
KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Probability and random variables and
the law of large numbers

Yuchao Li

December 17, 2018

QUESTION 1

Q: Define/explain the concepts: probability space, event, probability, and independence
(pairwise and mutual).
A: Given a measurable space (Ω,A ), a probability space is a measure space (Ω,A ,P) where P
is a probability measure defined on the aforementioned measurable space such that P(Ω) = 1.
A event is any A ∈A . Probability of event A is given as P(A). For two events E , F ∈A , we say
they are independent if P(E ∩F ) = P(E)P(F ). For a collection of events A1, ..., An , they are
pairwise independent if P(Ai ∩ A j ) = P(Ai )P(A j ) for i 6= j ; they are mutually independent if
for any {i1, ..., ik } ⊂ {1, ..., n}, it holds that P(Ai1 ∩·· ·∩ Aik ) = P(Ai1 ) · · ·P(Aik ).

QUESTION 2

Q: Define/explain the concepts: random variable, distribution, probability distribution func-
tion, expectation.
A: Given probability space (Ω,A ,P), a random variable is a A -function X :Ω→ R. A distri-
bution µX is an induced probability measure on (R,B) by random variable X . A probability
distribution function is FX : R → [0, 1] that FX (x) =µX ((−∞, x]). The expectation of X defined
on the aforementioned probability space is given by E [X ] = ∫

Ω X dP.

QUESTION 3

Q: Prove the Borel–Cantelli lemma.
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A: Given a probability space (Ω,A ,P) and a sequence of events {An}∞n=1, we denote Fn =
∪∞

k=n Ak where Fn ↓ and E = {An i.o.} =∩∞
n=1 ∪∞

k=n Ak =∩∞
n=1Fn .

1. Since Fn ↓, we have

P(E) = P(∩∞
n=1Fn) = lim

n→∞P(Fn) = lim
n→∞P(∪∞

k=n Ak ). (0.1)

Due to subadditivity of probability measure, we have

P(∪∞
k=n Ak ) ≤

∞∑
k=n

P(Ak ). (0.2)

Since
∑∞

k=1 P(Ak ) < ∞, then if we denote Sn = ∑n
k=1 P(Ak ), which is the partial sum,

then we know that limn→∞ Sn = ∑∞
k=1 P(Ak ) < ∞, namely {Sn}∞n=1 is convergent and

consequently, Cauchy. As a result, we have

lim
n→∞

∞∑
k=n

P(Ak ) = 0, (0.3)

which concludes the proof of this direction.

2. If {An}∞n=1 are mutually independent, then we have

P(∩∞
k=n Ac

k ) =
∞∏

k=n
P(Ac

k ) =
∞∏

k=n

(
1−P(Ak )

)
. (0.4)

Since 1−x ≤ e−x , then we have

∞∏
k=n

(
1−P(Ak )

)≤ exp
(− ∞∑

k=n
P(Ak )

)
. (0.5)

Since
∑∞

k=1 P(Ak ) =∞, then we have
∑∞

k=n P(Ak ) =∞ ∀n ∈ R. Therefore, by Eq. (0.4),
we have

P(∩∞
k=n Ac

k ) = 0∀n ∈ R =⇒ P(∪∞
n=1 ∩∞

k=n Ac
k ) = 0.

By De Morgan’s rules, we have

P(∩∞
n=1 ∪∞

k=n Ak ) = 1−P(∪∞
n=1 ∩∞

k=n Ac
k ) = 1. (0.6)

QUESTION 4

Q: Given (Ω,A ,P ) and a sequence of random variables {Xn}, show that

{ω : lim
n→∞Xn(ω) = X (ω)} =∩∞

m=1 ∪∞
n=1 ∩∞

k=1{ω : |Xn(ω)−Xn+k (ω)| < 1

m
}.

A: Denote a real sequence {an}∞n=1 where an ∈ R. Since the real line R is complete, then
we have that {an}∞n=1 is convergent iff ∀ε > 0, ∃Nε such that |ai − a j | < ε holds ∀i , j ≥ Nε

(statement 1). Besides ∀ε > 0, ∃mε ∈ N+ such that ε > 1
mε

and ∀m ∈ N+, ∃εm > 0 such that

2



1
m > εm . Then we can see that for a real sequence {an}∞n=1, statement 1 holds iff ∀m ∈ N+,
∃Nm such that |ai − a j | < 1

m holds ∀i , j ≥ Nm (statement 2). Due to the triangle inequal-
ity, that is |ai − a j | ≤ |ai − al | + |al − a j |, then we have statement 2 holds iff ∀m ∈ N+, ∃nm

such that |anm − anm+k | < 1
m holds ∀k ∈ N+ (statement 3). This is due to that statement

2 obviously implies statement 3; and if statement 3 holds, then ∀m ∈ N+, ∃n2m such that
|an2m −an2m+k | < 1

2m , which means ∀i , j ≥ n2m +1, |ai −a j | ≤ |an2m −ai |+ |an2m −a j | < 1
m

Then we proceed to prove the set equality, which is given as

{ω : lim
n→∞Xn(ω) = X (ω)} = {ω : ∀m ∈ N+, ∃nm such that |Xnm (ω)−Xnm+k (ω)| < 1

m
∀k ∈ N+}

=∩∞
m=1{ω : ∃nm such that |Xnm (ω)−Xnm+k (ω)| < 1

m
∀k ∈ N+}

=∩∞
m=1 ∪∞

n=1 {ω : |Xn(ω)−Xn+k (ω)| < 1

m
∀k ∈ N+}

=∩∞
m=1 ∪∞

n=1 ∩∞
k=1{ω : |Xn(ω)−Xn+k (ω)| < 1

m
}.

For a similar result, please refer to P. 180, sidenote regarding Eq. (6.27) in [1].

QUESTION 5

Q: For mutually independent random variables {Xn} with E [Xn] = 0 and
∑

n Var[Xn] < ∞
use the result in preceeding result and Kolmogorov’s inequality (without proof) to show that∑

n Xn converges with probability one.
A: Given mutually independent random variables {Xn}∞n=1 with E [Xi ] = 0,

∑
n Var[Xn] <∞, we

denote Sn =∑n
i=1 Xi . Then we have ∀n, m ∈ N+, it holds that

P(∪∞
k=1{|Sn+k −Sn | ≥ 1

m
}) = lim

l→∞
P(∪l

k=1{|Sn+k −Sn | ≥ 1

m
})

= lim
l→∞

P({ max
1≤k≤l

|Sn+k −Sn | ≥ 1

m
}).

Denote Tn,k = ∑k
j=1 Xn+ j = Sn+k − Sn , then we have E [Tn,k ] = 0. By Kolmogorov inequality

and Xn
∞
n=1 iid, we have

P({ max
1≤k≤l

|Sn+k −Sn | ≥ 1

m
}) = P({ max

1≤k≤l
|Tn,k −E [Tn,k ]| ≥ 1

m
})

≤ m2Var[Tn,l ]

= m2
l∑

k=1
Var[Xn+k ].

Then we have

lim
l→∞

P({ max
1≤k≤l

|Sn+k −Sn | ≥ 1

m
}) ≤ lim

l→∞
m2

l∑
k=1

Var[Xn+k ] =⇒

P(∪∞
k=1{|Sn+k −Sn | ≥ 1

m
}) ≤ m2

∞∑
k=1

Var[Xn+k ].
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Since
∑

n Var[Xn] <∞, then we have

lim
n→∞P(∪∞

k=1{|Sn+k −Sn | ≥ 1

m
}) ≤ lim

n→∞m2
∞∑

k=1
Var[Xn+k ] = 0 ∀m ∈ N+.

Denote F =∪∞
m=1 ∩∞

n=1 ∪∞
k=1{ω : |Sn(ω)−Sn+k (ω)| ≥ 1

m }, then we have

P(∩∞
n=1 ∪∞

k=1 {ω : |Sn(ω)−Sn+k (ω)| ≥ 1

m
}) = P(∩∞

n=1 ∩n
l=1 ∪∞

k=1{ω : |Sl (ω)−Sl+k (ω)| ≥ 1

m
})

= lim
n→∞P(∩n

l=1 ∪∞
k=1 {ω : |Sl (ω)−Sl+k (ω)| ≥ 1

m
})

≤ lim
n→∞P(∪∞

k=1{ω : |Sn(ω)−Sn+k (ω)| ≥ 1

m
})

= 0 ∀m ∈ N+.

Due to subadditivity of probability measure, we have

P(F ) ≤
∞∑

m=1
P(∩∞

n=1 ∪∞
k=1 {ω : |Sn(ω)−Sn+k (ω)| ≥ 1

m
}) = 0.

Therefore, we have P(F c ) = 1, which concludes the proof.

QUESTION 6

Q: Given an iid sequence of zero-mean random variables {Xn}, let Yn = Xnχ{|Xn |<n}, show that

∞∑
n=1

1

n2 Var[Yn] <∞.

A: The proof here follows the approach given in P. 264 [2]. Since Xi is iid zero mean ran-
dom variables, and Yn = Xnχ{|Xn |<n} ∀n, then we have E [Yn] = E [Xnχ{|Xn |<n}] = E [X1χ{|X1|<n}].
Then we have limn→∞ E [Yn] = E [X1] = 0 due to DCT. Refer to the aforementioned source for
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details. Then we have

∞∑
n=1

1

n2 Var[Yn] =
∞∑

n=1

1

n2

∫
Ω

(Xnχ{|Xn |<n} −E [Xnχ{|Xn |<n}])
2dP (0.7)

≤
∞∑

n=1

1

n2

∫
Ω

(Xnχ{|Xn |<n})
2dP (0.8)

=
∞∑

n=1

1

n2

∫
Ω

(X1χ{|X1|<n})
2dP (0.9)

=
∞∑

n=1

1

n2

∫
{|X1|<n}

X 2
1 dP (0.10)

=
∞∑

n=1

1

n2

n∑
m=1

∫
{m−1≤|X1|<m}

X 2
1 dP (0.11)

=
∞∑

m=1

∫
{m−1≤|X1|<m}

X 2
1 dP

∞∑
n=m

1

n2 (0.12)

≤
∞∑

m=1
m

∫
{m−1≤|X1|<m}

|X1|dP
∞∑

n=m

1

n2 (0.13)

≤
∞∑

m=1
m

∫
{m−1≤|X1|<m}

|X1|dP
2

m
(0.14)

= 2
∞∑

m=1

∫
{m−1≤|X1|<m}

|X1|dP (0.15)

= 2E [|X1|] <∞, (0.16)

where in step (0.12), the summation is interchanged. The reason that the interchange is
valid is due to the Tonelli’s theorem. More precisely, if we denote {cn}∞n=1 where cn = 1

n2

and {dn}∞n=1 where dn = ∫
{n−1≤|X1|<n} X 2

1 dP. Then we have ∀n, 0 ≤ cn < ∞ and 0 ≤ dn =∫
{n−1≤|X1|<n} X 2

1 dP ≤ n
∫

{n−1≤|X1|<n} |X1|dP < ∞ since E [|X1|] < ∞. Then we define function
µ : N+×N+ → {0,1} as

µ(n,m) =
{

1, m ≤ n,

0, o.w..

Then we define amn = cndmµ(n,m) which is nonnegative ∀m,n. Then we apply the tech-
nique used in P. 215, Example 6.12 b), Eq. (6.29), [2], by doing so we prove that the interchange
of summation is valid. Regarding step (0.14), we apply that

∑∞
n=m

1
n2 ≤ 2

m . This is because for
m ≥ 2, we have ∞∑

n=m

1

n2 <
∞∑

n=m

1

(n −1)n
= 1

m −1
≤ 2

m
∀m ∈ N+. (0.17)

In fact, the above inequality also holds when m = 1.

QUESTION 7

Q: Using above results and prove the (strong) law of large numbers.
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A: First we prove a Lemma, that is given sequence {an}∞n=1, {bn}∞n=1 and ∃N < ∞ such that
an = bn ∀n > N , and we assume that limn→∞ 1

n

∑n
k=1 an exists, then we have

lim
n→∞

1

n

n∑
k=1

ak = lim
n→∞

1

n

n∑
k=1

bk .

To prove it, we need another theorem, which states for any convergent sequence {cn}, we
introduce a new sequence {dn}, which is given simply by removing finite number of elements
of {cn}, then {dn} is also convergent and converges to the same limit. With this theorem, we
denote cn = 1

n+N

∑n+N
k=1 ak . Then we have

lim
n→∞

1

n

n∑
k=1

ak = lim
n→∞cn = lim

n→∞
1

n +N
(

N∑
k=1

ak +
n+N∑

k=N+1
ak ) = 0+ lim

n→∞
1

n +N

n+N∑
k=N+1

ak .

Replace the 0 with limn→∞ 1
n+N

∑N
k=1 bk , we obtain a truncated sequence of bn , which has the

same limit as {bn}. Therefore, the proof is done.
Due to {Xi }∞i=1 as iid, we first apply Lemma 7.4, P. 263, [2], which gives that

∞∑
n=1

P(|Xn | ≥ n) =
∞∑

n=1
P(|X1| ≥ n) <∞.

Then denote E = {|Xk | ≥ k i.o.}. Due to Borel-Cantelli, we have P(E) = 0. Therefore, we can
foucs on E c . Denote Yn = Xnχ{|Xn |<n}, then it can be shown that limn→∞ E [Yn] = E [X1] = 0
following the arguments given on top of P. 264, [2]. Besdies, it also can be shown that ∀ω ∈ E c ,
∃N such that Yn = Xn ∀n > N . Then due to the lemma above, we know ∀ω ∈ E c ,

lim
n→∞

1

n

n∑
k=1

Xk = 0 ⇐⇒ lim
n→∞

1

n

n∑
k=1

Yk = 0.

Denote Zn = n−1Yn , then by Question 6, we know
∑∞

n=1 Var[Zn] <∞, then due to Question 5,
we know that {

∑n
k=1(Zk −E [Zk ])}∞n=1 converges a.s.. Denote the domain that the aforemen-

tioned sequence converges as F c . Then we have P(F ) = 0. Recall that P(E) = 0, due that
subadditivity of probability measure, we have

P(E c ∩F c ) = 1−P
(
(E ∪F )c)≥ 1−P(E)−P(F ) = 1.

Therefore, we have P(E c ∩F c ) = 1. By Kronecker’s lemma, Lemma 7.3, P. 259, [2], we have that
∀ω ∈ E c ∩F c , it holds that

lim
n→∞

n∑
k=1

(Yk −E [Yk ]) = lim
n→∞

n∑
k=1

k(Zk −E [Zk ]) = 0.

Due to the Question 1.4, Homework 1, since limn→∞ E [Yn] = E [X1] = 0, we have

lim
n→∞

n∑
k=1

E [Yk ] = lim
n→∞E [Yn] = 0.

As a result, we have that limn→∞
∑n

k=1 Yk = 0 holds ∀ω ∈ E c ∩F c , where P(E c ∩F c ) = 1, which
concludes the proof.
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