Basics and Lebesgue Measure on the Real Line

Yuchao Li

November 14, 2018

Question 1

Q: For sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$,

1. define $\lim \sup x_{n}$ and $\liminf x_{n}$;
2. prove that

$$
\limsup \left(x_{n}+y_{n}\right) \leq \limsup x_{n}+\limsup y_{n} ;
$$

3. if $\lim \sup y_{n}<\infty$ exists, prove that

$$
\limsup \left(x_{n}+y_{n}\right)=\lim \sup x_{n}+\lim \sup y_{n}
$$

4. let

$$
a_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k},
$$

prove that

$$
\liminf x_{n} \leq \liminf a_{n} \leq \limsup a_{n} \leq \limsup x_{n},
$$

and conclude that if $\lim x_{n}$ exists, so does $\lim a_{n}$; does the converse hold?
A: For sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$,

1. For a sequence $\left\{x_{n}\right\}, \limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup _{m \geq n} x_{m}$. Similarly, $\liminf _{n \rightarrow \infty} x_{n}$ can be defined.
2. First, note that

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty}\left(\sup _{m \geq n}\left(x_{m}+y_{m}\right)\right)
$$

Then note that

$$
\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} \sup _{m \geq n} x_{m}+\lim _{n \rightarrow \infty} \sup _{m \geq n} y_{m}=\lim _{n \rightarrow \infty}\left(\sup _{m \geq n} x_{m}+\sup _{m \geq n} y_{m}\right) .
$$

Since $\forall n$, we have

$$
x_{i}+y_{i} \leq \sup _{m \geq n} x_{m}+\sup _{m \geq n} y_{m} \forall i \geq n
$$

then

$$
\begin{equation*}
\sup _{m \geq n}\left(x_{m}+y_{m}\right) \leq \sup _{m \geq n} x_{m}+\sup _{m \geq n} y_{m} \forall n, \tag{0.1}
\end{equation*}
$$

due to definition of sup. Take limits on both sides of Eq. (0.1), the proof is done.
3. First of all, for any real sequence $\left\{y_{n}\right\}$, we can prove that

$$
\begin{equation*}
\limsup \left(-y_{n}\right)=\liminf y_{n} \tag{0.2}
\end{equation*}
$$

Then by the Eq. (0.1), we have also

$$
\limsup x_{n}=\limsup \left(\left(x_{n}+y_{n}\right)-y_{n}\right) \leq \limsup \left(x_{n}+y_{n}\right)+\limsup \left(-y_{n}\right)
$$

Then due to Eq. (0.2), we have
$\limsup x_{n} \leq \limsup \left(x_{n}+y_{n}\right)-\liminf y_{n} \Longrightarrow \limsup x_{n}+\liminf y_{n} \leq \limsup \left(x_{n}+y_{n}\right)$.
Since it also holds that

$$
\limsup \left(x_{n}+y_{n}\right) \leq \limsup x_{n}+\limsup y_{n}
$$

and $\lim y_{n}=\liminf y_{n}=\limsup y_{n}$. Then the proof is done.
4. By definition, we have $a_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$ and $\liminf a_{n} \leq \limsup a_{n}$.

Then we proceed to show that $\limsup a_{n} \leq \limsup x_{n}$. For any $n_{0}>1$, we can find and fix some $j<n_{0}$, such that we have

$$
\begin{equation*}
a_{n_{0}}=\frac{1}{n_{0}} \sum_{k=1}^{n_{0}} x_{k}=\frac{1}{n_{0}} \sum_{k=1}^{j} x_{k}+\frac{1}{n_{0}} \sum_{k=j+1}^{n_{0}} x_{k} \leq \frac{1}{n_{0}} \sum_{k=1}^{j} x_{k}+\frac{n_{0}-j}{n_{0}} \sup _{m \geq j} x_{m} \leq \frac{1}{n_{0}} \sum_{k=1}^{j} x_{k}+\sup _{m \geq j} x_{m} \tag{0.3}
\end{equation*}
$$

Since j is fixed, then both $\sum_{k=1}^{j} x_{k}$ and $\sup _{m \geq j} x_{m}$ are constants. Besides, it's also obvious that since $j<n_{0}$, then $j<n \forall n \geq n_{0}$. As a result, we have

$$
\begin{equation*}
a_{n} \leq \frac{1}{n} \sum_{k=1}^{j} x_{k}+\sup _{m \geq j} x_{m}, \forall n \geq n_{0} \tag{0.4}
\end{equation*}
$$

Take limsup $\lim _{n \rightarrow \infty}$ on both sides of Eq. (0.4), and since $\sum_{k=1}^{j} x_{k}$ and $\sup _{m \geq j} x_{m}$ are constants, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{k=1}^{j} x_{k}+\sup _{m \geq j} x_{m}\right)=\sup _{m \geq j} x_{m} \tag{0.5}
\end{equation*}
$$

We can simply by setting $n_{0}=j$ to show that Eq. (0.5) holds $\forall j$. Denote $c_{j}=\sup _{m \geq j} x_{m}$. Then we have limsup ${ }_{n \rightarrow \infty} a_{n} \leq c_{j}, \forall j$. Then we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n} \leq \lim _{j \rightarrow \infty} c_{j}=\lim _{j \rightarrow \infty} \sup _{m \geq j} x_{m} \tag{0.6}
\end{equation*}
$$

For the proof of $\liminf x_{n} \leq \liminf a_{n}$, it's quite similar therefore we will be concise. For any n_{0}, fix some j where $j<n_{0}$, then

$$
\begin{equation*}
a_{n_{0}}=\frac{1}{n_{0}} \sum_{k=1}^{n_{0}} x_{k}=\frac{1}{n_{0}} \sum_{k=1}^{j} x_{k}+\frac{1}{n_{0}} \sum_{k=j+1}^{n_{0}} x_{k} \geq \frac{1}{n_{0}} \sum_{k=1}^{j} x_{k}+\frac{n_{0}-j}{n_{0}} \inf _{m \geq j} x_{m} \tag{0.7}
\end{equation*}
$$

Since $\frac{1}{n} \sum_{k=1}^{j} x_{k}+\frac{n-j}{n} \inf _{m \geq j} x_{m}=\frac{1}{n}\left(\sum_{k=1}^{j} x_{k}-j \inf _{m \geq j} x_{m}\right)+\inf _{m \geq j} x_{m}$, then we have

$$
\begin{equation*}
\frac{1}{n}\left(\sum_{k=1}^{j} x_{k}-j \inf _{m \geq j} x_{m}\right)+\inf _{m \geq j} x_{m} \leq a_{n}, \forall n \geq n_{0} \tag{0.8}
\end{equation*}
$$

Take $\liminf _{n \rightarrow \infty}$ on both sides, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{1}{n}\left(\sum_{k=1}^{j} x_{k}-j \inf _{m \geq j} x_{m}\right)+\inf _{m \geq j} x_{m}\right)=\inf _{m \geq j} x_{m} \leq \liminf _{n \rightarrow \infty} a_{n} \tag{0.9}
\end{equation*}
$$

Similarly, we can argue that Eq. (0.9) holds $\forall j$. Take $\lim _{j \rightarrow \infty}$, we have the proof done.
If $\lim _{n \rightarrow \infty} x_{n}$ exists, we have $\liminf x_{n}=\limsup x_{n}$. As a result, we have $\liminf a_{n}=$ $\limsup a_{n}$. The converse may not be true. Counter example is given as $x_{n}=\frac{1+(-1)^{n}}{2}$.

Question 2

Q: Prove that a function $f(x)$ is continuous iff $f^{-1}(O)$ is open for every open $O \subset \mathbb{R}$.
A: Only if: if $O \subset \mathbb{R}$ open and $f\left(x_{0}\right) \in O$, then $\exists \varepsilon$ such that $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right) \subset O$. Since $f(x)$ is continuous, for $\varepsilon, \exists \delta(\varepsilon)$, such that $f\left(x_{0}\right)-\varepsilon<f(x)<f\left(x_{0}\right)+\varepsilon$ holds $\forall x \in\left(x_{0}-\delta(\varepsilon), x_{0}+\delta(\varepsilon)\right)$, which means $\left(x_{0}-\delta(\varepsilon), x_{0}+\delta(\varepsilon)\right) \subset f^{-1}(O)$.
If: if $x_{0} \in f^{-1}(O)$, then $f\left(x_{0}\right) \in O$. Since for any O open, we have $f^{-1}(O)$ open, then $\forall \varepsilon>0$, denote B as $B=\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ which is open, we have $f^{-1}(B)$ open. Since $f\left(x_{0}\right) \in B$, $x_{0} \in f^{-1}(B)$. B open, then $\exists \delta$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset f^{-1}(B)$, that is $\forall x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, $f\left(x_{0}\right)-\varepsilon<f(x)<f\left(x_{0}\right)+\varepsilon$, which means the function is continuous.

Question 3

Q: Define Lebesgue outer measure λ^{*}, and explain what goes wrong when trying to use λ^{*} as a universal measure for "length" on the real line. Then define Lebesgue measure λ and motivate the definition.
A: For interval I of the form $[a, b],[a, b),(a, b]$ and (a, b) where $a \leq b$, define length $J(I)=$ $\ell(I)=b-a$. Besides, we know a fact that $\forall B$ open, we have $B=\cup_{i \in \mathscr{I}} I_{i}$ where \mathscr{I} is the countable index set and I_{i} pairwise disjoint. Therefore, $\forall B$ open, $J(\cdot)$ is defined. Note that $\forall A \subset \mathbb{R}$, there exists at least one such B which is open and $A \subset B$ since \mathbb{R} is one such set, that is open and contains A. Therefore, $\{J(B): B$ open and $A \subset B\} \neq \varnothing$ holds $\forall A \subset \mathbb{R}$. Therefore, its infimum is well defined. Then $\forall A \subset \mathbb{R}$, we define

$$
\begin{equation*}
\lambda^{*}(A)=\inf \{J(B): B \text { open and } A \subset B\} \tag{0.10}
\end{equation*}
$$

as Lebesgue outer measure $\forall A \subset \mathbb{R}$. What goes wrong for $\lambda^{*}(\cdot)$ is that $\exists B, B_{1}, B_{2}$ where $B_{1} \cap$ $B_{2}=\varnothing$ and $B=B_{1} \cup B_{2}$, such that $\lambda^{*}(B) \neq \lambda^{*}\left(B_{1}\right)+\lambda^{*}\left(B_{2}\right)$, which is a desired property we would like measure to have.
To have that, notice $\forall O$ open, it holds that

$$
\begin{equation*}
\lambda^{*}(A)=\lambda^{*}(A \cap O)+\lambda^{*}\left(A \cap O^{c}\right) \tag{0.11}
\end{equation*}
$$

So we define Lebesgue measurable set as

$$
\begin{equation*}
\mathscr{L}=\left\{W \in \mathbb{R}: \lambda^{*}(A)=\lambda^{*}(A \cap W)+\lambda^{*}\left(A \cap W^{c}\right), \forall A \in \mathbb{R}\right\} . \tag{0.12}
\end{equation*}
$$

Then the Lebesgue measure is defined as $\lambda=\lambda_{\mid \mathscr{L}}^{*}$.

QUESTION 4

Q: For a function $f(x)$, define what it means for f to be Lebesgue measurable. Based on the definition, argue that all continuous functions are Lebesgue measurable but there are Lebesgue measurable functions that are not continuous.
A: For $f: \mathbb{R} \rightarrow \mathbb{R}$, if $f^{-1}(O) \in \mathscr{L}$ holds $\forall O \in \mathbb{R}$ open, then f is Lebesgue measurable. Since $\forall A \in \mathbb{R}$ which is open, $A \in \mathscr{L}$, so continuous function is Lebesgue measurable. Since continuous function is not closed under pointwise convergent but Lebesgue measurable function does, that means, $\exists\left\{f_{n}\right\}$ continuous, such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ holds $\forall x \in \mathbb{R}$ but $\lim _{n \rightarrow \infty}\left\|f_{n}(x)-f(x)\right\|_{\infty} \neq 0$.

Theorem 0.1. $\left\{f_{n}\right\}$ Lebesgue measurable, and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ holds $\forall x \in \mathbb{R}$, then f is Lebesgue measurable.

Proof. Use the same technique applied in Theorem 1.5.8 [1].

References

[1] Timo Koski, Lecture notes: Probability and random processes at KTH, 2017.

