On Stability Condition of Continuous Time Linear Systems

Yuchao Li

September 3, 2017

1 Problem statement

The state space model of a determinant continuous-time linear system is defined as

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t), \tag{1.1}\\
& y(t)=C x(t)+D u(t) .
\end{align*}
$$

It is well-known that the system is asymptotically stable if all the eigenvalues of A lie on the left half of complex plane and stable if all poles on imaginary axis have multiplicity of 1 and other eigenvalues lie on the left half of complex plane or some poles on imaginary axis have multiplicity more than 1 but A still diagonalizable.
Since the explicit solution of the state space model is given as Eq. (1.2) given by [1]

$$
\begin{equation*}
x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau \tag{1.2}
\end{equation*}
$$

by Hand Note 1, we know the stability of the linear system only depends on a term like $e^{A t} x_{0}$. Further elaborate the stability statement by discussing the evolvement of term $e^{A t} x_{0}$ in the following four cases.

1. A has only real eigenvalues and is diagonalizable.
2. A has only real eigenvalues but is not diagonalizable.
3. A has some eigenvalues as complex conjugates and is diagonalizable.
4. A has some eigenvalues as complex conjugates with multiplicity more than 1 , which make A not diagonalizable.

2 Elaboration

Case 1, A has only real eigenvalues and is diagonalizable. Via diagonalization, A can be written as

$$
\begin{equation*}
A=P D P^{-1} \tag{2.1}
\end{equation*}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]$ and $P^{-1}=\left[\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{n}\right]^{T}$. Since all eigenvalues are real, by [2] we have $P, D, P^{-1} \in M_{n}(\mathbb{R})$. Notice that in D it is possible that $\lambda_{i}=\lambda_{j}$ even when $i \neq j$ and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ of P are eigenvectors of A. Therefore,

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
e^{\lambda_{1} t} \mathbf{v}_{1} & e^{\lambda_{2} t} \mathbf{v}_{2} & \ldots & e^{\lambda_{n} t} \mathbf{v}_{n} \tag{2.2}
\end{array}\right] P^{-1} x_{0}
$$

Since P^{-1} is invertible, essentially $P^{-1} x_{0}$ can be any vextor in \mathbb{R}^{n}. Therefore, λ_{i} does not have any impact on the system evolvement for all x_{0} only when $\mathbf{v}_{i}=\mathbf{0}$, which cannot be true since P is invertible. Therefore, all eigenvalues have impact on system evolvement and it is necessary to make $\lambda_{i}<0$ for $i=1,2, \ldots, n$. The case when $\lambda_{i}=0$ would be explained in the following remark and next case.

Remark. If 0 is an eigenvalue of a nonzore matrix A and has algebraic multiplicity as 1 , the system is stable. If 0 has algebraic multiplicity more than 1, and A is diagonalizable, which means 0 has the same amount of geometrix multiplicity as its algebraic multiplicity, the system is still stable. One such example can be

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \tag{2.3}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

However, this means the system is poorly structured. Therefore, by stating 0 with multiplicity more than 1, it often means that its geometric multiplicity is 1.
Case $2 A$ has only real eigenvalues but is not diagonalizable. Via similarity, we have

$$
\begin{equation*}
A=P J P^{-1} \tag{2.4}
\end{equation*}
$$

where $J=\operatorname{diagblock}\left(J_{1}, J_{2}, \ldots, J_{m}\right)$, where each Jordan block J_{i} of J has dimension $k_{i} \times k_{i}$, and $P=\left[\begin{array}{llll}V_{1} & V_{2} & \ldots & V_{m}\end{array}\right]$ where V_{i} is composed by generalized eigenvextors corresponding to λ_{i}, namely

$$
V_{i}=\left[\begin{array}{llll}
\mathbf{v}_{i 1} & \mathbf{v}_{i 2} & \ldots & \mathbf{v}_{i k_{i}} \tag{2.5}
\end{array}\right]
$$

Then we have

$$
\begin{equation*}
e^{A t} x_{0}=\left[V_{1} V_{2} \ldots V_{m}\right] \operatorname{diagblock}\left(e^{J_{1} t}, e^{J_{2} t}, \ldots, e^{J_{m} t}\right) P^{-1} x_{0} \tag{2.6}
\end{equation*}
$$

By Hand Note 1, we have

$$
e^{J_{i} t}=\left[\begin{array}{ccccc}
e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \frac{t^{2}}{2!} e^{\lambda_{i} t} & \cdots & \frac{t^{k_{i}-1}}{\left(k_{i}-1\right)!} \tag{2.7}\\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \frac{t^{2}}{\lambda_{i} t} e^{\lambda_{i} t} \\
& & & \ddots & t e^{\lambda_{i} t} \\
0 & & & & e^{\lambda_{i} t}
\end{array}\right]
$$

Therefore, we have

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
V_{1} e^{J_{1} t} & V_{2} e^{J_{2} t} & \ldots & V_{m} e^{J_{m} t} \tag{2.8}
\end{array}\right] P^{-1} x_{0}
$$

where $V_{i} e^{J_{i} t}$ is a $n \times k_{i}$ matrix and

$$
\begin{equation*}
V_{i} e^{J_{i} t}=\left[e^{\lambda_{i} t} \mathbf{v}_{i 1} t e^{\lambda_{i} t} \mathbf{v}_{i 1}+e^{\lambda_{i} t} \mathbf{v}_{i 2} \ldots \frac{t^{k_{i}-1}}{\left(k_{i}-1\right)!} e^{\lambda_{i} t} \mathbf{v}_{i 1}+\cdots+e^{\lambda_{i} t} \mathbf{v}_{i k_{i}}\right] \tag{2.9}
\end{equation*}
$$

Essentially $P^{-1} x_{0}$ can be any vextor in \mathbb{R}^{n}. Therefore, λ_{i} does not have any impact on the system evolvement for all x_{0} only when V_{i} is zero matrix, which cannot be true since P is invertible. Therefore, all eigenvalues have impact on system evolvement and it is necessary to make $\lambda_{i}<0$ for $i=1,2, \ldots, m$. Besides, the $t^{k_{i}-1}$ would always exists for some x_{0} due to that P is invertible, which means $\mathbf{v}_{i 1} \neq \mathbf{0}$.

Remark. If 0 is an eigenvalue of a nonzore matrix A and has algebraic multiplicity more than 1 and geometric multiplicity 1 , then the system is unstable. To see this, take $\lambda_{i}=0$ to Eq. (2.9), we have

$$
V_{i} e^{J_{i} t}=\left[\begin{array}{ll}
\mathbf{v}_{i 1} & \left.\mathbf{v}_{i 1}+\mathbf{v}_{i 2} \ldots \frac{t^{k_{i}-1}}{\left(k_{i}-1\right)!} \mathbf{v}_{i 1}+\cdots+\mathbf{v}_{i k_{i}}\right] . . . ~ . ~ \tag{2.10}
\end{array}\right.
$$

which may have terms like $t^{k_{i}-1}$. Therefore it's unstable.
Case $3 A$ has some eigenvalues as complex conjugates and is diagonalizable. Via diagonalization, A can be written as $A=P D P^{-1}$ where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]$ and $P^{-1}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n}\end{array}\right]^{T}$. Without loss of generality, we suppose that λ_{1} and λ_{2} are complex conjugate and by \mathbf{v}_{1} and \mathbf{v}_{2} as their eigenvectors respectively. By Note $\mathbf{3}$ we know that $\mathbf{v}_{2}=\overline{\mathbf{v}}_{1}$. Denote $\lambda_{1}=a+j b$, then $\lambda_{2}=a-j b$. Then similar as Eq. (2.2), $e^{A t} x_{0}$ can be written as

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
(a+j b) t \tag{2.11}\\
\mathbf{v}_{1} & e^{(a-j b) t} \overline{\mathbf{v}}_{1} & \ldots & \left.e^{\lambda_{n} t} \mathbf{v}_{n}\right]\left[\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{n}\right.
\end{array}\right]^{T} x_{0}
$$

Denote $\mathbf{u}_{i}=\left[u_{i 1} u_{i 2}, \ldots, u_{i n}\right]^{T}$, then Eq. (2.11) can be written as

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
\Upsilon_{1} & \Upsilon_{2} & \ldots & \Upsilon_{n} \tag{2.12}
\end{array}\right] x_{0} .
$$

where

$$
\begin{equation*}
\Upsilon_{i}=u_{1 i} \mathbf{v}_{1} e^{(a+j b) t}+u_{2 i} \overline{\mathbf{v}}_{1} e^{(a-j b) t}+\Sigma_{i} \tag{2.13}
\end{equation*}
$$

In Eq. (2.13), Σ_{i} is the weighted sum of the rest $n-2$ eigenvectors. Since $e^{A t} \in M_{n}(\mathbb{R})$, we have

$$
\operatorname{Im}\left(u_{1 i} \mathbf{v}_{1} e^{(a+j b) t}+u_{2 i} \overline{\mathbf{v}}_{1} e^{(a-j b) t}\right)=\mathbf{0} \Longrightarrow u_{2 i}=\bar{u}_{1 i} \Longrightarrow \mathbf{u}_{2}=\overline{\mathbf{u}}_{1}
$$

Since $e^{(a \pm j b) t}=e^{a t}(\cos b t \pm j \sin b t)$, then

$$
\begin{equation*}
\Upsilon_{i}=2 e^{a t} \operatorname{Re}\left(u_{1 i} \mathbf{v}_{1}(\cos b t+j \sin b t)\right)+\Sigma_{i} . \tag{2.14}
\end{equation*}
$$

Therefore, $a \pm j b$ does not have any impact on the system evolvement for all x_{0} only when $\mathbf{v}_{1}=\mathbf{0}$, which cannot be true since P is invertible, or $\mathbf{u}_{1}=\mathbf{0}$, which cannot be true since P^{-1} is invertible. Therefore, eigenvalues which are complex conjugate while A is diagonalizable have impact on the system and to make system asymptotically stable, we need $a<0$.

Case $4 A$ has some eigenvalues as complex conjugates with multiplicity more than 1, which make A not diagonalizable. Via similarity, we have $A=P J P^{-1}$. The notations are similar as in case 2. $J=\operatorname{diagblock}\left(J_{1}, J_{2}, \ldots, J_{m}\right)$ and $P=\left[V_{1} V_{2} \ldots V_{m}\right]$ where V_{i} is composed by generalized eigenvextors corresponding to λ_{i}. Without loss of generality, we suppose that Jordan block J_{1} and J_{2} have eigenvalues as conjugate pairs and therefore also the same dimension as $k \times k$. The eigenvalues are $\lambda_{1}=a+j b$ and $\lambda_{2}=a-j b$ respectively. $P^{-1}=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{m}\end{array}\right]^{T}$ where $U_{1}=\left[\begin{array}{llll}\mathbf{u}_{11} & \mathbf{u}_{12} & \ldots & \mathbf{u}_{1 k}\end{array}\right]$ and $U_{2}=\left[\begin{array}{lll}\mathbf{u}_{21} & \mathbf{u}_{22} & \ldots\end{array} \mathbf{u}_{2 k}\right]$. We know that

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
V_{1} e^{J_{1} t} & V_{2} e^{J_{2} t} & \ldots & V_{m} e^{J_{m} t}
\end{array}\right] P^{-1} x_{0}
$$

Besides, since λ_{1} and λ_{2} are complex conjugate, we can find that $V_{2}=\bar{V}_{1}$. Furthermore,

$$
\begin{equation*}
V_{1} e^{J_{1} t}=\left[e^{(a+j b) t} \mathbf{v}_{11} t e^{(a+j b) t} \mathbf{v}_{11}+e^{(a+j b) t} \mathbf{v}_{12} \ldots \frac{t^{k-1}}{(k-1)!} e^{(a+j b) t} \mathbf{v}_{11}+\cdots+e^{(a+j b) t} \mathbf{v}_{1 k}\right] \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2} e^{J_{2} t}=\left[e^{(a-j b) t} \overline{\mathbf{v}}_{11} t e^{(a-j b) t} \overline{\mathbf{v}}_{11}+e^{(a-j b) t} \overline{\mathbf{v}}_{12} \ldots \frac{t^{k-1}}{(k-1)!} e^{(a-j b) t} \overline{\mathbf{v}}_{11}+\cdots+e^{(a-j b) t} \overline{\mathbf{v}}_{1 k}\right] \tag{2.16}
\end{equation*}
$$

Denote $\mathbf{u}_{1 i}=\left[\begin{array}{llll}\alpha_{i 1} & \alpha_{i 2} & \ldots & \alpha_{i n}\end{array}\right]^{T}$ and $\mathbf{u}_{2 i}=\left[\begin{array}{lll}\beta_{i 1} & \beta_{i 2} & \ldots\end{array} \beta_{i n}\right]^{T}$. Reformulate relative terms, we get

$$
e^{A t} x_{0}=\left[\begin{array}{llll}
\Upsilon_{1} & \Upsilon_{2} & \ldots & \Upsilon_{n}
\end{array}\right] x_{0}
$$

where

$$
\begin{align*}
\Upsilon_{i}= & \alpha_{1 i} e^{(a+j b) t} \mathbf{v}_{11}+\beta_{1 i} e^{(a-j b) t} \overline{\mathbf{v}}_{11}+\alpha_{2 i} e^{(a+j b) t}\left(t \mathbf{v}_{11}+\mathbf{v}_{12}\right)+\beta_{2 i} e^{(a-j b) t}\left(t \overline{\mathbf{v}}_{11}+\overline{\mathbf{v}}_{12}\right)+\cdots+ \\
& \alpha_{k i} e^{(a+j b) t}\left(\frac{t^{k-1}}{(k-1)!} \mathbf{v}_{11}+\cdots+\mathbf{v}_{1 k}\right)+\beta_{k i} e^{(a-j b) t}\left(\frac{t^{k-1}}{(k-1)!} \overline{\mathbf{v}}_{11}+\cdots+\overline{\mathbf{v}}_{1 k}\right)+\Sigma_{i} \tag{2.17}
\end{align*}
$$

Since $e^{A t} \in M_{n}(\mathbb{R})$, we have $\mathbf{u}_{2 i}=\overline{\mathbf{u}}_{1 i}$. Then

$$
\begin{align*}
\Upsilon_{i}= & 2 e^{a t} \operatorname{Re}\left(\alpha_{1 i} e^{j b t} \mathbf{v}_{11}\right)+2 e^{a t} \operatorname{Re}\left(\alpha_{2 i} e^{j b t}\left(t \mathbf{v}_{11}+\mathbf{v}_{12}\right)\right)+\cdots+ \\
& 2 e^{a t} \operatorname{Re}\left(\alpha_{k i} e^{j b t}\left(\frac{t^{k-1}}{(k-1)!} \mathbf{v}_{11}+\cdots+\mathbf{v}_{1 k}\right)\right)+\Sigma_{i} \tag{2.18}
\end{align*}
$$

Therefore, $a \pm j b$ does not have any impact on the system evolvement for all x_{0} only when V_{1} is zero matrix, which cannot be true since P is invertible, or U_{1} is zero matrix, which cannot be true since P^{-1} is invertible. Therefore, eigenvalues which are complex conjugate while A is diagonalizable have impact on the system and to make system asymptotically stable, we need $a<0$. Besides, since $\mathbf{v}_{11} \neq \mathbf{0}, t^{k-1}$ always show up for some x_{0}.

Remark. In this case, if $a=0$, the system is still unstable.

REFERENCES

[1] Torkel Glad and Lennart Ljung, Control theory: Multivariable and nonlinear methods, CRC press, 2000.
[2] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, 2012.

