On Stability Condition of Continuous Time Linear Systems

Yuchao Li

September 3, 2017

1 PROBLEM STATEMENT

The state space model of a determinant continuous-time linear system is defined as

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t).$$
(1.1)

It is well-known that the system is *asymptotically stable* if all the eigenvalues of *A* lie on the left half of complex plane and *stable* if all poles on imaginary axis have multiplicity of 1 and other eigenvalues lie on the left half of complex plane or some poles on imaginary axis have multiplicity more than 1 but *A* still diagonalizable.

Since the explicit solution of the state space model is given as Eq. (1.2) given by [1]

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau,$$
(1.2)

by **Hand Note 1**, we know the stability of the linear system only depends on a term like $e^{At}x_0$. Further elaborate the stability statement by discussing the evolvement of term $e^{At}x_0$ in the following four cases.

- 1. A has only real eigenvalues and is diagonalizable.
- 2. A has only real eigenvalues but is not diagonalizable.
- 3. *A* has some eigenvalues as complex conjugates and is diagonalizable.
- 4. *A* has some eigenvalues as complex conjugates with multiplicity more than 1, which make *A* not diagonalizable.

2 ELABORATION

Case 1, *A* has only real eigenvalues and is diagonalizable. Via diagonalization, *A* can be written as

$$A = PDP^{-1} \tag{2.1}$$

where $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, $P = [\mathbf{v}_1 \, \mathbf{v}_2 \, ... \, \mathbf{v}_n]$ and $P^{-1} = [\mathbf{u}_1 \, \mathbf{u}_2 \, ... \, \mathbf{u}_n]^T$. Since all eigenvalues are real, by [2] we have $P, D, P^{-1} \in M_n(\mathbb{R})$. Notice that in D it is possible that $\lambda_i = \lambda_j$ even when $i \neq j$ and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ of P are eigenvectors of A. Therefore,

$$e^{At}x_0 = [e^{\lambda_1 t}\mathbf{v}_1 \ e^{\lambda_2 t}\mathbf{v}_2 \ \dots \ e^{\lambda_n t}\mathbf{v}_n]P^{-1}x_0.$$
(2.2)

Since P^{-1} is invertible, essentially $P^{-1}x_0$ can be any vextor in \mathbb{R}^n . Therefore, λ_i does not have any impact on the system evolvement for all x_0 only when $\mathbf{v}_i = \mathbf{0}$, which cannot be true since P is invertible. Therefore, all eigenvalues have impact on system evolvement and it is necessary to make $\lambda_i < 0$ for i = 1, 2, ..., n. The case when $\lambda_i = 0$ would be explained in the following remark and next case.

Remark. If 0 is an eigenvalue of a nonzore matrix A and has algebraic multiplicity as 1, the system is stable. If 0 has algebraic multiplicity more than 1, and A is diagonalizable, which means 0 has the same amount of geometrix multiplicity as its algebraic multiplicity, the system is still stable. One such example can be

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2.3)

However, this means the system is poorly structured. Therefore, by stating 0 with multiplicity more than 1, it often means that its geometric multiplicity is 1.

Case 2 A has only real eigenvalues but is not diagonalizable. Via similarity, we have

$$A = PJP^{-1} \tag{2.4}$$

where $J = \text{diagblock}(J_1, J_2, ..., J_m)$, where each Jordan block J_i of J has dimension $k_i \times k_i$, and $P = [V_1 \ V_2 \ ... \ V_m]$ where V_i is composed by generalized eigenvectors corresponding to λ_i , namely

$$V_i = [\mathbf{v}_{i1} \ \mathbf{v}_{i2} \ \dots \ \mathbf{v}_{ik_i}]. \tag{2.5}$$

Then we have

$$A^{t}x_{0} = [V_{1} V_{2} \dots V_{m}] \text{diagblock}(e^{J_{1}t}, e^{J_{2}t}, \dots, e^{J_{m}t})P^{-1}x_{0}.$$
 (2.6)

By Hand Note 1, we have

 e^{A}

$$e^{J_{i}t} = \begin{bmatrix} e^{\lambda_{i}t} & te^{\lambda_{i}t} & \frac{t^{2}}{2!}e^{\lambda_{i}t} & \cdots & \frac{t^{k_{i}-1}}{(k_{i}-1)!}e^{\lambda_{i}t} \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \frac{t^{2}}{2!}e^{\lambda_{i}t} \\ & & & \ddots & te^{\lambda_{i}t} \\ 0 & & & & e^{\lambda_{i}t} \end{bmatrix}$$
(2.7)

2

Therefore, we have

$$e^{At}x_0 = [V_1e^{J_1t} \ V_2e^{J_2t} \ \dots \ V_me^{J_mt}]P^{-1}x_0.$$
(2.8)

where $V_i e^{J_i t}$ is a $n \times k_i$ matrix and

$$V_{i}e^{J_{i}t} = [e^{\lambda_{i}t}\mathbf{v}_{i1} \ te^{\lambda_{i}t}\mathbf{v}_{i1} + e^{\lambda_{i}t}\mathbf{v}_{i2} \ \dots \ \frac{t^{k_{i}-1}}{(k_{i}-1)!}e^{\lambda_{i}t}\mathbf{v}_{i1} + \dots + e^{\lambda_{i}t}\mathbf{v}_{ik_{i}}].$$
(2.9)

Essentially $P^{-1}x_0$ can be any vextor in \mathbb{R}^n . Therefore, λ_i does not have any impact on the system evolvement for all x_0 only when V_i is zero matrix, which cannot be true since P is invertible. Therefore, all eigenvalues have impact on system evolvement and it is necessary to make $\lambda_i < 0$ for i = 1, 2, ..., m. Besides, the t^{k_i-1} would always exists for some x_0 due to that P is invertible, which means $\mathbf{v}_{i1} \neq \mathbf{0}$.

Remark. If 0 is an eigenvalue of a nonzore matrix A and has algebraic multiplicity more than 1 and geometric multiplicity 1, then the system is unstable. To see this, take $\lambda_i = 0$ to Eq. (2.9), we have

$$V_i e^{J_i t} = [\mathbf{v}_{i1} \ t \mathbf{v}_{i1} + \mathbf{v}_{i2} \ \dots \ \frac{t^{k_i - 1}}{(k_i - 1)!} \mathbf{v}_{i1} + \dots + \mathbf{v}_{ik_i}].$$
(2.10)

which may have terms like t^{k_i-1} . Therefore it's unstable.

Case 3 *A* has some eigenvalues as complex conjugates and is diagonalizable. Via diagonalization, *A* can be written as $A = PDP^{-1}$ where $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$ and $P^{-1} = [\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_n]^T$. Without loss of generality, we suppose that λ_1 and λ_2 are complex conjugate and by \mathbf{v}_1 and \mathbf{v}_2 as their eigenvectors respectively. By **Note 3** we know that $\mathbf{v}_2 = \bar{\mathbf{v}}_1$. Denote $\lambda_1 = a + jb$, then $\lambda_2 = a - jb$. Then similar as Eq. (2.2), $e^{At} x_0$ can be written as

$$e^{At}x_0 = [e^{(a+jb)t}\mathbf{v}_1 \ e^{(a-jb)t}\bar{\mathbf{v}}_1 \ \dots \ e^{\lambda_n t}\mathbf{v}_n][\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n]^T x_0.$$
(2.11)

Denote $\mathbf{u}_i = [u_{i1} u_{i2}, \dots, u_{in}]^T$, then Eq. (2.11) can be written as

$$e^{At}x_0 = [\Upsilon_1 \ \Upsilon_2 \ \dots \ \Upsilon_n]x_0. \tag{2.12}$$

where

$$\Upsilon_{i} = u_{1i} \mathbf{v}_{1} e^{(a+jb)t} + u_{2i} \bar{\mathbf{v}}_{1} e^{(a-jb)t} + \Sigma_{i}.$$
(2.13)

In Eq. (2.13), Σ_i is the weighted sum of the rest n-2 eigenvectors. Since $e^{At} \in M_n(\mathbb{R})$, we have

$$\operatorname{Im}(u_{1i}\mathbf{v}_1e^{(a+jb)t} + u_{2i}\bar{\mathbf{v}}_1e^{(a-jb)t}) = \mathbf{0} \implies u_{2i} = \bar{u}_{1i} \implies \mathbf{u}_2 = \bar{\mathbf{u}}_1$$

Since $e^{(a \pm jb)t} = e^{at}(\cos bt \pm j\sin bt)$, then

$$\Upsilon_i = 2e^{at} \operatorname{Re}(u_{1i} \mathbf{v}_1(\cos bt + j\sin bt)) + \Sigma_i.$$
(2.14)

Therefore, $a \pm jb$ does not have any impact on the system evolvement for all x_0 only when $\mathbf{v}_1 = \mathbf{0}$, which cannot be true since *P* is invertible, or $\mathbf{u}_1 = \mathbf{0}$, which cannot be true since P^{-1} is invertible. Therefore, eigenvalues which are complex conjugate while *A* is diagonalizable have impact on the system and to make system asymptotically stable, we need a < 0.

Case 4 *A* has some eigenvalues as complex conjugates with multiplicity more than 1, which make *A* not diagonalizable. Via similarity, we have $A = PJP^{-1}$. The notations are similar as in case 2. $J = \text{diagblock}(J_1, J_2, ..., J_m)$ and $P = [V_1 V_2 ... V_m]$ where V_i is composed by generalized eigenvectors corresponding to λ_i . Without loss of generality, we suppose that Jordan block J_1 and J_2 have eigenvalues as conjugate pairs and therefore also the same dimension as $k \times k$. The eigenvalues are $\lambda_1 = a + jb$ and $\lambda_2 = a - jb$ respectively. $P^{-1} = [U_1 U_2 ... U_m]^T$ where $U_1 = [\mathbf{u}_{11} \mathbf{u}_{12} ... \mathbf{u}_{1k}]$ and $U_2 = [\mathbf{u}_{21} \mathbf{u}_{22} ... \mathbf{u}_{2k}]$. We know that

$$e^{At}x_0 = [V_1e^{J_1t} \ V_2e^{J_2t} \ \dots \ V_me^{J_mt}]P^{-1}x_0.$$

Besides, since λ_1 and λ_2 are complex conjugate, we can find that $V_2 = \overline{V}_1$. Furthermore,

$$V_1 e^{J_1 t} = [e^{(a+jb)t} \mathbf{v}_{11} \ t \ e^{(a+jb)t} \mathbf{v}_{11} + e^{(a+jb)t} \mathbf{v}_{12} \ \dots \ \frac{t^{k-1}}{(k-1)!} e^{(a+jb)t} \mathbf{v}_{11} + \dots + e^{(a+jb)t} \mathbf{v}_{1k}] \ (2.15)$$

and

$$V_2 e^{J_2 t} = \left[e^{(a-jb)t} \bar{\mathbf{v}}_{11} \ t e^{(a-jb)t} \bar{\mathbf{v}}_{11} + e^{(a-jb)t} \bar{\mathbf{v}}_{12} \ \dots \ \frac{t^{k-1}}{(k-1)!} e^{(a-jb)t} \bar{\mathbf{v}}_{11} + \dots + e^{(a-jb)t} \bar{\mathbf{v}}_{1k} \right] \ (2.16)$$

Denote $\mathbf{u}_{1i} = [\alpha_{i1} \ \alpha_{i2} \ \dots \ \alpha_{in}]^T$ and $\mathbf{u}_{2i} = [\beta_{i1} \ \beta_{i2} \ \dots \ \beta_{in}]^T$. Reformulate relative terms, we get

$$e^{At}x_0 = [\Upsilon_1 \ \Upsilon_2 \ \dots \ \Upsilon_n]x_0$$

where

$$\Upsilon_{i} = \alpha_{1i} e^{(a+jb)t} \mathbf{v}_{11} + \beta_{1i} e^{(a-jb)t} \bar{\mathbf{v}}_{11} + \alpha_{2i} e^{(a+jb)t} (t \mathbf{v}_{11} + \mathbf{v}_{12}) + \beta_{2i} e^{(a-jb)t} (t \bar{\mathbf{v}}_{11} + \bar{\mathbf{v}}_{12}) + \dots + \alpha_{ki} e^{(a+jb)t} (\frac{t^{k-1}}{(k-1)!} \mathbf{v}_{11} + \dots + \mathbf{v}_{1k}) + \beta_{ki} e^{(a-jb)t} (\frac{t^{k-1}}{(k-1)!} \mathbf{v}_{11} + \dots + \mathbf{v}_{1k}) + \Sigma_{i}$$
(2.17)

Since $e^{At} \in M_n(\mathbb{R})$, we have $\mathbf{u}_{2i} = \bar{\mathbf{u}}_{1i}$. Then

$$\Upsilon_{i} = 2e^{at} \operatorname{Re}(\alpha_{1i}e^{jbt}\mathbf{v}_{11}) + 2e^{at} \operatorname{Re}(\alpha_{2i}e^{jbt}(t\mathbf{v}_{11} + \mathbf{v}_{12})) + \dots + 2e^{at} \operatorname{Re}(\alpha_{ki}e^{jbt}(\frac{t^{k-1}}{(k-1)!}\mathbf{v}_{11} + \dots + \mathbf{v}_{1k})) + \Sigma_{i}$$
(2.18)

Therefore, $a \pm jb$ does not have any impact on the system evolvement for all x_0 only when V_1 is zero matrix, which cannot be true since P is invertible, or U_1 is zero matrix, which cannot be true since P^{-1} is invertible. Therefore, eigenvalues which are complex conjugate while A is diagonalizable have impact on the system and to make system asymptotically stable, we need a < 0. Besides, since $\mathbf{v}_{11} \neq \mathbf{0}$, t^{k-1} always show up for some x_0 .

Remark. In this case, if a = 0, the system is still unstable.

REFERENCES

- [1] Torkel Glad and Lennart Ljung, *Control theory: Multivariable and nonlinear methods*, CRC press, 2000.
- [2] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, 2012.