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1 PROBLEM STATEMENT

The state space model of a determinant linear system is defined as

ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t )+Du(t ).
(1.1)

Prove that the explicit solution of the state space model is given as Eq. (1.2) given by [1].

x(t ) = e A(t−t0)x(t0)+
∫ t

t0

e A(t−τ)Bu(τ)dτ. (1.2)

2 ELABORATION

First, we give the full proof. Denote f (t ) = e At . By Note 1, we know the following properties:

1. Ae At = e At A. Naturally Ae−At = e−At A.

2. eP−1 AP = P−1e AP .

3. e A(s+t ) = e Ase At . A conclusion from it is that (e−A)−1 = e A .

4. e A+B = e AeB if AB = B A, in other words, A and B commute.

5. f ′(t ) = Ae At .
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Then for the ODE, left multiply e−At on both sides, we have

ẋ(t )− Ax(t ) = Bu(t ) =⇒ e−At ẋ(t )−e−At Ax(t ) = e−At Bu(t )

=⇒ e−At ẋ(t )− Ae−At x(t ) = e−At Bu(t )

Notice that the left hand side of the equation above is the derivative of g (t ) = e−At x(t ). There-
fore we have

d

d t
g (t ) = e−At Bu(t ). (2.1)

Taking integration from t0 to t on both sides, we have

e−At x(t )−e−At0 x(t0) =
∫ t

t0

e−AτBu(τ)dτ =⇒ e−At x(t ) = e−At0 x(t0)+
∫ t

t0

e−AτBu(τ)dτ.

Multiply e At on both sides, we have Eq. (1.2).
Second, we give intuitive explanation.
(1) In the case where A is diagonalizable, namely D = P−1 AP , where D is a diagonal matrix,
then define x = P z. Use z to replace x and Eq. (1.1) can be rewritten as

P ż(t ) = AP z(t )+Bu(t ) =⇒ ż(t ) = P−1 AP z(t )+P−1Bu(t ) =⇒ ż(t ) = Dz(t )+P−1Bu(t )

The multivariable ODE is clearly decoupled as single variable ODEs. Therefore, the formula
of single ODE is applied to solve z(t ), which yields to

z(t ) = eD(t−t0)z(t0)+
∫ t

t0

eD(t−τ)P−1Bu(τ)dτ.

Replace z with x, we get

P−1x(t ) = eD(t−t0)P−1x(t0)+
∫ t

t0

eD(t−τ)P−1Bu(τ)dτ.

Multiply P on both sides, we get

x(t ) = PeD(t−t0)P−1x(t0)+
∫ t

t0

PeD(t−τ)P−1Bu(τ)dτ.

By applying property 2 listed above, we can get Eq. (1.1).
(2) In the case where A is not diagonalizable, then we have Jc = P−1 AP , where Jc is Jordan
canonical form. If the solution Eq. (1.2) holds for the ODE

żc (t ) = Jc zc (t )+Hc uc (t ), (2.2)

then for ODE with any A, it can be considered as linear transformation of Eq. (2.2). By the
same reasoning used in (1), the solution is proved. In fact, in Jc , only its Jordan block with
order higher than 1 is an issue since the one dimension Jordan block still corresponds to
single variable ODE, the solution of which is known. Therefore we attack the problem where
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the Jordan block have order higher than 1, namely, prove the solution Eq. (1.2) holds for the
ODE

ż(t ) = J z(t )+Hu(t ), (2.3)

where J ∈ Mn is Jordan block matrix.
By Eq. (1.2), the solution of Eq. (2.3) would be

z(t ) = e J (t−t0)z(t0)+
∫ t

t0

e J (t−τ)Hu(τ)dτ. (2.4)

Note 2 provides a great way of calculating e J . Since J =λI +N where N is a nilpotent matrix.
Because λI and N commute, by property 4, we know eλI+N = eλI eN . Since N n = 0, eN is fairly
simple to calculate. However, attention need to be paid when calculating eN (t−t0), which is

eN (t−t0) = I +N (t − t0)+ 1

2!
N 2(t − t0)2 + 1

3!
N 3(t − t0)3 +·· ·+ 1

(n −1)!
N n−1(t − t0)n−1

where the t − t0 shall not be lost. By this method, also refer to Stochastic Dynamic Systems,
UU, Note 32, e J (t−t0) would be

e J (t−t0) =



eλ(t−t0) (t − t0)eλ(t−t0) (t−t0)2

2! eλ(t−t0) · · · (t−t0)n−1

(n−1)! eλ(t−t0)

. . .
. . .

. . .
...

. . .
. . . (t−t0)2

2! eλ(t−t0)

. . . (t − t0)eλ(t−t0)

0 eλ(t−t0)


(2.5)

The same format for e J (t−τ) in Eq. (2.4). Therefore the task is to prove the solution of ODE
(2.3) has solution as Eq. (2.4) where the Jordan matrix exponential in Eq. (2.4) has the format
as Eq. (2.5). We denote v(t ) = Hu(t ) and m-th item of v(t ) as vm(t ). Then the m-th element
of z(t ), denoted as zm(t ), should be given as

zm(t ) =eλ(t−t0)zm(t0)+ (t − t0)eλ(t−t0)zm+1(t0)+ (t − t0)2

2!
eλ(t−t0)zm+2(t0)+·· ·+

(t − t0)n−m

(n −m)!
eλ(t−t0)zn(t0)+

∫ t

t0

eλ(t−τ)vm(τ)dτ+
∫ t

t0

(t −τ)eλ(t−τ)vm+1(τ)dτ+∫ t

t0

(t −τ)2

2!
eλ(t−τ)vm+2(τ)dτ+·· ·+

∫ t

t0

(t −τ)n−m

(n −m)!
eλ(t−τ)vn(τ)dτ. (2.6)

We prove it by induction and start with the last element of z(t ), denoted as zn(t ).

1. For zn(t ), the ODE is żn(t ) =λzn(t )+ vn(t ). Then the solution would be

zn(t ) = eλ(t−t0)zn(t0)+
∫ t

t0

eλ(t−τ)vn(τ)dτ. (2.7)

which fulfill Eq. (2.6).
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2. For zn−1(t ), the ODE is żn−1(t ) = λzn−1(t )+ zn(t )+ vn−1(t ). Consider zn(t )+ vn−1(t ) =
wn−1(t ), then ODE here is the same as in step 1. Therefore, we can still use single vari-
able ODE solution to solve zn−1(t ), which gives

zn−1(t ) = eλ(t−t0)zn−1(t0)+
∫ t

t0

eλ(t−τ)(zn(τ)+ vn−1(τ))dτ. (2.8)

Take Eq. (2.7) into Eq. (2.8), we get

zn−1(t ) =eλ(t−t0)zn−1(t0)+
∫ t

t0

eλ(t−τ)vn−1(τ)dτ+
∫ t

t0

eλ(t−τ)zn(τ)dτ

=eλ(t−t0)zn−1(t0)+
∫ t

t0

eλ(t−τ)vn−1(τ)dτ+∫ t

t0

eλ(t−τ)(eλ(τ−t0)zn(t0)+
∫ τ

t0

eλ(τ−s)vn(s)d s)dτ

=eλ(t−t0)zn−1(t0)+
∫ t

t0

eλ(t−τ)vn−1(τ)dτ+
∫ t

t0

eλ(t−τ)eλ(τ−t0)zn(t0)dτ+∫ t

t0

eλ(t−τ)
∫ τ

t0

eλ(τ−s)vn(s)d sdτ

=eλ(t−t0)zn−1(t0)+
∫ t

t0

eλ(t−τ)vn−1(τ)dτ+
∫ t

t0

eλ(t−t0)zn(t0)dτ+∫ t

t0

∫ τ

t0

eλ(t−s)vn(s)d sdτ

(2.9)

The third term can be calculated as∫ t

t0

eλ(t−t0)zn(t0)dτ= eλ(t−t0)zn(t0)
∫ t

t0

dτ= (t − t0)eλ(t−t0)zn(t0). (2.10)

As for the last term, changing the integration sequence yields to∫ t

t0

∫ τ

t0

eλ(t−s)vn(s)d sdτ=
∫ t

t0

∫ t

s
eλ(t−s)vn(s)dτd s =

∫ t

t0

(t − s)eλ(t−s)vn(s)d s (2.11)

In
∫ t

t0
(t − s)eλ(t−s)vn(s)d s, changing s to τ does not alter the result, therefore we have∫ t

t0

∫ τ

t0

eλ(t−s)vn(s)d sdτ=
∫ t

t0

(t −τ)eλ(t−τ)vn(τ)dτ (2.12)

Take the results of Eq. (2.10) and Eq. (2.12) into Eq. (2.9), we get

zn−1(t ) =eλ(t−t0)zn−1(t0)+ (t − t0)eλ(t−t0)zn(t0)+∫ t

t0

eλ(t−τ)vn−1(τ)dτ+
∫ t

t0

(t −τ)eλ(t−τ)vn(τ)dτ (2.13)

which fulfill Eq. (2.6).
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3. Suppose m+1 th term fulfill Eq. (2.6). Namely

zm+1(t ) =eλ(t−t0)zm+1(t0)+ (t − t0)eλ(t−t0)zm+2(t0)+ (t − t0)2

2!
eλ(t−t0)zm+3(t0)+·· ·+

(t − t0)n−m−1

(n −m −1)!
eλ(t−t0)zn(t0)+

∫ t

t0

eλ(t−τ)vm+1(τ)dτ+∫ t

t0

(t −τ)eλ(t−τ)vm+2(τ)dτ+
∫ t

t0

(t −τ)2

2!
eλ(t−τ)vm+3(τ)dτ+·· ·+∫ t

t0

(t −τ)n−m−1

(n −m −1)!
eλ(t−τ)vn(τ)dτ. (2.14)

where m < n − 1. For zm(t ), the ODE is żm(t ) = λzm(t )+ zm+1(t )+ vm(t ). Consider
zm+1(t )+vm(t ) = wm(t ), then ODE here is the same as in step 1. Therefore, we can still
use single variable ODE solution to solve zm(t ), which gives

zm(t ) = eλ(t−t0)zm(t0)+
∫ t

t0

eλ(t−τ)(zm+1(τ)+ vm(τ))dτ

= eλ(t−t0)zm(t0)+
∫ t

t0

eλ(t−τ)vm(τ)dτ+
∫ t

t0

eλ(t−τ)zm+1(τ)dτ. (2.15)

Therefore the only term we need to deal with is∫ t

t0

eλ(t−τ)zm+1(τ)dτ. (2.16)

Taking Eq. (2.14) into Eq. (2.16) is the next step. Define f (t ) as follow

f (t ) =eλ(t−t0)zm+1(t0)+ (t − t0)eλ(t−t0)zm+2(t0)+
(t − t0)2

2!
eλ(t−t0)zm+3(t0)+·· ·+ (t − t0)n−m−1

(n −m −1)!
eλ(t−t0)zn(t0). (2.17)

Define g (t ) as follows

g (t ) =
∫ t

t0

eλ(t−τ)vm+1(τ)dτ+
∫ t

t0

(t −τ)eλ(t−τ)vm+2(τ)dτ+∫ t

t0

(t −τ)2

2!
eλ(t−τ)vm+3(τ)dτ+·· ·+

∫ t

t0

(t −τ)n−m−1

(n −m −1)!
eλ(t−τ)vn(τ)dτ. (2.18)

Apparently zm+1(t ) = f (t )+ g (t ) and both f (t ) and g (t ) have n −m items. Denote i-th
item of f (t ) as fi (t ), namely

fi (t ) = (t − t0)i−1

(i −1)!
eλ(t−t0)zm+i (t0) (2.19)

Then we have

f (t ) =
n−m∑
i=1

fi (t ) (2.20)
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Denote i-th item of g (t ) as gi (t ), namely

gi (t ) =
∫ t

t0

(t −τ)i−1

(i −1)!
eλ(t−τ)vm+i (τ)dτ (2.21)

Then we have

g (t ) =
n−m∑
i=1

gi (t ) (2.22)

Therefore, we have

zm+1 =
n−m∑
i=1

fi (t )+
n−m∑
i=1

gi (t ) (2.23)

Taking Eq. (2.23) into Eq. (2.16) yields to∫ t

t0

eλ(t−τ)
n−m∑
i=1

fi (τ)dτ+
∫ t

t0

eλ(t−τ)
n−m∑
i=1

gi (τ)dτ=
n−m∑
i=1

∫ t

t0

eλ(t−τ) fi (τ)dτ+
n−m∑
i=1

∫ t

t0

eλ(t−τ)gi (τ)dτ (2.24)

Therefore, we only need to prove that the conclusion holds for i-th item, namely calcu-
lating

∫ t
t0

eλ(t−τ) fi (τ)dτ and
∫ t

t0
eλ(t−τ)gi (τ)dτ.∫ t

t0

eλ(t−τ) fi (τ)dτ=
∫ t

t0

eλ(t−τ) (τ− t0)i−1

(i −1)!
eλ(τ−t0)zm+i (t0)dτ

=
∫ t

t0

eλ(t−t0)zm+i (t0)
(τ− t0)i−1

(i −1)!
dτ

= eλ(t−t0)zm+i (t0)
∫ t

t0

(τ− t0)i−1

(i −1)!
dτ

= (t − t0)i

i !
eλ(t−t0)zm+i (t0) (2.25)

which fulfill the format of Eq. (2.6). As for
∫ t

t0
eλ(t−τ)gi (τ)dτ, we have∫ t

t0

eλ(t−τ)gi (τ)dτ=
∫ t

t0

eλ(t−τ)
∫ τ

t0

(τ− s)i−1

(i −1)!
eλ(τ−s)vm+i (s)d sdτ

=
∫ t

t0

∫ τ

t0

(τ− s)i−1

(i −1)!
eλ(t−s)vm+i (s)d sdτ

=
∫ t

t0

eλ(t−s)vm+i (s)
∫ t

s

(τ− s)i−1

(i −1)!
dτd s

=
∫ t

t0

(t − s)i

i !
eλ(t−s)vm+i (s)d s

=
∫ t

t0

(t −τ)i

i !
eλ(t−τ)vm+i (τ)dτ (2.26)

which fulfill the format given by Eq. (2.6). Therefore, the proof is concluded.
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