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QUESTION 1

Q: Define ‘simple function’ and prove that if f is a nonnegative Lebesgue measurable func-
tion, then there is a nondecreasing sequence of simple nonnegative functions that converges
pointwise to f. Also prove the converse, i.e., that the pointwise limit of a sequence of simple
nonnegative functions is Lebesgue measurable.

A:

1. f:R—Rissimpleif f is Lebesgue measurable and f(x) = }_;c s y 4, (%) fi where {A;};c.s
is a partition of R and |.#| < co.

2. For nonnegative Lebesgue measurable function f: R — Ry U {0}, we define

kel k-l <k k=1,2,.., n2",
fn(X)={ 7 =@ < " 0.1)

n, X=n.

It can be shown that f;, is simple, that is all f~!(E,, ;) is Lebesgue measurable where
E,k= [%,2%) for k =1,2,.., n2" and Ej, pon41 = [Ep i = [n,00), and increasing. Be-
sides, they are also point-wise converge to f.

3. Conversely, if { f; (x)}72, are a sequence of simple function and pointwise converge to f,
then we define g;(x) = inf;;>; fin(x). We know that if a sequence of increasing simple
function pointwise converge to a function f, then f is Lebesgue measurable. In this
case, we know lim g;(x) = lim f;(x) Vx, then then lim g;(x) = f(x). As a result, f(x) is
Lebesgue measurable.



QUESTION 2

Q: Define the Lebesgue integral of a nonnegative Lebesgue measurable function. Use the
result in previous problem to illustrate graphically how the value of the integral is obtained
as a nondecreasing sequence of approximations to the final value (the limit).

A: First, we need to define Lebesgue integral for simple function, namely for simple function
F(x) =X ies x4, (x)fi, its integral is given as

far=">y fiMA). 0.2)
ied
Then for nonsimple Lebesgue measurable function, their integral is given as the limit of se-
quence of integrals of simple functions given in Eq. (0.1), namely

f fdA= lim f fodA 0.3)

where the right-hand side is always well-defined and increasing.

QUESTION 3

Q: Prove the MCT.

A: Since f; measurable and lim;_.., f;(x) = f(x) pointwise, so we have f(x) measurable. De-
note K = [ fdA. Since { fi}32, is increasing, by monotonicity preserved by integral (refer to
[Hand Note 11] in SF2940 for details), we have {[ fidA}32, as a sequence is increasing. De-
note L = lim [ f;dA. Again, by monotonity preserved by the integral, we have L < K. Let s
be some positive function such that 0 < s(x) < f(x) and 0 < a < 1 be some constant, then
we define E; = {x: fi(x) = as(x)}. Then we have E; 1 and U;E; = R. To see this, notice that
E; =ui{x: fi(x) = as(x)}. Since U;{x: fi(x) = as(x)} = {x:sup f;(x) = as(x)} (refer to [1] P29
side note for details), then we have U;{x : f;(x) = as(x)} = {x: f(x) = as(x)} = R due to the
definition of s(x) and a. Then we have

a[sd)tz lim sdA <limsup f,dA = L.

n—ooJE, n—oo

Namely [ sdA < a™!L. Since it holds for any s, then we have

ffdxlz sup | sdA<a L.
Oss<f

Since the above inequality holds for any a € (0,1), take ¢ — 1, we get K < L. As a result, we
have K = L.

QUESTION 4

Q: Prove Fatou’s lemma (you can use the MCT without proving it).



A: Since lim;_. f; = f and Lebesgue measurable, then f is Lebesgue measurable. We de-
fine another sequence of functions as g; = sup,,»; fm, then we have {g;}32, is increasing and
Lebesgue measurable and lim g; = f. Due to MCT, we have

limfgid/lz lim g;dA.
1—00

i—oo

Since g; < f; Vi, due to monotonicity preserved by the Lebesgue integral and limit, we have

liminf | g;dA <liminf | f;dA.

i—oo i—o00

Since lim;_., [ gidA =liminf;_., [ g;dA, the proof is done.

QUESTION 5

Q: Prove the DCT (you can use Fatou’s lemma without proving it).
A: Since |f,| < g, fn Lebesgue measurable and g Lebesgue integrable, and lim;,—o f, = f
pointwise, then we have f;,, and f Lebesgue integrable. Besides, we have lim,_(f; + &) =
f+gandlim,_o(g— fu) = g— f. Due to Fatou’s Lemma, we have

f fdA <liminf f fal. (0.4)

n—oo

Besides, due to Fatou’s Lemma, we also have
fg—fd/l < liminf‘[g—fnd)l.
n—oo
For both side, due to linearity of Lebesgue integral, we have
fgd)t —ffd)t < lilgninf(f gdA— f frnd)
—00
fgd/l —ffd/l < f gdA+ lirllninf(—ffnd/l)
—00
Since we have liminf(-a,) = —limsup a,, then we have

fgd?t—/fdxlsfgdAHi}gg?gf(—ffnd/l):fgd/l—limsup fndA.

n—oo

Sowe have [ fdA =limsup,,_. [ fndA. Combined with Eq. (0.4), we have the proof done.
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