On Optimality Condition for Constrainted Convex Optimization Problem

Yuchao Li

September 11, 2017

1 Problem statement

A constrainted convex optimization problem can be formulated as

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \tag{1.1}\\
\text { subject to } & x \in X
\end{array}
$$

where x is the decision vector, $f(x)$ is the objective function which is convex and differentiable and X is the feasible set. Denote the optimal decision vector as x^{\star}. According to Lecture Note 2, it must satisfy

$$
\begin{equation*}
\left\langle\nabla f\left(x^{\star}\right), y-x^{\star}\right\rangle \geq 0 \quad \forall y \in X . \tag{1.2}
\end{equation*}
$$

which is both a necessary and sufficient condition. Elaborate the necessity and sufficiency of the statement.

2 Elaboration

First, we prove the sufficiency. According to [1] and Lecture Note 2, for any convex function $f(x)$, it must holds that

$$
\begin{equation*}
f(y) \geq f(x)+(y-x)^{T} \nabla f(x) \quad \text { for all } x, y \in \operatorname{dom} f \tag{2.1}
\end{equation*}
$$

Since $\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right) \geq 0$, we have

$$
f(y)-f\left(x^{\star}\right) \geq\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right) \Longrightarrow f(y)-f\left(x^{\star}\right) \geq 0 \quad \forall y \in X
$$

Namely x^{\star} returns optimal value of $f(x)$.
Second, we prove the necessity. We start by introducing a proposition.
Proposition. If $f(x)$ is differentiable, then

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \frac{f(x+\lambda(y-x))-f(x)}{\lambda}=(y-x)^{T} \nabla f(x) . \tag{2.2}
\end{equation*}
$$

Proof. Since $f(x)$ has total derivative, according to [2], for small enough λ, we have

$$
f(x+\lambda(y-x))-f(x)=\lambda(y-x)^{T} \nabla f(x)+o(\rho)
$$

where $o(\rho)$ denotes higher order infinitesimal of ρ and $\rho=|\lambda|\|y-x\|$. Then we have

$$
\begin{equation*}
\frac{f(x+\lambda(y-x))-f(x)}{\lambda}=(y-x)^{T} \nabla f(x)+\frac{o(\rho)}{\lambda} \tag{2.3}
\end{equation*}
$$

Since we have

$$
\lim _{\lambda \rightarrow 0} \frac{o(\rho)}{\lambda}=0
$$

then take limits on both sides of Eq. (2.3), the proof is concluded.
We know that $f(y) \geq f\left(x^{\star}\right)$ for all $y \in X$. Suppose for some $y \in X$, we have

$$
\begin{equation*}
\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)<0 . \tag{2.4}
\end{equation*}
$$

Denote $w=(1-\theta) x^{\star}+\theta y$ where $\theta \in(0,1]$, then we have

$$
\left(w-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)=\left((1-\theta) x^{\star}+\theta y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)=\theta\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)<0 .
$$

Again we denote $z=(1-\theta) x^{\star}+\theta w$, we would have

$$
\left(z-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)=\theta^{2}\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)<0 .
$$

This iteration can go on and on, which indicates that if there is some y fullfil Eq. (2.4), then all points on the line segment $x^{\star} y$ (except x^{\star} itself) fullfil Eq. (2.4). According to the proposition above, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(x^{\star}+\theta^{n}\left(y-x^{\star}\right)\right)-f\left(x^{\star}\right)}{\theta^{n}}=\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)<0 . \tag{2.5}
\end{equation*}
$$

Denote $\beta=\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)$, then $\beta<0$ and for $0<\sigma<-\beta$, there must exists a N so that for all $n>N,\left|\left(f\left(x^{\star}+\theta^{n}\left(y-x^{\star}\right)\right)-f\left(x^{\star}\right)\right) / \theta^{n}-\beta\right|<\sigma$. Namely, there are some $u=x^{\star}+\theta^{n}\left(y-x^{\star}\right) \in X$ that $f(u)<f\left(x^{\star}\right)$ which contradicts the assumption. Therefore, there is no such y to make $\left(y-x^{\star}\right)^{T} \nabla f\left(x^{\star}\right)<0$, which concludes the proof.

References

[1] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge university press, 2004.
[2] Mathematics Department, Advanced mathematics (Chineses), Higher Education Press, 2007.

