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Chapter 2

P. 16 See [Halmos Section 11, Thms. 1 and 2, P. 17, Section 6, P. 9] and [Note
1]. In particular, the sum of arbitrary elements that belongs to the empty set
is θ. As a consequence, the subspace spanned by ∅ is {θ}.

P. 17

Lemma (P. 17). Let V be a collection of linear varieties in a vector space such
that ∩V ∈VV ̸= ∅. Then the set ∩V ∈VV is a linear variety.

Proof. Since ∩V ∈VV ̸= ∅, then let x be some vector in ∩V ∈VV . Define a collec-
tion M as follows

M = {M : ∃V ∈ V such that V = x+M}.

It is clear that M is a collection of subspaces so that ∩M∈MM is a subspace (a
proof of this follows from the arguments similar to the proof of [OVSM Prop.
1, P. 15]). We will show that ∩V ∈VV = x+ ∩M∈MM by contrapositions.

Let y ̸∈ ∩V ∈VV , then there exists V0 ∈ V such that y ̸∈ V0. Therefore, ∃M0 ∈ M
such that V0 = x +M0. In addition, y − x ̸∈ M0. Since ∩M∈MM ⊂ M0, thus
y − x ̸∈ ∩M∈MM . As a result, y ̸∈ x+ ∩M∈MM .

Conversely, let y ̸∈ x+∩M∈MM . Then there exists M0 ∈ M such that y− x ̸∈
M0. Since M0 ∈ M, then there exists V0 ∈ V such that V0 = x + M0. As a
result, y ̸∈ V0. Therefore, y ̸∈ ∩V ∈VV .

P. 19

Lemma (P. 19). A set S is a linearly independent set if and only if all of its
subsets with finitely many elements are linearly independent sets.

Proof. The only if part follows the definition. For the if part, we prove its
contraposition. Suppose that S is not a linearly independent set. Then there
exists some s ∈ S that is linear combination of vectors of S, which means
∃s1, s2 . . . , sm ∈ S and scalars α1, α2, . . . , αm with m < ∞ such that s =∑m

i=1 αisi. Then the set M = {s, s1, s2 . . . , sm} is finite subset and is not a
linearly independent set.
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P. 24

Lemma (P. 24). Let P be a subset of a normed linear space. Then P̊ is open.

Proof. By definition, we have
˚̊
P ⊂ P̊ . Let x ∈ P̊ , then ∃ε > 0 such that

S(x, ε) ⊂ P . We will show that S(x, ε) ⊂ P̊ , which would implies that x ∈ ˚̊
P .

For every y ∈ S(x, ε), set δ = ε−∥x−y∥. It is clear that δ > 0 since y ∈ S(x, ε),
implying that ∥x−y∥ < ε. Then for all z ∈ S(y, δ), ∥z−x∥ ≤ ∥z−y∥+∥y−x∥ <
ε. Therefore, S(y, δ) ⊂ S(x, ε) ⊂ P , namely y ∈ P̊ . Since y is arbitrary, then
every point in S(x, ε) belongs to P̊ , namely S(x, ε) ⊂ P̊ . This means that x is

an interior point of P̊ , i.e., x ∈ ˚̊
P . Since x is arbitrary, then P̊ ⊂ ˚̊

P .

P. 25

Lemma (1, P. 25). Let P be a subset of a normed linear space. Then P = P .

Proof. By definition, we have that P ⊂ P . To show that P ⊂ P , let x ∈ P .
Then ∀ε > 0, ∃p̄ ∈ P such that ∥x− p̄∥ < ε. Since p̄ ∈ P , for δ = ε− ∥x− p̄∥,
∃p ∈ P such that ∥p− p̄∥ < δ. Thus, we have that ∥x− p∥ = ∥x− p̄+ p̄− p∥ ≤
∥x− p̄∥+ ∥p̄− p∥ < ∥x− p̄∥+ ε− ∥x− p̄∥ = ε. Thus, p ∈ P .

We restate and prove [OVSM Prop. 1, P. 25] as the following two lemmas for
clarity.

Lemma (2, P. 25). Let P be a open subset of a normed linear space. Then
P̃ = {x : x ̸∈ P}, its complement, is closed.

Proof. We have that x ∈ P̃ if and only if ∀ε > 0, ∃p ∈ P̃ such that ∥x− p∥ < ε,
due to the definition of closure. This holds if and only if ∀ε > 0, ∃p ̸∈ P such
that ∥x − p∥ < ε. This implies that x ̸∈ P as P is open. Therefore, x ∈ P̃ ,

which means that P̃ ⊂ P̃ . The converse relation is clear.

Lemma (3, P. 25). Let C be a closed subset of a normed linear space. Then
C̃ = {x : x ̸∈ C}, its complement, is open.

Proof. We have that x ∈ C̃ if and only if x ̸∈ C, which holds if and only if that
∃ε > 0 such that S(x, ε)∩C = ∅ as C is closed. This holds if and only if ∃ε > 0
such that S(x, ε) ⊂ C̃. Thus, C̃ is open.

We restate and prove [OVSM Prop. 3, P. 25] as the following two lemmas for
clarity.

Lemma (4, P. 25). Let {Pi}mi=1 be a finite collection of closed subsets of a
normed linear space. Then their union is closed.
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Proof. We prove that if P1, P2 are closed, then P1 ∪ P2 = P1 ∪ P2. Any finite
collection can be proven by proving two at a step.

First, we have that P1∪P2 ⊂ P1 ∪ P2. To see it holds conversely, let x ̸∈ P1∪P2,
then x ̸∈ P1 and x ̸∈ P2. Since P1, P2 are closed, ∃ε1 > 0, ε2 > 0 such that
S(x, ε1) ∩ P1 = ∅ and S(x, ε2) ∩ P2 = ∅. Define ε = min{ε1, ε2}, then we have
S(x, ε) ∩ P1 = S(x, ε) ∩ P2 = ∅. Therefore, S(x, ε) ∩ (P1 ∪ P2) = ∅. Thus,
x ̸∈ P1 ∪ P2.

Note that in the proof, the step ε = min{ε1, ε2} would fail if the collection of
closed sets are inifinitely many. Also refer to [Note 2].

Lemma (5, P. 25). Let P be an arbitrary collection of closed subsets of a normed
linear space. Then their intersection is closed.

Proof. We denote the intersection of all elements in P, i.e., ∩P∈PP , as Q.
Clearly we have that Q ⊂ Q. To show it holds conversely, for x ̸∈ Q, then ∃P ′ ∈
P such that x ̸∈ P ′. Since P ′ is closed, then ∃ε > 0 such that S(x, ε) ∩ P ′ = ∅.
As Q ⊂ P ′, we have that S(x, ε) ∩Q = ∅. Thus, x ̸∈ Q.

P. 28 Note that a functional is a transformation from a vector space X to the
space of real or complex scalars. It is possible that a functional maps a real
vector space X to the space of complex scalars. See [Kreyszig P. 103].

P. 28 Let T : X 7→ Y be a linear operator. It is part of the definition of linear
operator that both X and Y are vector spaces of the same field, namely both
real or both complex. This is required in order to make the linearity of T well
defined, [Kreyszig, Definition 2.6-1, P. 82]. As a result, for a linear functional f
defined on vector space X with field K, its image is the scalars of K, [Kreyszig,
Definition 2.8-1, P. 104].

P. 28 We prove the ‘if’ part via establishing the contraposition. Suppose T is
not continuous at x0. Then ∃ε > 0 such that ∀δ > 0, ∃x ∈ S(x0, δ) such that
∥T (x)− T (x0)∥ ≥ 0. Chose δn = 1/n and we can construct a sequence {xn} so
that xn → x0 yet T (xn) ̸→ T (x0).

P. 29 The Hölder inequality has the following direct implication.

Lemma (P. 29). Let x = {ξ1, ξ2, . . . } ∈ lp and y = {η1, η2, . . . } ∈ lq, where
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and 1/p + 1/q = 1. Define scalar sequence {an} with
an =

∑n
i=1 ξiηi. Then the sequence {an} is convergent with a scalar limit.

Proof. By Hölder inequality, we have
∑∞

i=1 |ξiηi| < ∞. Define bn =
∑n

i=1 |ξiηi|,
then the sequence {bn} is real, monotonically increasing, and converges to a
real number. As a result, it is also Cauchy. Therefore, for any ε > 0, there
exists N such that |bn − bm| < ε for all m,n > N . For all m,n, we have
|an − am| ≤ |bn − bm|. To show this inequality hold, we can first assume that
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m ≤ n, and prove it; then assume that m > n, and show it hold as well. To see
it holds for m ≤ n, we have

|an − am| =
∣∣∣∣ n∑
i=m

ξiηi

∣∣∣∣ ≤ |bn − bm|.

Therefore, the sequence is {an} is Cauchy, thus convergent.

Note that a Cauchy sequence being convergent is true for both real and complex
scalar sequences.

P. 30

Lemma (P. 30). Let p and q be positive real numbers, and x = {ξ1, ξ2, . . . } ∈ lp
and y = {η1, η2, . . . } ∈ lq. Denote their truncated sequences as xn and yn
respectively, namely

xn = {ξ1, ξ2, . . . , ξn−1, ξn, 0, 0, . . . }.

Then |ξi|p∥y∥qq = |ηi|q∥x∥pp for i = 1, 2, . . . if and only if |ξi|p∥yn∥qq = |ηi|q∥xn∥pp
for n = 1, 2, . . . and i = 1, . . . , n.

Proof. For the only if part, we assume that x and y are nonzero, as otherwise
it holds trivially. We note that by adding |ξi|p∥y∥qq = |ηi|q∥x∥pp from 1 to n, we
have

∥y∥qq
n∑

i=1

|ξi|p = ∥x∥pp
n∑

i=1

|ηi|q,

which is ∥y∥qq∥xn∥pp = ∥x∥pp∥yn∥qq. After multiplying |ξi|p∥y∥qq with ∥x∥pp∥yn∥qq/(∥x∥pp∥y∥qq),
and multiplying |ηi|q∥x∥pp with ∥xn∥pp∥y∥qq/(∥x∥pp∥y∥qq), we have the desired re-
sults.

For the if part, if is clear that ∥xn∥pp → ∥x∥pp, and ∥yn∥qq → ∥y∥qq as n → ∞.
Thus, for every fixed i, since |ξi|p∥yn∥qq = |ηi|q∥xn∥pp, taking limit on both sides
get the desired results.

P. 31

Lemma (P. 31). Let {an} and {bn} be two sequences such that bn ≥ an,∑∞
n=1 an = a < ∞,

∑∞
n=1 bn = b < ∞. Then a = b if and only if an = bn

for all n.

Proof. The if part is obvious. For the only if part, assume ∃ℓ such that aℓ ̸= bℓ.
Since aℓ ≤ bℓ, then aℓ < bℓ. Then we have

b− a = bℓ − aℓ +
∑
n ̸=ℓ

(bn − an) > 0.

4



Regarding the equality condition for the Minkowski inequality, we prove the
case where both x and y are nonzero. For the if part, since y = αx where α > 0,
then for all n, we have

n∑
i=1

|ξi + ηi|p =

n∑
i=1

|ξi + ηi|p−1|ξi|+
n∑

i=1

|ξi + ηi|p−1|ηi|. (1)

In addition, denote ζi = (ξi + ηi)
p−1 and define w = {ζ1, ζ2, . . . }. It is clear

from the proof that w ∈ lq. The truncated sequences of x and w are denoted as
xn and wn respectively. Then for every fixed n and i = 1, . . . , n, we have

∥wn∥qq|ξi|p =
( n∑

j=1

|ξj + ηj |(p−1)q
)
|ξi|p =

( n∑
j=1

|ξj + ηj |p
)
|ξi|p =

( n∑
j=1

|ξj |p
)
(1 + α)p|ξi|p

=∥xn∥pp(1 + α)p|ξi|p = ∥xn∥pp|ξi + ηi|p = ∥xn∥pp|ξi + ηi|(p−1)q

=∥xn∥pp|ζi|q.

The relation between wn and yn follows in view of y = αx. Therefore, for every
n, applying the Hölder inequality and in view of the equality condition holds,
we have

n∑
i=1

|ζi||ξi| = ∥wn∥q∥xn∥p,
n∑

i=1

|ζi||ηi| = ∥wn∥q∥yn∥p.

Combining with Eq. (1), we have for all n the equality

n∑
i=1

|ξi + ηi|p = ∥wn∥q∥xn∥p + ∥wn∥q∥yn∥p.

Knowing that both sides converges, taking limits as n → ∞, we have

∥x+ y∥pp = ∥w∥q(∥x∥p + ∥y∥p). (2)

Note that

∥w∥q =
( ∞∑

j=1

|ξj + ηj |(p−1)q
)1/q

=
( ∞∑

j=1

|ξj + ηj |p
)1/q

= ∥x+ y∥p/qp , (3)

then ∥x+y∥pp/∥w∥q = ∥x+y∥pp/∥x+y∥p/qp = ∥x+y∥p since (pq−p)/q = 1.

For the only if part, again we assume that both x and y are nonzero. Since
∥x + y∥p = ∥x∥p + ∥y∥p, then by Eq. (3), we have Eq. (2) hold. Since we also
have

∥x+y∥pp =

∞∑
i=1

|ξi+ηi|p ≤
∞∑
i=1

|ξi+ηi|p−1|ξi|+
∞∑
i=1

|ξi+ηi|p−1|ηi| ≤ ∥w∥q(∥x∥p+∥y∥p),

where the first inequality is established via first triangular inequality and then
taking limit, and the second due to Hölder inequality. Therefore, we have the
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two inequalities are also equalities. Now we first focus on the first equality.
Applying [Lemma P. 31] with ai = |ξi + ηi|p and bi = |ξi + ηi|p−1(|ξi|+ |ηi|), we
have

|ξi + ηi| = |ξi|+ |ηi|, i = 1, 2, . . . . (4)

For the second equality, since

∞∑
i=1

|ξi + ηi|p−1|ξi| ≤ ∥w∥q∥x∥p,
∞∑
i=1

|ξi + ηi|p−1|ηi| ≤ ∥w∥q∥y∥p,

therefore, we have

∞∑
i=1

|ξi + ηi|p−1|ξi| = ∥w∥q∥x∥p,
∞∑
i=1

|ξi + ηi|p−1|ηi| = ∥w∥q∥y∥p.

In view of the equality condition for Hölder inequality, we have

|ξi|p∥w∥q = |ζi|q∥x∥p, |ηi|p∥w∥q = |ζi|q∥y∥p, i = 1, 2, . . . .

In view of x and y being nonzero, ∥x+ y∥p = ∥x∥p + ∥y∥p ̸= 0 and Eq. (3), we
have

|ηi|p =
∥y∥p
∥x∥p

|ξi|p, i = 1, 2, . . . .

Equivalently, we have for all i, |ηi| = α|ξi|, where α =
(

∥y∥p

∥x∥p

)1/p

. Combining

with Eq. (4), we have y = αx.

P. 38

Lemma (1, P. 38). Let X and Y be normed linear spaces. Consider the pro-
duce space X × Y with a norm ∥(x, y)∥ = max{∥x∥, ∥y∥}. Then if X or Y is
incomplete, then so is the product space.

Proof. Suppose that X is incomplete. Then there exists {xn} ⊂ X that is
Cauchy but not convergent. Therefore, the sequence {(xn, θ)} belongs to X×Y .
It is Cauchy, but not convergent. Thus, X × Y is incomplete.

P. 38

Lemma (2, P. 38). In a normed linear space, if a subset is complete, then it is
closed.

Proof. Since a convergent sequence is always Cauchy with the limit being unique,
and the subset is complete, then the subset is closed.

See also the discussion in [Note 5]. Note that in the context of metric space,
the term “subspace” has different meaning as it is used in [OVSM]. The term
“subspace” in a metric space context means a subset equipped with the induced
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metric of the overall metric space (cf. [Kreyszig P. 4]), as opposed to the defin-
tion of “subspace” given in [OVSM Definition P. 14] in a vector space setting.
Therefore, the term “subspace” in [Note 5] should be interpreted as a “subset”
if using the terminology of [OVSM].

P. 40 Let f be a real-valued functional defined on a normed space X. Its limit
superior at x0 is denoted by lim supx→x0

f(x) and defined as (according to [Ex.
49 in P. 50 and Ex. 50 in P.51, Royden])

lim sup
x→x0

f(x) = inf
δ>0

{
sup

{
f(x) : x ∈ S(x0, δ) \ {x0}

}}
, (5)

where S(x0, δ) = {x : ∥x − x0∥ < δ} ([P. 24, OVSM]). Also, compare this with
the incorrect definition of limit superior in [P. xvi, OVSM].

Lemma (P. 40). Let f be a real-valued functional defined on a normed space
X. Given a point x0 ∈ X, the following three statements are equivalent:

(a) ∀ε > 0, ∃δ > 0, such that f(x)− f(x0) < ε holds ∀x ∈ S(x0, δ).

(b) The inequality lim supx→x0
f(x) ≤ f(x0) holds.

(c) For all sequences {xn} such that xn → x0, lim supn→∞ f(xn) ≤ f(x0).

Proof. We will first show that (a) and (b) are equivalent, and then show that
(a) and (c) are equivalent.

To show that (b) implies (a), we introduce a function g : [0,∞) 7→ R ∪ {∞}
defined as

g(δ) =

{
sup

{
f(x) : x ∈ S(x0, δ) \ {x0}

}
, if δ > 0,

lim supx→x0
f(x), if δ = 0.

If g(0) = −∞, then for some large n so that f(x0) > −n, ∃δn > 0 such that
g(δn) < −n. In view of the definition of g, we have f(x) − f(x0) < ε for all
x ∈ S(x0, δn) and ε > 0. Note that f(x0) ∈ R in view of the definition of real-
valued functional. If g(0) > −∞, then g(0) ∈ R. In view of the definition (5),
we have g(δ) ≥ g(0) ∀δ ≥ 0. In addition, for all ε > 0, there exists some δ > 0,
such that g(δ) < g(0) + ε. Since g(0) ≤ f(x0), we then have g(δ) − f(x0) < ϵ.
In view of the definition of g, we obtain the statement (a).

To show that (a) implies (b), we prove the contraproposition. Suppose that the
inequality lim supx→x0

f(x) > f(x0) holds, namely g(0) > f(x0). If g(0) = ∞,
then according to (5), we have g(δ) = ∞ for all δ. This means for any δ, the
functional f(x) is unbounded above in S(x0, δ) \ {x0}, thus the statement (a)
is false. Otherwise, we have g(0) ∈ R. Then ∃δ̄ > 0 such that g(δ̄) ∈ R.
Since g is decreasing as δ decreases, we have g(δ) ∈ R for all δ ∈ [0, δ̄] (since

g(δ) ≥ g(0) > f(x0) > −∞ for all δ). Denote ε = g(0)−f(x0)
2 and ε > 0 according

to assumption. For all δ ∈ (0, δ̄], we have

∞ > g(δ) = sup
{
f(x) : x ∈ S(x0, δ) \ {x0}

}
≥ g(0) > f(x0).
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Consider the given ε introduced above. Due to the definition of supremum, for
all δ ∈ (0, δ̄], there exists some x ∈ S(x0, δ) \ {x0} such that f(x) > g(δ)− ε ≥
g(0) − ε = f(x0) + ε. For δ > δ̄, we have S(x0, δ̄) \ {x0} ⊂ S(x0, δ) \ {x0},
so for the given ε we can find x ∈ S(x0, δ) \ {x0} for all δ > 0 such that
f(x) > f(x0) + ε.

To show that (a) implies (c), we prove its contraproposition. Suppose there
exists a sequence {xn} such that xn → x0, and lim supn→∞ f(xn) > f(x0).

Denote f̄ = lim supn→∞ f(xn). If f̄ < ∞, then denote ε = f̄−f(x0)
2 . In addition,

we have
sup
n≥ℓ

f(xn) ≥ f̄ , ∀ℓ. (6)

Since xn → x0, thus for all δ > 0, ∃ℓ̄ such that {xn}n≥ℓ̄ ⊂ S(x0, δ). By (6), we

have supn≥ℓ̄ f(xn) ≥ f̄ . By the definition of supremum, there exists n̄ ≥ ℓ̄ such

that f(xn̄) > f̄ − ε = f(x0) + ε. The case where f̄ = ∞

To show that (c) implies (a), we also prove its contraproposition. Assume ∃ε > 0
such that ∀δ > 0, ∃xδ ∈ S(x0, δ) so that f(xδ) − f(x0) ≥ ε. Therefore, there
exists a sequence {xn} so that xn ∈ S(x0, 1/n) and f(xn) − f(x0) > ε for all
xn. Since ∥xn − x0∥ ∈ [0, 1/n), then

0 ≥ lim inf
n→∞

∥xn − x0∥ ≤ lim sup
n→∞

∥xn − x0∥ ≤ lim
n→∞

1

n
= 0 =⇒ lim

n→∞
xn = x0.

Since f(xn)− f(x0) > ε for all xn, then supn≥ℓ f(xn) ≥ f(x0) + ε for all ℓ. As
a result, we have lim supn→∞ f(xn) ≥ f(x0) + ε > f(x0).

Note that when establishing (a) implies (b), we show that the statement (a) is
false by identifying some x so that f(x) > f(x0) + ε. However, comparing this
with the inequality

f(x)− f(x0) < ε (7)

in the statement (a), the strict negation of (7) would be f(x) ≥ f(x0) + ε. The
difference here is due to that the following two statements are equivalent

(a) ∀ε > 0, ∃δ > 0, such that f(x)− f(x0) < ε holds ∀x ∈ S(x0, δ).

(a’) ∀ε > 0, ∃δ > 0, such that f(x)− f(x0) ≤ ε holds ∀x ∈ S(x0, δ).

Also refer to [Note 3] for the equality issue in the ϵ-δ definition.

P. 40 In the Example 1, we have

|f(x)| =
∣∣∣∣ ∫ 1

2

0

x(t)dt−
∫ 1

1
2

x(t)dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ 1
2

0

x(t)dt

∣∣∣∣+ ∣∣∣∣ ∫ 1

1
2

x(t)dt

∣∣∣∣
≤
∫ 1

2

0

|x(t)|dt+
∫ 1

1
2

|x(t)|dt ≤ ∥x∥.
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Suppose there exists x∗ ∈ C[0, 1] such that |f(x∗)| = ∥x∗∥, then the last in-
equality is in fact an equality. Suppose ∥x∗∥ = 1, then we have∫ 1

2

0

|x∗(t)|dt+
∫ 1

1
2

|x∗(t)|dt = 1. (8)

We will show that this implies two consequences: (1) ∀t ∈ [0, 1], |x∗(t)| = 1;
(2) ∀t1, t2 ∈ [0, 1], x(t1) = x(t2). To show the first one, suppose otherwise.
Then ∃t̂ such that |x∗(t̂)| < 1. Then by continuity, there exists some δ > 0
such that for all t ∈ [0, 1] ∩ (t̂− δ, t̂+ δ), |x∗(t)| < 1, which contradicts (8). To
show that (2) is true, assume otherwise. Then there exists some t1, t2 ∈ [0, 1]
such that x∗(t1) ̸= x∗(t2). Without loss of generality, suppose that t1 < t2 and
x∗(t1) = −1. Since x∗ ∈ C[0, 1], then by intermediate value theorem [Prop. 19,
P. 48, Royden], there exists some t̄ ∈ (t1, t2) such that x∗(t) = 0. Then for some
ε ∈ (0, 1), ∃δ > 0 such that |x∗(t)| < 1 ∀t ∈ (t̄− δ, t̄+ δ). Again, this contradicts
(8). So the above two properties hold. However, this means that

|f(x∗)| =
∣∣∣∣ ∫ 1

2

0

x∗(t)dt−
∫ 1

1
2

x∗(t)dt

∣∣∣∣ = 0,

which is a contradiction.

P. 42 Note that ∀m ∈ M , −m ∈ M , and ∃y ∈ [x] such that y = x + m.
Conversely, ∀y ∈ [x], ∃m ∈ M such that y = x+m. Therefore,

∥[x]∥ = inf
m∈M

∥x+m∥ = inf
m∈M

∥x−m∥ = inf
y∈[x]

∥y∥.

Suppose that ∥[x]∥ = 0 for some [x] ̸= θ. Then For every ε > 0, ∃m ∈ M , such
that ∥x −m∥ < ε. As a result, x is a closure point of M . In view of M being
closed, we have [x] = θ, which is a contradiction.

Chapter 3

P. 48 Note that there is a subtle point. We need to show that for x =
{ξ1, ξ2. . . . } and y = {η1, η2. . . . } that belong to the (real) l2 space, the value∑∞

i=1 ξiηi is well defined. That is, if we denote an =
∑n

i=1 ξiηi, then we need to
show that the sequence {an} is convergent. This is established by [Lemma
P. 29]. Therefore, an → (x | y). Since |an| ≤ |bn| = bn, taking limit on
both sides as both {an} and {bn} converge, by the continuity of | · |, we have
|(x | y)| ≤

∑∞
i=1 |ξiηi| ≤ ∥x∥∥y∥.

P. 50 Note that the logically correct statement shall be that if there exists
m0 ∈ M such that m0 is the minimizing vector, then for all m1 ∈ M such that
m1 is the minimizing vector, m1 is unique. This statement is logically equivalent
to the following one: for all m0 ∈ M such that m0 is the minimizing vector, m0

is unique.
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Symbolically, the first statement above has the structure

∃xP1(x) =⇒ ∀y
(
P1(y) =⇒ P2(y)

)
,

which is logically equivalent to

∀x
(
P1(x) =⇒ P2(x)

)
,

cf. [Note 4]. On the other hand, the statement

∃xP0(x) =⇒ ∀y
(
P1(y) =⇒ P2(y)

)
,

can be implied, but not equivalent to

∀x
(
P1(x) =⇒ P2(x)

)
.

This is because that it is possible that the statement P0(x) is false for all x,
thus the condition is never fulfilled.

P. 50

Lemma (P. 50). Let M be a subspace in a pre-Hilbert space. Then for every
vector x in its orthogonal complement M⊥, there exists a unique vector m0 ∈ M
such that ∥x−m0∥ ≤ ∥x−m∥. Moreover, m0 ≡ θ for all x ∈ M⊥.

Proof. The proof is obtained by noting that x ⊥ M implies (x − θ) ⊥ M , and
by applying [OVSM Thm. 1, P. 50].

P. 52 By examing the proof arguments, we see that [OVSM Prop. 1 (1), (2), (3)
and (4), P. 52] hold in a pre-Hilbert space setting. This is stated in [Berberian
Thm. 1, P. 59, Thm. 2, P. 60].

P. 52

Lemma (1, P. 52). Let N be a subspace in a normed space. Then N is a
subspace.

Proof. For x, y ∈ N , there exists sequences {xn}, {yn} ⊂ N such that xn →
x and yn → y. Since N is a subspace, then for any scalars α, β, we have
αxn+βyn ∈ N and αxn+βyn → αx+βy, which means thatN is a subspace.

Lemma (2, P. 52). Let S be a subset in a pre-Hilbert space. Then S⊥ = ([S])⊥.

Proof. Since S ⊂ [S], we have ([S])⊥ ⊂ S⊥ by [OVSM, Prop. 1 (3), P. 52].
Conversely, if x ∈ S⊥, then x ⊥ y for all y ∈ S. Since for all z ∈ [S], z =∑m

i=1 αiyi for some scalars αi and yi ∈ S and m < ∞, then we have x ⊥ z.
Therefore, S⊥ ⊂ ([S])⊥.

Lemma (3, P. 52). Let S be a subset in a pre-Hilbert space. Then S⊥ = (S)⊥.

10



Proof. Since S ⊂ S, we have (S)⊥ ⊂ S⊥ by [OVSM, Prop. 1 (3), P. 52].
Conversely, if x ∈ S⊥, then x ⊥ y for all y ∈ S. Since for all z ∈ S, there exists
{zn} ⊂ S such that zn → z, and (x | zn) = 0 for all n. By continuity of inner
product, we have x ⊥ z, which means S⊥ ⊂ (S)⊥.

Lemma (4, P. 52). Let S be a subset of a Hilbert space. Then S⊥⊥ = [S].

Proof. Denote M = [S]. Then by [Lemma 1, P. 52], M is a closed subspace. By
[OVSM, Thm. 1, P. 53], we have M = M⊥⊥. We will show that S⊥ = M⊥. By
applying [Lemma 2, P. 52], we have S⊥ = ([S])⊥. Then applying [Lemma 3, P.
52] with N = [S], we have the desired result.

In the proof of [Lemma 4, P. 52], since we rely on [OVSM, Thm. 1, P. 53], the
proof of which relies on the projection theorem of Hilbert space for existence,
so [Lemma 4, P. 52] holds true only for Hilbert space, but not for pre-Hilbert
space.

Lemma (5, P. 52). Let S be a subset in a pre-Hilbert space. Then S∩S⊥ ⊂ {θ}.

Proof. For all s ∈ S∩S⊥, it holds that (s | s) = 0. The only element that fulfills
the property is θ. Therefore, S ∩ S⊥ = {θ} or S ∩ S⊥ = ∅.

P. 53 Here in this note we use the notation ⊕ slightly different from the defini-
tion given in [OVSM P. 53]. Let M and N be two subspaces in a vector space
X. Then we write M + N = M ⊕ N if every vector x ∈ M + N has unique
representation x = m + n where m ∈ M and n ∈ N . Therefore, the difference
here is that we allow the case where M +N ̸= X.

Lemma (1, P. 53). Let M and N be two subspaces in a vector space. Then
M +N = M ⊕N if and only if M ∩N = {θ}.

Proof. If x ∈ M∩N and x ̸= θ. Then 2x ∈ M∩N since M and N are subspaces.
As a result, 2x = 2x+ θ = x+ x, where 2x, x ∈ M , and θ, x ∈ N .

Conversely, if x ∈ M +N such that x = m1 + n1 = m2 + n2 with m1,m2 ∈ M
and n1, n2 ∈ N such that m1 ̸= m2 and n1 ̸= n2. As a result, we have
m1 − m2 = n2 − n1. However, m1 − m2 ∈ M , and n2 − n1 ∈ N . Thus,
m1 −m2 ∈ M ∩N and m1 −m2 ̸= θ.

P. 53

Lemma (2, P. 53). Let M be a finite-dimensional subspace of a pre-Hilbert
space X. Then X = M ⊕M⊥, and M = M⊥⊥.

Proof. Let x ∈ X, and consider the space generated by {x}∪M . This is a finite-
dimensional subspace and is thus complete. We denote this space asH. Then by
projection theorem, there exits a unique m0 ∈ M such that ∥x−m0∥ ≤ ∥x−m∥
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for all m ∈ M , and n0 = x−m0 ∈ M⊥. Therefore, x = m0 + n0 with m0 ∈ M
and n0 ∈ M⊥.

To show the representation is unique, suppose that x = m1 + n1 with m1 ∈ M
and n1 ∈ M⊥. Then we have θ = m0 −m1 + n0 − n1 with m0 −m1 ∈ M and
n0 − n1 ∈ M⊥. By Pythagorean theorem, ∥θ∥2 = ∥m0 − m1∥2 + ∥n0 − n1∥2.
This implies that m0 = m1 and n0 = n1.

To show that M = M⊥⊥, we only need to show that M⊥⊥ ⊂ M in view of
[OVSM Prop. 1.2, P. 52]. Let x ∈ M⊥⊥, then by the first part of the lemma,
we have x = m+n withm ∈ M and n ∈ M⊥. SinceM ⊂ M⊥⊥, thenm ∈ M⊥⊥.
As a result, we have n = x − m ∈ M⊥⊥ since M⊥⊥ is a subspace. However,
n ∈ M⊥. Thus, n ⊥ n, which means n = θ. Therefore, x = m ∈ M .

P. 55 Note that the results of this section hold true in a pre-Hilbert setting.
To see this, let y1, y2, . . . , yn, as well as x, be elements of a pre-Hilbert space.
Denote as Ĥ the space generated by the set {y1, y2, . . . , yn, x}. Then, by [OVSM,
Thm. 2, P. 38], we have that the space Ĥ is a Hilbert space. In addition, by
[OVSM, Thm. 2, P. 38] as well as [Lemma 2, P. 38], we have the subspace M
generated by vectos y1, y2, . . . , yn being closed. Then by applying the classical
projection theorem on Ĥ, we have the existence result.

P. 56 As is commented in [P. 55], [OVSM Prop. 1, P. 56] holds true in a
pre-Hilbert setting.

P. 59 Note that in [OVSM Thm. 1, P. 59], the if part requires the space being
Hilbert, while the only if part holds in a pre-Hilbert setting. In addition, the
Bessel’s inequality [OVSM Lemma 1, P. 59] holds true in a pre-Hilbert setting,
cf. [Berberian Thm. 3, P. 45, Corollary, P. 46].

P. 60

Lemma (1, P. 60). Let S1 and S2 be two subspaces of a linear space, and S be
their union, i.e., S = S1 ∪ S2. Then [S] = S1 + S2.

Proof. First, for every s ∈ S1 + S2, there exists s1 ∈ S1 and s2 ∈ S2 such that
s = s1 + s2. As a result, s is linear combination of vectors in S, thus s ∈ [S].
Conversely, for s ∈ [S], we have s =

∑n
i=1 αis

i
1 +

∑m
i=1 βis

i
2, where n,m are

nonnegative integers, αi, βi are scalars, and si1 ∈ S1 and si2 ∈ S2. Since S1

and S2 are subspaces, then
∑n

i=1 αis
i
1 ∈ S1 and

∑m
i=1 βis

i
2 ∈ S2. Therefore,

s ∈ S1 + S2.

Lemma (2, P. 60). Let M be a closed subspace in a normed linear space, and
a be a nonzero vector of the normed linear space. Denote as S the union of {a}
and M , i.e., S = {a} ∪M . Then [S] = [S].

Proof. Denote A = [{a}], and C = A ∪M . We will first show that [S] = [C].
Note that S ⊂ C, so [S] ⊂ [C]. Conversely, for x ∈ [C], it is a linear combination
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of elements in A and C. Since A = [{a}], so x is linear combination of elements
in S. Thus [S] = [C]. Then by [Lemma 1, P. 60], we have [S] = A+M .

If a ∈ M , then S = [S] = M and M is closed by assumption, and the proof is
done. Otherwise, denote

δ = inf
m∈M

∥a+m∥.

Since a ̸∈ M and M is closed, we have δ > 0. In addition, we also have

inf
m∈M

∥αa+m∥ ≥ |t|δ (9)

hold for all scalars t. To see this, note that when α = 0, it trivially holds.
Otherwise, ∥αa+m∥ = |α|∥a+m/α∥, and the inequality follows.

Let s ∈ [S], then there exists {sn} ⊂ [S] such that sn → s. Since [S] = A+M ,
we can write sn = αna+mn, where αn are scalars, and {mn} ⊂ M . Since the
sequence {sn} is convergent, it is Cauchy. In addition,

∥sn − sℓ∥ = ∥αna+mn −αℓa−mℓ∥ = ∥(αn −αℓ)a+ (mn −mℓ)∥ ≥ |αn −αℓ|δ,

where the last inequality is due to Eq. (9). As a result, the sequence of scalars
{αn} is also Cauchy, and we denote its limit as α. Denote m = s− αa. Clearly
αa ∈ A, and s is a vector of the linear space. As a result, m is a vector of
the linear space. We will show that mn → m, and then by closedness of M , it
follows that m ∈ M and s = αa+m ∈ A+M . Indeed, we have

∥mn −m∥ =∥mn − (s− αa)∥ = ∥mn − s+ αa+ αna− αna∥
=∥(mn + αna)− s+ αa− αna∥ = ∥sn − s+ αa− αna∥
≤∥sn − s∥+ |αn − α|∥a∥.

Therefore, mn → m, and by closedness of M , we have m ∈ M , and s ∈ A+M =
[S].

With above results, one may be tempted to relax the completeness property of
H in [OVSM Thm. 2, P. 60], by using the arguments discussed in [P. 55], namely
considering the subspace generated by {x}∪M as the overall space. As is shown
in [Lemma 2, P. 60], this subspace is closed with respect to H. However, since
it is infinite dimensional, if the underlying space H is not complete, then the
subspace generated by {x} ∪ M may not be complete either. Note that the
proof of [OVSM Thm. 2, P. 60] relies on the if part of [OVSM Thm. 1, P. 59],
which in turn relies on the completeness. Therefore, it is necessary to require
the underlying space to be Hilbert.

On the other hand, it is possible for a incomplete normed linear space to have
an infinite dimensional subspace that is complete. To see this, we consider the
construction used in [Lemma 1, P. 38], where we have two spaces X and Y .
Let X be [OVSM Example 2, P. 34], which is incomplete. Let Y = l1, which is
complete. In addition, denote en ∈ Y as the sequence with nth element being 1,
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and 0 otherwise. So {en} is orthonormal. Then the closed subspace generated
by {en} is Y . To see this, assume y = {η1, η2, . . . } ∈ Y such that y ⊥ en for
all n. Then ηn = 0 for all n. Thus y = θ. Then by [OVSM Lemma 1, P.
61], we reach above conclusion. Now consider the closed subspace generated by
{(θ, en)}. This space is {θ} × Y , which is complete.

P. 60 Note that the conclusion here is true in a pre-Hilbert setting. The reason
is that for every vector x in M , the target to which the constructed Cauchy
sequence converges is known (namely X), so the completeness condition is not
needed. We state and prove the result below. The proof approach follows the
proof of [Deitmar Thm. 2.3.3, P. 33].

Lemma (3, P. 60). Let {ei} be an orthonormal sequence in a pre-Hilbert space
X, and denote as M the closed subspace generated by {ei}, i.e., M = [{ei}].
Then for every x ∈ M , it can be expressed as the limit of an infinite series
of the form x =

∑∞
i=1 αiei. Moreover, the parameters are uniquely given as

αi = (x | ei).

Proof. Let x be some vector in the pre-Hilbert space. Denote as sn the partial
sum of infinite series, i.e., sn =

∑n
i=1 αiei, where αi = (x | ei). Then by Bessel’s

inequality (which holds in a pre-Hilbert space setting, cf. [P. 59]), we have∑∞
i=1 |αi|2 ≤ ∥x∥2, namely, for every x, the sequence {αi} is in l2. Thus, we

introduce a mapping T : X 7→ l2 as T (x) = {αi}. It can be seen that the
mapping is linear. In view of Bessel’s inequality, we have ∥T (x)∥ ≤ ∥x∥. (Note
that the norm on T (x) is l2 norm, while the norm on x is the one on the
pre-Hilbert space X.) Due to this inequality, we have that xn → x implies
T (xn) → T (x). To see this, we note first that

∥T (xn)− T (x)∥ = ∥T (xn − x)∥ ≤ ∥xn − x∥ =⇒
lim sup ∥T (xn)− T (x)∥ = lim sup ∥T (xn − x)∥ ≤ lim sup ∥xn − x∥ = lim ∥xn − x∥ = 0.

In addition, we have that lim inf ∥T (xn)−T (x)∥ ≥ 0. Therefore, T (xn) → T (x).
On the other hand, ∥T (s)∥ = ∥s∥ for all s ∈ [{ei}]. By continuity of norm, for all
x ∈ M , ∥T (x)∥ = ∥x∥. Again, for every x ∈ M , we note that lim sup ∥x−sn∥2 =
∥x∥2 −

∑∞
i=1 |αi|2 = ∥x∥2 − ∥T (x)∥2 = 0. Therefore, sn → x.

To see the representation is unique, for every {βi} ∈ l2 such that ŝn → x, where
ŝn =

∑n
i=1 βiei, we see that for every i, (x − ŝn | ei) becomes constant once

n ≥ i. Taking limit limn→∞(x − ŝn | ei) = 0, we have that (x − βiei | ei) = 0,
which implies βi = (x | ei).

Next lemma is a special case of the above result. The proof is identical, and is
thus neglected. Note that in [OVSM Definition, P. 60], complete orthonormal
sequence is defined for Hilbert space. The following lemma stretch the definition
a bit, and uses the same meaning for a sequence in a pre-Hilbert space.

Lemma (4, P. 60). Let {ei} be a complete orthonormal sequence in a pre-Hilbert
space X. Then for every x ∈ X, it can be expressed as the limit of an infinite
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series of the form x =
∑∞

i=1 αiei. Moreover, the parameters are uniquely given
as αi = (x | ei).

P. 61

Lemma (1, P. 61). Let {ei} be a complete orthonormal sequence in a pre-Hilbert
space X. Then the only vector orthogonal to each of ei’s is the null vector.

Proof. Let x ∈ X be orthogonal to each of ei’s, i.e., x ⊥ ei for all i. By [Lemma
4, P. 60], we have that x =

∑∞
i=1 αiei, where αi = (x | ei). Namely sn → x,

where sn =
∑n

i=1 αiei. Since x ⊥ ei, then sn ≡ θ. Therefore, x = lim sn =
θ.

Lemma (2, P. 61). Let {ei} be a orthonormal sequence in a Hilbert space H.
The sequence {ei} is complete if and only if the only vector orthogonal to each
of ei’s is the null vector.

Proof. The only if part is given by [Lemma 1, P. 61]. We prove the if part here
via proving its contraposition. Denote as M the closed subspace generated by
{ei}, i.e., M = [{ei}]. Assume M̃ = H \M ̸= ∅. Then for all x ∈ M̃ , we have
δ = infy∈M ∥x− y∥ > 0, as otherwise x would be a closure point of M and thus
belongs to M . Since M is closed and H is Hilbert, there exists x̂ ∈ M such that
(x− x̂) ⊥ M , and x− x̂ ̸= θ. As a result, (x− x̂) ⊥ ei for all i.

Note that in view x ̸∈ M , we have δ = infy∈M ∥x−y∥ > 0 (in fact, we also have
infy∈M ∥x − y∥ = infy∈[{ei}] ∥x − y∥). This means that there exists {yn} ⊂ M
such that limn→∞ ∥yn − x∥ = δ. As a result, we have {yn} is Cauchy. At this
point, we cannot proceed if the space is pre-Hilbert. On the other hand, if H
is Hilbert, then we know {yn} is convergent, and its limit x̂ exists in M . Then
by [OVSM Thm. 1, P. 50], (x− x̂) ⊥ ei for all i.

P. 64 The following result is the linear variety counter part of [OVSM Thm. 1,
P. 50]. The proof is obtained via applying [OVSM Thm. 1, P. 50] and is thus
neglected.

Lemma (P. 64). Let M be a subspace in a pre-Hilbert space X. Let x be a
fixed element in X and V be a linear variety x +M . For some x0 ∈ V , it has
minimum norm among all elements in V if and only if x0 is orthogonal to M .
In addition, the vector x0 ∈ V that has minimum norm is unique if it exists.

P. 65

Lemma (1, P. 65). Let X be a pre-Hilbert space and {y1, y2, . . . , yn} a set of
linearly independent vectors in X. Let M be the (closed) subspace generated by
yi’s. Then for every set of scalars {c1, c2, . . . , cn}, there exists a vector x ∈ M
such that

(x | yi) = ci, i = 1, 2, . . . , n.
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Proof. By [OVSM Prop. 1, P. 56], the Gram G of yi’s is invertable, then
x =

∑n
i=1 αiyi fulfills the condition, where α = [α1 α2 . . . αn]

′, and α =
(G′)−1[c1 c2 · · · cn]′.

Lemma (2, P. 65). Let X be a pre-Hilbert space, {y1, y2, . . . , yn} be a set of
linearly independent vectors in X and M be the (closed) subspace generated by
yi’s. Let {c1, c2, . . . , cn} be a set of given scalars and define set C as

C = {x : x ∈ X, (x | yi) = ci, i = 1, 2, . . . , n}.

Then there exists x0 ∈ X such that

∥x0∥ = inf
y∈C

∥y∥.

Moreover, the minimizing vector is unique and belongs to the subspace M .

Proof. By [Lemma 1, P. 65], we know that C ̸= ∅. Let y ∈ C be some vector.
Then by proving C ⊂ (y +M⊥) and (y +M⊥) ⊂ C, we have C = y +M⊥. In
addition, by [OVSM Prop. 1.2, P. 52], as well as [P. 52] in this note, we have
M ⊂ M⊥⊥.

By [OVSM Prop. 1, P. 56], the Gram G of yi’s is invertable. Consider the
vector x defined as x =

∑n
i=1 αiyi, where α = [α1 α2 . . . αn]

′, and α =
(G′)−1[c1 c2 · · · cn]′. Then one can see that x ∈ C. Moreover, x ∈ M ⊂ M⊥⊥.
By [Lemma, P. 64], x has minimum norm among all vectors in V , and x ∈
M .

P. 67 The [OVSM Fig. 3.5, P. 67] illustrates why the result [Lemma 2, P. 65]
holds true in a pre-Hilbert setting. The reason is that since the codimension
n is finite, and we can construct within the finite dimensional subspace M a
projection x0 of x, thus, the minimum distance from x to M⊥ is automatically
resolved, with the minimum distance given as ∥x0∥.

P. 69 Given two subsets B and C, we define their difference B − C as B +
(−C).

Lemma (1, P. 69). Let A, B and C be some subsets in a vector space such that
A = B + C. Then B ⊂ (A− C).

Proof. When B or C is empty set, the relation holds true. So we consider the
case where B ̸= ∅ and C ̸= ∅. Thus A ̸= ∅. Let b ∈ B, then for some c ∈ C, we
have b+ c ∈ A. Thus b ∈ (A− C).

Note that the converse may not be true. Consider B = [0, 1], and C = (0,∞).
Then we have A = C = (0,∞). In addition, we have A− C = R ̸= B.

For the sum of two sets B and C, if C is a singleton {x}, we write B + C as
x+B.
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Lemma (2, P. 69). Let x be a fixed vector, and A, B be some subsets in a vector
space such that A = x+B. Then B = A− x.

Proof. We have shown that C ⊂ A − x by [Lemma 1, P. 69]. Let b ∈ (A − x),
then there exists a ∈ A such that b = a − x. Due to the definition of A, given
a ∈ A, there exists b̂ ∈ B such that b̂ + x = a. Therefore, we have b̂ = b, thus
b ∈ B.

The next result can be verified through the definition of compactness.

Lemma (3, P. 69). Let K be a compact set in a normed linear space. Then for
every scalar α, the set αK is compact.

The next result can be verified by definition of convergence.

Lemma (4, P. 69). Let {αi} be a scalar sequence. Then αi → 0 if and only if
|αi| → 0.

Lemma (5, P. 69). Let A, B and K be some subsets in a normed linear space
such that K is compact and A = B +K. If B is closed, then A is closed.

Proof. Let a ∈ A. Then there exists {ai} ⊂ A such that ai = bi + ki, bi ∈ B,
ki ∈ K, and ai → a. Since K is compact, there exists a subsequence {kin} ⊂
{ki} such that kin → k ∈ K. We will show that the subsequence {bin}, with the
same indices as {kin}, is convergent. To see this, we note that {ai} is convergent.
Therefore, the subsequence {ain} is convergent to a. Denote b = a − k. Since
we have that

∥ain − a∥ = ∥bin + kin − (b+ k)∥ ≥ |∥bin − b∥ − ∥kin − k∥|.

Taking limit superior and limit inferior on both sides, we have |∥bin − b∥ −
∥kin − k∥| → 0. By [Lemma 4, P. 69], we have lim ∥bin − b∥ = 0. As a result,
b is a closure point of B. Since B is closed, then we have b ∈ B. As a result,
b+ k = a ∈ A.

Note that the converse may not be true. Consider B = Q, the rational numbers,
and K = [0, 1]. Then we have A = R. In this case, A is closed, but B is
not.

Lemma (6, P. 69). Let x be a fixed vector, and A, B be some subsets in a
normed linear space such that A = x+B. Then A is closed if and only if B is
closed.

Proof. The if part is proven by noting that {x} is compact, and then applying
[Lemma 5, P. 69]. To see the only if part, we first note that B = A − x by
[Lemma 2, P. 69]. Since {−x} is compact, then by [Lemma 5, P. 69], we see
that set B, as the sum of closed set A and a compact set {−x}, is closed.
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P. 69We carry out the detailed computation here. Since y(t)−xn(t) =
∫ t

0
[u(τ)−

un(τ)]dτ , we have

|y(t)− xn(t)|2 =

∣∣∣∣ ∫ t

0

1 · [u(τ)− un(τ)]dτ

∣∣∣∣2 = |(e |u− un)[0,t]|2,

where e(τ) ≡ 1 for τ ∈ [0, t] and (· | ·)[0,t] is the inner product for the space
L2[0, t]. (Note that in the expression (e |u − un)[0,t], the notation u in fact

represents the restriction u
∣∣
[0,t]

, so that it is an element of L2[0, t]. The same

applies to un. It should be clear from context whether u and un represents
vectors in L2[0, t] or L2[0, T ].) Then by Cauchy-Schwarz inequality for the
space L2[0, t], we have

|(e |u− un)[0,t]|2 ≤ ∥e∥2[0,t]∥u− un∥2[0,t] = t

∫ t

0

|u(τ)− un(τ)|2dτ,

where ∥ · ∥[0,t] is the 2-norm for L2[0, t]. Since the right hand side of the equal-
ity above increases with t, therefore, by combining the relations together, we
get

|y(t)− xn(t)|2 ≤ T

∫ T

0

|u(τ)− un(τ)|2dτ = T∥u− un∥2, ∀t ∈ [0, T ],

where ∥ · ∥ represents the norm for L2[0, T ]. Then we have∫ T

0

|y(t)− xn(t)|2dt ≤
∫ T

0

T∥u− un∥2dt = T 2∥u− un∥2,

namely ∥y − xn∥ ≤ T∥u− un∥.

P. 69 Let X and U be two pre-Hilbert spaces with inner products (· | ·)X and
(· | ·)U , and norms ∥ · ∥X and ∥ · ∥U respectively. Then the default inner product
(· | ·) for X × U is given as(

(x1, u1)
∣∣ (x2, u2)

)
= (x1 |x2)X + (u1 |u2)U ,

which can be verified fulfilling the inner-product axioms. The norm ∥ · ∥ for
X × U is similarly defined through

∥(x, u)∥ =
√
∥x∥2X + ∥u∥2U .

Therefore, if the sequence {(xn, zn)} ⊂ X ×U converges to (x, u), then one can
verify that the sequences {xn} ⊂ X and {un} ⊂ U are both convergent with
limits x and u respectively.

P. 69 The latter part of [OVSM Thm. 1, P. 69] is stated for the real Hilbert
space case. The following lemma extends the theorem, which is applicable to
complex vector space.
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Lemma (7, P. 69). Let x be a vector in a pre-Hilbert space X and let K be a
closed convex subset contained in a finite-dimensional subspace M . Then there
is a unique vector k0 ∈ K such that

∥x− k0∥ ≤ ∥x− k∥

for all k ∈ K. Furthermore, a necessary and sufficient condition that k0 be the
unique vector is that (x− k0 | k − k0) + (k − k0 |x− k0) ≤ 0 for all k ∈ K.

Proof. We consider the subspace generated by {x} ∪M . This subspace is finite
dimensional thus complete. We denote the space as H, which is a Hilbert space
itself. The existence and uniqueness part of the proof follows exactly the same
approach as is used to prove [OVSM Thm. 1, P. 69] by focusing on the complete
subspace H.

For the second part of the proof, denote as x0 the minimizing vector. Assume
to the contrary that there exists some k1 such that (x − k0 | k1 − k0) + (k1 −
k0 |x−k0) = 2ε > 0. Consider the vector kα = k0+(1−α)k1; 0 ≤ α ≤ 1. Since
K is convex, then kα ∈ K for all α. Also,

∥x− kα∥2 =∥(1− α)(x− k0) + α(x− k1)∥2

=
(
(1− α)(x− k0) + α(x− k1)

∣∣ (1− α)(x− k0) + α(x− k1)
)

=(1− α)2∥x− k0∥2 + α(1− α)(x− k1 |x− k0)+

α(1− α)(x− k0 |x− k1) + α2∥x− k1∥2.

The quantity ∥x− kα∥2 is a differentiable function of αwith derivative at α = 0
equal to

d

dα
∥x− kα∥2

∣∣
α=0

=− 2∥x− k0∥2 + (x− k1 |x− k0) + (x− k0 |x− k1)

=− 2(x− k0 |x− k0) + (x− k1 |x− k0) + (x− k0 |x− k1)

=− (k1 − k0 |x− k0)− (x− k0 | k0 − k1) = −2ε < 0.

Thus for some small positive α, ∥x − kα∥ < ∥x − k0∥, which contradicts the
minimizing property of k0.

Conversely, suppose that k0 ∈ K such that (x−k0 | k−k0)+(k−k0 |x−k0) ≤ 0
for all k ∈ K. Then for every k ∈ K and k ̸= k0. we have

∥x− k∥2 =|x− k0 + k0 − k∥2

=
(
(x− k0) + (k0 − k)

∣∣ (x− k0) + (k0 − k)
)

=∥x− k0∥2 + (k0 − k |x− k0) + (x− k0 | k0 − k) + ∥k0 − k∥2

=∥x− k0∥2 + ∥k0 − k∥2 − (k − k0 |x− k0)− (x− k0 | k − k0) > ∥x− k0∥2.
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Chapter 4

P. 81 Suppose {y1, y2, . . . , ym} is a collection of n-dimensional random vectors.
Consider the Hilbert space H of n-dimensional random vectors consisting of
all vectors whose components are linear combinations of the components of
yi’s. Denote as eℓ the n-dimensional vector with ℓ-th element being 1 and 0
otherwise. Then we introduce n-dimensional random vectors vℓij , i = 1, 2, . . . ,m,

j = 1, 2, . . . , n, and ℓ = 1, 2, . . . , n defined as vℓij = yijeℓ. We can see that an

arbitrary element in H can be described as linear combinations of vℓij ’s, and the

number of vℓij ’s are mn2.

In the context of minimum-variance unbiased estimation or minimum-variance
estimation, as well as recursive estimation, given a collection of n-dimensional
random vectors {y1, y2, . . . , ym} and/or p-dimensional random vectors {x1, x2, . . . , xq},
we would like to estimate a p-dimensional random vector β. Since the estima-
tion of the random vector β can be decomposed as estimating each of its element
βi independently, cf. [OVSM P. 85, P. 86, P. 88], it is better to interpret the
underlying Hilbert space as one composed of random variables, which is denoted
as H, instead of one composed of random vectors like H. In this way, if both
{y1, y2, . . . , ym} and {x1, x2, . . . , xq} are involved, the dimension of H can be at
most mn+ pq. The reason for the preference of H over H is that the involved
random vectors may be of different dimensions. Thus, we regard all the random
vectors involved as a compact form of describing several random variables si-
multaneously. As a result, the matrices involved are compact representation of
describing several linear combinations simultaneously. For example, if we would
like to find the projection β̂ of β to {y1, y2, . . . , ym}, and suppose

β̂ = K1y1 +K2y2 + · · ·+Kmym,

where Ki’s are p × n matrices. Then the i-th row of K = [K1 K2 . . . Km] is

linear coefficients for representing β̂i, and K is a compact representation to
group together the coefficients of all β̂i’s.

P. 85 For this Hilbert space of random variables, the elements that are relevant
to the estimation problem are ε1, ε2, . . . , εm, and constant 1. Therefore, yi is
linear combination of the εi and 1. In addition, the constraint E(β̂i) = βi is in
fact (k′iy | 1) = βi.

P. 92

Lemma (1, P. 92). Let Y1 and Y2 be two subspaces in a vector space. Then
Y1 + Y2 = [Y1 ∪ Y2].

Proof. We first show that [Y1 ∪ Y2] ⊂ Y1 + Y2. For x ∈ [Y1 ∪ Y2], there exists yi,
i = 1, 2, . . . , n with n < ∞ such that x =

∑n
i=1 αiyi for some scalars αi. Define

Iℓ = {i : yi ∈ Yℓ}, ℓ = 1, 2. Then

x =
∑
i∈I1

αiyi +
∑
i∈I2

αiyi.
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(For the special case where Iℓ = ∅, the corresponding sum shall be interpreted
according to [P. 16].) Since Y1 and Y2 are subspaces, we have that

∑
i∈I1

αiyi ∈
Y1 and

∑
i∈I2

αiyi ∈ Y2.

Conversely, if x ∈ Y1 + Y2, then there exists y1 ∈ Y1 and y2 ∈ Y2 such that
x = y1 + y2, where the right hand side is a linear combination of elements in
Y1 ∪ Y2.

Lemma (2, P. 92). Let Y1 and Y2 be two subspaces in a Hilbert space. In
addition, Y1 is closed. Then Y1 + Y2 = Y1 ⊕ Ỹ2, where Ỹ2 = (Y1 + Y2) ∩ Y ⊥

1 .

Proof. First, we note that since Y1+Y2 is a subspace according to [Lemma 1, P.
92], Ỹ2 is a subspace according to [OVSM Prop. 1, P. 15]. In addition, Ỹ2 ⊂ Y ⊥

1

implies that Y1 + Ỹ2 = Y1 ⊕ Ỹ2 according to [Lemma 1, P. 53].

Let x ∈ Y1 +Y2. Then x = y1 + y2 with y1 ∈ Y1 and y2 ∈ Y2. By the projection
theorem [OVSM Thm. 2, P. 51], ∃ŷ2 ∈ Y1 and ỹ2 ∈ Y ⊥

1 such that y2 = ŷ2 + ỹ2.
In addition, we have ỹ2 = −ŷ2+y2 ∈ Y1+Y2 since −ŷ2 ∈ Y1. Therefore, ỹ2 ∈ Ỹ2.
As a result, x = (y1 + ŷ2) + ỹ2 ∈ Y1 ⊕ Ỹ2.

Conversely, let x = y1 + ỹ2 with y1 ∈ Y1 and ỹ2 ∈ Ỹ2. Then ỹ2 = z1 + z2 with
z1 ∈ Y1 and z2 ∈ Y2. Consequently, we have that x = (y1 + z1) + z2, which can
be seen as an element in Y1 + Y2.

Lemma (3, P. 92). Let Y1 and Y2 be two subspaces in a pre-Hilbert space.
In addition, Y1 is finite-dimensional. Then Y1 + Y2 = Y1 ⊕ Ỹ2, where Ỹ2 =
(Y1 + Y2) ∩ Y ⊥

1 .

Proof. The proof is nearly identical to that of [Lemma 2, P. 92]. The difference
is that when showing that x ∈ Y1 + Y2 implies x ∈ Y1 + Ỹ2, we apply [Lemma
2, P. 53] in place of the projection theorem [OVSM Thm. 2, P. 51].

Lemma (4, P. 92). Let Y1 be a closed subspace in a Hilbert space. Let Y2

be a subspace spanned by a finite set of vectors {y1, y2, . . . , yn}, i.e., Y2 =
[{y1, y2, . . . , yn}]. Denote as ŷi the projection of yi on Y1, i = 1, 2, . . . , n. Then
Y1+Y2 = Y1⊕Ỹ2, where Ỹ2 = [{ỹ1, ỹ2, . . . , ỹn}], with ỹi = ŷi−yi, i = 1, 2, . . . , n.

Proof. First, by proving that Ỹ2 ⊂ Y ⊥
1 and applying [Lemma 1, P. 53], we see

that Y1 + Ỹ2 = Y1 ⊕ Ỹ2.

For x ∈ Y1+Y2, there exists z1 ∈ Y1 and z2 ∈ Y2 such that x = z1+z2. According
to the definition of Y2, we have that z2 =

∑n
i=1 αiyi =

∑n
i=1 αiŷi +

∑n
i=1 αiỹi

for some scalars αi. Therefore, x =
(
z1 +

∑n
i=1 αiŷi

)
+
∑n

i=1 αiỹi ∈ Y1 ⊕ Ỹ2.

Conversely, if x ∈ Y1⊕ Ỹ2, then x = z1+ z̃2 for some z1 ∈ Y1 and z̃2 ∈ Ỹ2. Since
z̃2 is linear combination of ỹi’s, while ỹi = yi − ŷi, we can see that x can be
written as sum of two vectors from Y1 and Y2.
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Lemma (5, P. 92). Let Y1 be a finite-dimensional subspace in a pre-Hilbert
space. Let Y2 be a subspace spanned by a finite set of vectors {y1, y2, . . . , yn}, i.e.,
Y2 = [{y1, y2, . . . , yn}]. Then every yi has a projection ŷi on Y1, i = 1, 2, . . . , n.
In addition, Y1 + Y2 = Y1 ⊕ Ỹ2, where Ỹ2 = [{ỹ1, ỹ2, . . . , ỹn}], with ỹi = ŷi − yi,
i = 1, 2, . . . , n.

Proof. The proof is identical as the one for [Lemma 4, P. 59], once we restreat the
analysis within the subspace Y1+Y2, which is finite dimensional since Y1+Y2 =
[Y1 ∪ Y2] according to [Lemma 1, P. 92], thus complete.

Lemma (6, P. 92). Let Y1 and Y2 be subspaces in a Hilbert space H such that
Y1 is closed, Y2 is compact, and Y2 ⊂ Y ⊥

1 . Then we have Y1 + Y2 = Y1 ⊕ Y2.
Besides, for all x ∈ H, there exists a unique vector x̂ ∈ Y1 ⊕ Y2 such that
∥x− x̂∥ ≤ ∥x− z∥ for all z ∈ Y1 ⊕ Y2. In addition, let the projection of x on Y1

and Y2 be ŷ1 and ŷ2 respectively, then x̂ = ŷ1 + ŷ2.

Proof. To see that Y1 + Y2 = Y1 ⊕ Y2, we note that Y1 ∩ Y2 ⊂ Y1 ∩ Y ⊥
1 = {θ},

and θ ∈ Y1 ∩ Y2 since both are subspaces. Therefore, Y1 ∩ Y2 = {θ} and
Y1 + Y2 = Y1 ⊕ Y2 according to [Lemma 1, P. 53].

Due to [Lemma 5, P. 69], Y1+Y2 is closed. Thus, for every x ∈ H. the existence
of the unique minimizing vector x̂ is assured according to the projection theorem
[OVSM Thm, 2, P. 51]. To see that x̂ = ŷ1 + ŷ2, we just need to show that
(x− ŷ1 − ŷ2) ⊥ z for all z ∈ Y1 + Y2. For every z ∈ Y1 + Y2, there exists z1 ∈ Y1

and z2 ∈ Y2 so that z = z1 + z2. Then we have

(z |x− ŷ1 − ŷ2) = (z1 + z2 |x− ŷ1 − ŷ2)

=(z1 |x− ŷ1 − ŷ2) + (z2 |x− ŷ1 − ŷ2)

=(x− ŷ1 − ŷ2 | z1) + (x− ŷ1 − ŷ2 | z2)
=(z1 |x− ŷ1)− (z1 | ŷ2) + (z2 |x− ŷ2)− (z2 | ŷ1).

Since x− ŷ1 ⊥ Y1 and z1 ∈ Y1, we have (z1 |x− ŷ1) = 0. Similarly, (z2 |x− ŷ2) =
0. In addition, Y2 ⊂ Y ⊥

1 implies that (z1 | ŷ2) = (z2 | ŷ1) = 0.

P. 93 Suppose the past measurement is composed of finite length random vector
z and according to [OVSM Thm. 1, P. 87], we have β̂ = E(βz′)[E(zz′)]−1z.
Similarly, we have

ŷ =E(yz′)[E(zz′)]−1z = E[(Wβ + ε)z′][E(zz′)]−1z

=WE(βz′)[E(zz′)]−1z + E(εz′)[E(zz′)]−1z.

Since ε has zero mean and is uncorrelated to the previous measurement, we have
ŷ = Wβ̂.

From abstract viewpoint, we have the following lemma.
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Lemma (P. 93). Let M be a subspace in a per-Hilbert space X. Let y1 and y2
be some vectors in X and assume that there exist ŷ1 ∈ M and ŷ2 ∈ M satisfying
∥y1 − ŷ1∥ ≤ ∥y1 − z∥ and ∥y2 − ŷ2∥ ≤ ∥y2 − z∥ for all z ∈ M . For arbitrary
scalars α1 and α2, define y = α1y1 + α2y2. Then the vector ŷ = α1ŷ1 + α2ŷ2
fulfills that ∥y − ŷ∥ ≤ ∥y − z∥ for all z ∈ M .

Proof. The proof can be obtained by first showing that y − (α1ŷ1 + α2ŷ2) =
α1(y1 − ŷ1) + α2(y2 − ŷ2), thus orthogonal to M , according to the definition of
ŷ1 and ŷ2. Then the second half of [OVSM Thm. 1, P. 50] assures the desired
conclusion.

From above theorem, we see that for y = Wβ + ε, the projection of Wβ to
the previous measurement is Wβ̂. On the other hand, since ε is uncorrelated
to the previous measurements and has zero mean, the elements of ε belongs to
the orthogonal complement of the subspace spanned by previous measurements.
Then according to [Lemma, P. 50], the projection of ε to previous measurement
is an m-dimensional vector composed of θ’s (note that the underlying (pre-
)Hilbert space is one composed of random variables, instead of random vectors).

Therefore, ŷ = Wβ̂.

P. 97

Lemma (P. 97). Let M be a subspace in a per-Hilbert space X. Let x and y
be some vectors in X and assume that there exist x̂ ∈ M and ŷ ∈ M satisfying
∥x− x̂∥ ≤ ∥x− z∥ and ∥y − ŷ∥ ≤ ∥y − z∥ for all z ∈ M . Then we have that

(x− x̂ | y − ŷ) = (x | y − ŷ) = (x− x̂ | y).

In particular, we have that

∥x− x̂∥2 = (x |x− x̂) = (x− x̂ |x),

and (x |x− x̂) = (x− x̂ |x) is a real number.

Proof. By [OVSM Thm. 1, P. 50], we have (x̂ | y−ŷ) = (ŷ |x−x̂) = 0. Therefore,

(x− x̂ | y − ŷ) = (x | y − ŷ)− (x̂ | y − ŷ).

Similarly, we have that

(x− x̂ | y − ŷ) = (y − ŷ |x− x̂) = (y |x− x̂)− (ŷ |x− x̂) = (x− x̂ | y).

The rest part can be proven by carrying out the same computation.
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