KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Basics and Lebesgue Measure on the Real Line

Yuchao Li

November 14, 2018

QUESTION 1

Q: For sequence $\{x_n\}$ and $\{y_n\}$,

- 1. define $\limsup x_n$ and $\liminf x_n$;
- 2. prove that

 $\limsup(x_n + y_n) \le \limsup x_n + \limsup y_n;$

3. if $\limsup y_n < \infty$ exists, prove that

 $\limsup(x_n + y_n) = \limsup x_n + \limsup y_n;$

4. let

$$a_n = \frac{1}{n} \sum_{k=1}^n x_k,$$

prove that

 $\liminf x_n \le \liminf a_n \le \limsup a_n \le \limsup x_n,$

and conclude that if $\lim x_n$ exists, so does $\lim a_n$; does the converse hold?

A: For sequence $\{x_n\}$ and $\{y_n\}$,

1. For a sequence $\{x_n\}$, $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup_{m\ge n} x_m$. Similarly, $\liminf_{n\to\infty} x_n$ can be defined.

2. First, note that

$$\limsup_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (\sup_{m \ge n} (x_m + y_m)).$$

Then note that

$$\limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n = \limsup_{n \to \infty} \sup_{m \ge n} x_m + \limsup_{n \to \infty} \sup_{m \ge n} y_m = \lim_{n \to \infty} (\sup_{m \ge n} x_m + \sup_{m \ge n} y_m)$$

Since $\forall n$, we have

$$x_i + y_i \le \sup_{m \ge n} x_m + \sup_{m \ge n} y_m \,\forall i \ge n,$$

then

$$\sup_{m \ge n} (x_m + y_m) \le \sup_{m \ge n} x_m + \sup_{m \ge n} y_m \,\forall n, \tag{0.1}$$

due to definition of sup. Take limits on both sides of Eq. (0.1), the proof is done.

3. First of all, for any real sequence $\{y_n\}$, we can prove that

$$\limsup(-y_n) = \liminf y_n \tag{0.2}$$

Then by the Eq. (0.1), we have also

$$\limsup x_n = \limsup \left((x_n + y_n) - y_n \right) \le \limsup (x_n + y_n) + \limsup (-y_n).$$

Then due to Eq. (0.2), we have

$$\limsup x_n \le \limsup (x_n + y_n) - \liminf y_n \Longrightarrow \limsup x_n + \liminf y_n \le \limsup (x_n + y_n).$$

Since it also holds that

$$\limsup(x_n + y_n) \le \limsup x_n + \limsup y_n$$

and $\lim y_n = \liminf y_n = \limsup y_n$. Then the proof is done.

4. By definition, we have $a_n = \frac{1}{n} \sum_{k=1}^n x_k$ and $\liminf a_n \le \limsup a_n$.

Then we proceed to show that $\limsup a_n \le \limsup x_n$. For any $n_0 > 1$, we can find and fix some $j < n_0$, such that we have

$$a_{n_0} = \frac{1}{n_0} \sum_{k=1}^{n_0} x_k = \frac{1}{n_0} \sum_{k=1}^j x_k + \frac{1}{n_0} \sum_{k=j+1}^{n_0} x_k \le \frac{1}{n_0} \sum_{k=1}^j x_k + \frac{n_0 - j}{n_0} \sup_{m \ge j} x_m \le \frac{1}{n_0} \sum_{k=1}^j x_k + \sup_{m \ge j} x_m.$$
(0.3)

Since *j* is fixed, then both $\sum_{k=1}^{j} x_k$ and $\sup_{m \ge j} x_m$ are constants. Besides, it's also obvious that since $j < n_0$, then $j < n \forall n \ge n_0$. As a result, we have

$$a_n \le \frac{1}{n} \sum_{k=1}^{j} x_k + \sup_{m \ge j} x_m, \, \forall n \ge n_0.$$
 (0.4)

Take $\limsup_{n\to\infty}$ on both sides of Eq. (0.4), and since $\sum_{k=1}^{j} x_k$ and $\sup_{m\geq j} x_m$ are constants, we have

$$\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^j x_k + \sup_{m \ge j} x_m\right) = \sup_{m \ge j} x_m. \tag{0.5}$$

We can simply by setting $n_0 = j$ to show that Eq. (0.5) holds $\forall j$. Denote $c_j = \sup_{m \ge j} x_m$. Then we have $\limsup_{n \to \infty} a_n \le c_j, \forall j$. Then we have

$$\limsup_{n \to \infty} a_n \le \lim_{j \to \infty} c_j = \limsup_{j \to \infty} \sup_{m \ge j} x_m.$$
(0.6)

For the proof of $\liminf x_n \le \liminf a_n$, it's quite similar therefore we will be concise. For any n_0 , fix some *j* where $j < n_0$, then

$$a_{n_0} = \frac{1}{n_0} \sum_{k=1}^{n_0} x_k = \frac{1}{n_0} \sum_{k=1}^j x_k + \frac{1}{n_0} \sum_{k=j+1}^{n_0} x_k \ge \frac{1}{n_0} \sum_{k=1}^j x_k + \frac{n_0 - j}{n_0} \inf_{m \ge j} x_m.$$
(0.7)

Since $\frac{1}{n} \sum_{k=1}^{j} x_k + \frac{n-j}{n} \inf_{m \ge j} x_m = \frac{1}{n} (\sum_{k=1}^{j} x_k - j \inf_{m \ge j} x_m) + \inf_{m \ge j} x_m$, then we have

$$\frac{1}{n} (\sum_{k=1}^{j} x_k - j \inf_{m \ge j} x_m) + \inf_{m \ge j} x_m \le a_n, \, \forall n \ge n_0.$$
(0.8)

Take $\liminf_{n\to\infty}$ on both sides, we have

$$\liminf_{n \to \infty} \left(\frac{1}{n} \left(\sum_{k=1}^{j} x_k - j \inf_{m \ge j} x_m \right) + \inf_{m \ge j} x_m \right) = \inf_{m \ge j} x_m \le \liminf_{n \to \infty} a_n.$$
(0.9)

Similarly, we can argue that Eq. (0.9) holds $\forall j$. Take $\lim_{i \to \infty}$, we have the proof done.

If $\lim_{n\to\infty} x_n$ exists, we have $\liminf_{n\to\infty} x_n$. As a result, we have $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$. The converse may not be true. Counter example is given as $x_n = \frac{1+(-1)^n}{2}$.

QUESTION 2

Q: Prove that a function f(x) is continuous iff $f^{-1}(O)$ is open for every open $O \subset \mathbb{R}$.

A: Only if: if $O \subset \mathbb{R}$ open and $f(x_0) \in O$, then $\exists \varepsilon$ such that $(f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset O$. Since f(x) is continuous, for ε , $\exists \delta(\varepsilon)$, such that $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ holds $\forall x \in (x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon))$, which means $(x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon)) \subset f^{-1}(O)$.

If: if $x_0 \in f^{-1}(O)$, then $f(x_0) \in O$. Since for any O open, we have $f^{-1}(O)$ open, then $\forall \varepsilon > 0$, denote B as $B = (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ which is open, we have $f^{-1}(B)$ open. Since $f(x_0) \in B$, $x_0 \in f^{-1}(B)$. B open, then $\exists \delta$ such that $(x_0 - \delta, x_0 + \delta) \subset f^{-1}(B)$, that is $\forall x \in (x_0 - \delta, x_0 + \delta)$, $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$, which means the function is continuous.

QUESTION 3

Q: Define Lebesgue outer measure λ^* , and explain what goes wrong when trying to use λ^* as a universal measure for "length" on the real line. Then define Lebesgue measure λ and motivate the definition.

A: For interval *I* of the form [*a*, *b*], [*a*, *b*), (*a*, *b*] and (*a*, *b*) where $a \le b$, define length $j(I) = \ell(I) = b - a$. Besides, we know a fact that $\forall B$ open, we have $B = \bigcup_{i \in \mathscr{I}} I_i$ where \mathscr{I} is the countable index set and I_i pairwise disjoint. Therefore, $\forall B$ open, $j(\cdot)$ is defined. Note that $\forall A \subset \mathbb{R}$, there exists at least one such *B* which is open and $A \subset B$ since \mathbb{R} is one such set, that is open and contains *A*. Therefore, $\{j(B) : B \text{ open and } A \subset B\} \neq \emptyset$ holds $\forall A \subset \mathbb{R}$. Therefore, its infimum is well defined. Then $\forall A \subset \mathbb{R}$, we define

$$\lambda^*(A) = \inf\{j(B) : B \text{ open and } A \subset B\}$$

$$(0.10)$$

as Lebesgue outer measure $\forall A \subset \mathbb{R}$. What goes wrong for $\lambda^*(\cdot)$ is that $\exists B, B_1, B_2$ where $B_1 \cap B_2 = \emptyset$ and $B = B_1 \cup B_2$, such that $\lambda^*(B) \neq \lambda^*(B_1) + \lambda^*(B_2)$, which is a desired property we would like measure to have.

To have that, notice $\forall O$ open, it holds that

$$\lambda^*(A) = \lambda^*(A \cap O) + \lambda^*(A \cap O^c). \tag{0.11}$$

So we define Lebesgue measurable set as

$$\mathscr{L} = \{ W \in \mathbb{R} : \lambda^*(A) = \lambda^*(A \cap W) + \lambda^*(A \cap W^c), \forall A \in \mathbb{R} \}.$$

$$(0.12)$$

Then the Lebesgue measure is defined as $\lambda = \lambda_{\perp \varphi}^*$.

QUESTION 4

Q: For a function f(x), define what it means for f to be Lebesgue measurable. Based on the definition, argue that all continuous functions are Lebesgue measurable but there are Lebesgue measurable functions that are not continuous.

A: For $f : \mathbb{R} \to \mathbb{R}$, if $f^{-1}(O) \in \mathcal{L}$ holds $\forall O \in \mathbb{R}$ open, then f is Lebesgue measurable. Since $\forall A \in \mathbb{R}$ which is open, $A \in \mathcal{L}$, so continuous function is Lebesgue measurable. Since continuous function is not closed under pointwise convergent but Lebesgue measurable function does, that means, $\exists \{f_n\}$ continuous, such that $\lim_{n\to\infty} f_n(x) = f(x)$ holds $\forall x \in \mathbb{R}$ but $\lim_{n\to\infty} \|f_n(x) - f(x)\|_{\infty} \neq 0$.

Theorem 0.1. { f_n } Lebesgue measurable, and $\lim_{n\to\infty} f_n(x) = f(x)$ holds $\forall x \in \mathbb{R}$, then f is Lebesgue measurable.

Proof. Use the same technique applied in Theorem 1.5.8 [1].

REFERENCES

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.