KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

General measure theory

Yuchao Li

November 29, 2018

QUESTION 1

 \mathbf{Q} : Define/motivate the concepts σ -algebra, measure, measure space, measurable space and measurable set.

A: Given universal set Ω , a σ -algebra \mathscr{F} of Ω is a set of subsets of Ω such that 1) $\Omega \in \mathscr{F}$; 2) For $A \in \Omega$, $A \in \mathscr{F} \implies A^c \in \mathscr{F}$; 3) For $\{A_i\}_{i=1}^{\infty}$, $A_i \in \Omega \forall i \implies \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$. Measure is given as μ , measure space given as $(\Omega, \mathscr{F}, \mu)$. Measurable space given as (Ω, \mathscr{F}) . Measurable set is $A \subset \Omega$ such that $A \in \mathscr{F}$.

QUESTION 2

Q: On the real line, define/motivate Borel measurable set and Borel measurable function. Discuss the relation between Borel measurable and continuous functions.

A: Denote \mathcal{O} as the set of open sets of some universal set. Then we have $\mathcal{B} = \sigma(\mathcal{O})$. $B \in \mathcal{B}$ is called Borel-measurable. For $f : \mathcal{U} \to \mathcal{V}$, it is Borel-measurable if $f^{-1}(O)$ is Borel measurable interms of the Borel σ algebra of \mathcal{U} .

QUESTION 3

Q: Define and discuss the concepts almost everywhere (a.e.), convergence a.e., and convergence in measure. For a finite measure, prove that convergence a.e. implies convergence in measure. Describe a counterexample showing that the reverse statement does not hold in general.

A: First of all, for measure space $(\Omega, \mathscr{F}, \mu)$ where $\mu(\Omega) < \infty$, and $A_n \downarrow A$, we have

$$\lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{n=1}^{\infty} A_n).$$
(0.1)

Refer to [1] Theorem 1.4.9 to check how the finiteness of the measure play a role. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence a measurable function defined on the measure space and converge almost everywhere (a.e.), then we have $\mu(\lim_{n\to\infty} f_n = f) = \mu(\Omega)$. Suppose $\{f_n\}$ does not converge in measure to f, that is, $\exists \varepsilon$, $\exists \delta$ and $\exists \{f_{n_k}\}_{k=1}^{\infty}$, such that $\mu(|f_{n_k} - f| \ge \varepsilon) > \delta$ holds $\forall k$. However, if we denote $B_k = \{|f_{n_k} - f| \ge \varepsilon\}$, then due to finiteness of measure, we have

$$\mu(\limsup_{k \to \infty} B_k) = \mu(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} B_k) = \lim_{m \to \infty} \mu(\bigcup_{k=m}^{\infty} B_k) \ge \delta.$$
(0.2)

That is, there exists a sub-sequence of $\{f_n\}_{n=1}^{\infty}$ that does not converge to f a.e., which contradicts the assumption.

QUESTION 4

Q: Given a measure space $(\Omega, \mathcal{A}, \mu)$, let $\{E_n\}$ be an infinite sequence of \mathcal{A} -measurable sets, with $\mu(\cup_n E_n) < \infty$. Prove that

$$\mu(\bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} E_k) \le \liminf_{n \to \infty} \mu(E_n) \le \limsup_{n \to \infty} \mu(E_n) \le \mu(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_k).$$

A: We only prove the last inequality. Given $(\Omega, \mathscr{A}, \mu)$, and $\mu(\Omega) < \infty$. Suppose $\{E_n\}_{n=1}^{\infty}$ is a sequence of \mathscr{A} -measurable sets. Denote $F_n = \bigcup_{k=n} E_k$, then $F_n \downarrow F$ where $F = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. Due to finiteness of measure μ , we have

$$\mu(F) = \mu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k) = \lim_{n \to \infty} \mu(\bigcup_{k=n}^{\infty} E_k)$$
(0.3)

and we know that $\mu(\bigcup_{k=n}^{\infty} E_k) \downarrow$ as $n \uparrow$. As a result, we have

$$\sup_{m \ge n} \mu(\cup_{k=m}^{\infty} E_k) = \mu(\cup_{k=n}^{\infty} E_k).$$

$$(0.4)$$

Since $\mu(E_m) \le \mu(\bigcup_{k=m}^{\infty} E_k)$, take supreme on both sides, we have

$$\sup_{m\geq n}\mu(E_m)\leq \sup_{m\geq n}\mu(\cup_{k=m}^{\infty}E_k)=\mu(\cup_{k=n}^{\infty}E_k).$$

Take limits on both sides, we have

$$\limsup_{n \to \infty} \mu(E_n) \le \lim_{n \to \infty} \mu(\bigcup_{k=n}^{\infty} E_k) = \mu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k).$$

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.