1}{n+N} \sum_{k=N+1}^{n+N} a_{k} .
$$

Replace the 0 with $\lim _{n \rightarrow \infty} \frac{1}{n+N} \sum_{k=1}^{N} b_{k}$, we obtain a truncated sequence of b_{n}, which has the same limit as $\left\{b_{n}\right\}$. Therefore, the proof is done.
Due to $\left\{X_{i}\right\}_{i=1}^{\infty}$ as iid, we first apply Lemma 7.4, P. 263, [2], which gives that

$$
\sum_{n=1}^{\infty} \mathbf{P}\left(\left|X_{n}\right| \geq n\right)=\sum_{n=1}^{\infty} \mathbf{P}\left(\left|X_{1}\right| \geq n\right)<\infty
$$

Then denote $E=\left\{\left|X_{k}\right| \geq k\right.$ i.o. $\}$. Due to Borel-Cantelli, we have $\mathbf{P}(E)=0$. Therefore, we can foucs on E^{c}. Denote $Y_{n}=X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}$, then it can be shown that $\lim _{n \rightarrow \infty} E\left[Y_{n}\right]=E\left[X_{1}\right]=0$ following the arguments given on top of P. 264, [2]. Besdies, it also can be shown that $\forall \omega \in E^{c}$, $\exists N$ such that $Y_{n}=X_{n} \forall n>N$. Then due to the lemma above, we know $\forall \omega \in E^{c}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=0 \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} Y_{k}=0 .
$$

Denote $Z_{n}=n^{-1} Y_{n}$, then by Question 6, we know $\sum_{n=1}^{\infty} \operatorname{Var}\left[Z_{n}\right]<\infty$, then due to Question 5, we know that $\left\{\sum_{k=1}^{n}\left(Z_{k}-E\left[Z_{k}\right]\right)\right\}_{n=1}^{\infty}$ converges a.s.. Denote the domain that the aforementioned sequence converges as F^{c}. Then we have $\mathbf{P}(F)=0$. Recall that $\mathbf{P}(E)=0$, due that subadditivity of probability measure, we have

$$
\mathbf{P}\left(E^{c} \cap F^{c}\right)=1-\mathbf{P}\left((E \cup F)^{c}\right) \geq 1-\mathbf{P}(E)-\mathbf{P}(F)=1 .
$$

Therefore, we have $\mathbf{P}\left(E^{c} \cap F^{c}\right)=1$. By Kronecker's lemma, Lemma 7.3, P. 259, [2], we have that $\forall \omega \in E^{c} \cap F^{c}$, it holds that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(Y_{k}-E\left[Y_{k}\right]\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} k\left(Z_{k}-E\left[Z_{k}\right]\right)=0
$$

Due to the Question 1.4, Homework 1, since $\lim _{n \rightarrow \infty} E\left[Y_{n}\right]=E\left[X_{1}\right]=0$, we have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} E\left[Y_{k}\right]=\lim _{n \rightarrow \infty} E\left[Y_{n}\right]=0
$$

As a result, we have that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} Y_{k}=0$ holds $\forall \omega \in E^{c} \cap F^{c}$, where $\mathbf{P}\left(E^{c} \cap F^{c}\right)=1$, which concludes the proof.

References

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.
[2] John McDonald and Neil A. Weiss, A course in real analysis, 2nd Edition, 2012.

