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QUESTION 1

Q: For sequence {xn} and {yn},

1. define limsup xn and liminf xn ;

2. prove that
limsup(xn + yn) ≤ limsup xn + limsup yn ;

3. if limsup yn <∞ exists, prove that

limsup(xn + yn) = limsup xn + limsup yn ;

4. let

an = 1

n

n∑
k=1

xk ,

prove that
liminf xn ≤ liminf an ≤ limsup an ≤ limsup xn ,

and conclude that if lim xn exists, so does lim an ; does the converse hold?

A: For sequence {xn} and {yn},

1. For a sequence {xn}, limsupn→∞ xn = limn→∞ supm≥n xm . Similarly, liminfn→∞ xn can
be defined.
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2. First, note that
limsup

n→∞
(xn + yn) = lim

n→∞
(

sup
m≥n

(xm + ym)
)
.

Then note that

limsup
n→∞

xn + limsup
n→∞

yn = lim
n→∞ sup

m≥n
xm + lim

n→∞ sup
m≥n

ym = lim
n→∞(sup

m≥n
xm + sup

m≥n
ym).

Since ∀n, we have
xi + yi ≤ sup

m≥n
xm + sup

m≥n
ym ∀i ≥ n,

then
sup
m≥n

(xm + ym) ≤ sup
m≥n

xm + sup
m≥n

ym ∀n, (0.1)

due to definition of sup. Take limits on both sides of Eq. (0.1), the proof is done.

3. First of all, for any real sequence {yn}, we can prove that

limsup(−yn) = liminf yn (0.2)

Then by the Eq. (0.1), we have also

limsup xn = limsup
(
(xn + yn)− yn

)≤ limsup(xn + yn)+ limsup(−yn).

Then due to Eq. (0.2), we have

limsup xn ≤ limsup(xn + yn)− liminf yn =⇒ limsup xn + liminf yn ≤ limsup(xn + yn).

Since it also holds that

limsup(xn + yn) ≤ limsup xn + limsup yn

and lim yn = liminf yn = limsup yn . Then the proof is done.

4. By definition, we have an = 1
n

∑n
k=1 xk and liminf an ≤ limsup an .

Then we proceed to show that limsup an ≤ limsup xn . For any n0 > 1, we can find and
fix some j < n0, such that we have

an0 =
1

n0

n0∑
k=1

xk = 1

n0

j∑
k=1

xk+
1

n0

n0∑
k= j+1

xk ≤ 1

n0

j∑
k=1

xk+
n0 − j

n0
sup
m≥ j

xm ≤ 1

n0

j∑
k=1

xk+sup
m≥ j

xm .

(0.3)
Since j is fixed, then both

∑ j
k=1 xk and supm≥ j xm are constants. Besides, it’s also obvi-

ous that since j < n0, then j < n ∀n ≥ n0. As a result, we have

an ≤ 1

n

j∑
k=1

xk + sup
m≥ j

xm , ∀n ≥ n0. (0.4)
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Take limsupn→∞ on both sides of Eq. (0.4), and since
∑ j

k=1 xk and supm≥ j xm are con-
stants, we have

limsup
n→∞

an ≤ limsup
n→∞

(
1

n

j∑
k=1

xk + sup
m≥ j

xm) = sup
m≥ j

xm . (0.5)

We can simply by setting n0 = j to show that Eq. (0.5) holds ∀ j . Denote c j = supm≥ j xm .
Then we have limsupn→∞ an ≤ c j ,∀ j . Then we have

limsup
n→∞

an ≤ lim
j→∞

c j = lim
j→∞

sup
m≥ j

xm . (0.6)

For the proof of liminf xn ≤ liminf an , it’s quite similar therefore we will be concise. For
any n0, fix some j where j < n0, then

an0 =
1

n0

n0∑
k=1

xk = 1

n0

j∑
k=1

xk +
1

n0

n0∑
k= j+1

xk ≥ 1

n0

j∑
k=1

xk +
n0 − j

n0
inf

m≥ j
xm . (0.7)

Since 1
n

∑ j
k=1 xk + n− j

n infm≥ j xm = 1
n (

∑ j
k=1 xk − j infm≥ j xm)+ infm≥ j xm , then we have

1

n
(

j∑
k=1

xk − j inf
m≥ j

xm)+ inf
m≥ j

xm ≤ an , ∀n ≥ n0. (0.8)

Take liminfn→∞ on both sides, we have

liminf
n→∞

( 1

n
(

j∑
k=1

xk − j inf
m≥ j

xm)+ inf
m≥ j

xm
)= inf

m≥ j
xm ≤ liminf

n→∞ an . (0.9)

Similarly, we can argue that Eq. (0.9) holds ∀ j . Take lim j→∞, we have the proof done.

If limn→∞ xn exists, we have liminf xn = limsup xn . As a result, we have liminf an =
limsup an . The converse may not be true. Counter example is given as xn = 1+(−1)n

2 .

QUESTION 2

Q: Prove that a function f (x) is continuous iff f −1(O) is open for every open O ⊂R.
A: Only if: if O ⊂R open and f (x0) ∈O, then ∃ε such that ( f (x0)−ε, f (x0)+ε) ⊂O. Since f (x) is
continuous, for ε, ∃δ(ε), such that f (x0)−ε< f (x) < f (x0)+ε holds ∀x ∈ (x0 −δ(ε), x0 +δ(ε)),
which means (x0 −δ(ε), x0 +δ(ε)) ⊂ f −1(O).
If: if x0 ∈ f −1(O), then f (x0) ∈ O. Since for any O open, we have f −1(O) open, then ∀ε > 0,
denote B as B = ( f (x0)− ε, f (x0)+ ε) which is open, we have f −1(B) open. Since f (x0) ∈ B ,
x0 ∈ f −1(B). B open, then ∃δ such that (x0 −δ, x0 +δ) ⊂ f −1(B), that is ∀x ∈ (x0 −δ, x0 +δ),
f (x0)−ε< f (x) < f (x0)+ε, which means the function is continuous.
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QUESTION 3

Q: Define Lebesgue outer measure λ∗, and explain what goes wrong when trying to use λ∗

as a universal measure for “length” on the real line. Then define Lebesgue measure λ and
motivate the definition.
A: For interval I of the form [a, b], [a, b), (a, b] and (a, b) where a ≤ b, define length (I ) =
`(I ) = b−a. Besides, we know a fact that ∀B open, we have B =∪i∈I Ii where I is the count-
able index set and Ii pairwise disjoint. Therefore, ∀B open, (·) is defined. Note that ∀A ⊂R,
there exists at least one such B which is open and A ⊂ B since R is one such set, that is open
and contains A. Therefore, { (B) : B open and A ⊂ B} 6= ; holds ∀A ⊂ R. Therefore, its infi-
mum is well defined. Then ∀A ⊂R, we define

λ∗(A) = inf{ (B) : B open and A ⊂ B} (0.10)

as Lebesgue outer measure ∀A ⊂ R. What goes wrong for λ∗(·) is that ∃B , B1, B2 where B1 ∩
B2 = ; and B = B1 ∪B2, such that λ∗(B) 6= λ∗(B1)+λ∗(B2), which is a desired property we
would like measure to have.
To have that, notice ∀O open, it holds that

λ∗(A) =λ∗(A∩O)+λ∗(A∩Oc ). (0.11)

So we define Lebesgue measurable set as

L = {W ∈R :λ∗(A) =λ∗(A∩W )+λ∗(A∩W c ), ∀A ∈R}. (0.12)

Then the Lebesgue measure is defined as λ=λ∗
|L .

QUESTION 4

Q: For a function f (x), define what it means for f to be Lebesgue measurable. Based on
the definition, argue that all continuous functions are Lebesgue measurable but there are
Lebesgue measurable functions that are not continuous.
A: For f : R→ R, if f −1(O) ∈ L holds ∀O ∈ R open, then f is Lebesgue measurable. Since
∀A ∈ R which is open, A ∈ L , so continuous function is Lebesgue measurable. Since con-
tinuous function is not closed under pointwise convergent but Lebesgue measurable func-
tion does, that means, ∃{ fn} continuous, such that limn→∞ fn(x) = f (x) holds ∀x ∈ R but
limn→∞‖ fn(x)− f (x)‖∞ 6= 0.

Theorem 0.1. { fn} Lebesgue measurable, and limn→∞ fn(x) = f (x) holds ∀x ∈ R, then f is
Lebesgue measurable.

Proof. Use the same technique applied in Theorem 1.5.8 [1].
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