KTH, SCHOOL OF ELECTRICAL ENGINEERING

On Optimality Condition for Constrainted Convex Optimization Problem

Yuchao Li

September 11, 2017

1 PROBLEM STATEMENT

A constrainted convex optimization problem can be formulated as

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X \end{array} \tag{1.1}$$

where x is the *decision vector*, f(x) is the *objective function* which is *convex* and *differentiable* and X is the *feasible set*. Denote the optimal decision vector as x^* . According to **Lecture Note** 2, it must satisfy

$$\langle \nabla f(x^{\star}), y - x^{\star} \rangle \ge 0 \qquad \forall y \in X.$$
 (1.2)

which is both a necessary and sufficient condition. Elaborate the necessity and sufficiency of the statement.

2 ELABORATION

First, we prove the sufficiency. According to [1] and **Lecture Note 2**, for any convex function f(x), it must holds that

$$f(y) \ge f(x) + (y - x)^T \nabla f(x) \qquad \text{for all } x, y \in \text{dom } f$$
(2.1)

Since $(y - x^*)^T \nabla f(x^*) \ge 0$, we have

$$f(y) - f(x^{\star}) \ge (y - x^{\star})^T \nabla f(x^{\star}) \Longrightarrow f(y) - f(x^{\star}) \ge 0 \quad \forall y \in X$$

1

Namely x^* returns optimal value of f(x).

Second, we prove the necessity. We start by introducing a proposition.

Proposition. If f(x) is differentiable, then

$$\lim_{\lambda \to 0} \frac{f(x + \lambda(y - x)) - f(x)}{\lambda} = (y - x)^T \nabla f(x).$$
(2.2)

Proof. Since f(x) has total derivative, according to [2], for small enough λ , we have

$$f(x + \lambda(y - x)) - f(x) = \lambda(y - x)^T \nabla f(x) + o(\rho)$$

where $o(\rho)$ denotes *higher order infinitesimal* of ρ and $\rho = |\lambda| || y - x ||$. Then we have

$$\frac{f(x+\lambda(y-x)) - f(x)}{\lambda} = (y-x)^T \nabla f(x) + \frac{o(\rho)}{\lambda}$$
(2.3)

Since we have

$$\lim_{\lambda \to 0} \frac{o(\rho)}{\lambda} = 0$$

then take limits on both sides of Eq. (2.3), the proof is concluded.

We know that $f(y) \ge f(x^*)$ for all $y \in X$. Suppose for some $y \in X$, we have

$$(y - x^{\star})^T \nabla f(x^{\star}) < 0. \tag{2.4}$$

Denote $w = (1 - \theta)x^* + \theta y$ where $\theta \in (0, 1]$, then we have

$$(w-x^{\star})^{T}\nabla f(x^{\star}) = ((1-\theta)x^{\star}+\theta y-x^{\star})^{T}\nabla f(x^{\star}) = \theta(y-x^{\star})^{T}\nabla f(x^{\star}) < 0.$$

Again we denote $z = (1 - \theta)x^* + \theta w$, we would have

$$(z-x^{\star})^T \nabla f(x^{\star}) = \theta^2 (y-x^{\star})^T \nabla f(x^{\star}) < 0.$$

This iteration can go on and on, which indicates that if there is some *y* fullfil Eq. (2.4), then all points on the line segment $x^* y$ (except x^* itself) fullfil Eq. (2.4). According to the proposition above, we have

$$\lim_{n \to \infty} \frac{f(x^{\star} + \theta^n (y - x^{\star})) - f(x^{\star})}{\theta^n} = (y - x^{\star})^T \nabla f(x^{\star}) < 0.$$
(2.5)

Denote $\beta = (y - x^*)^T \nabla f(x^*)$, then $\beta < 0$ and for $0 < \sigma < -\beta$, there must exists a *N* so that for all n > N, $|(f(x^* + \theta^n(y - x^*)) - f(x^*))/\theta^n - \beta| < \sigma$. Namely, there are some $u = x^* + \theta^n(y - x^*) \in X$ that $f(u) < f(x^*)$ which contradicts the assumption. Therefore, there is no such *y* to make $(y - x^*)^T \nabla f(x^*) < 0$, which concludes the proof.

REFERENCES

- [1] Stephen Boyd and Lieven Vandenberghe, *Convex optimization*, Cambridge university press, 2004.
- [2] Mathematics Department, *Advanced mathematics (Chineses)*, Higher Education Press, 2007.