On Calculation of Jordan Block Power

Yuchao Li

August 16, 2017

1 Problem statement

Denote $J(\lambda) \in M_{n}$ as a Jordan block and $N \in M_{n}$ the nilpotent matrix whose superdiagonal contains ones and all other entries are zero. Therefore, we have

$$
\begin{equation*}
J(\lambda)=\lambda I+N . \tag{1.1}
\end{equation*}
$$

Exercise 7.2.19 in Note 35 provides the results of Jordan block power $J(\lambda)^{k}$. Use Eq. (1.1) to prove that.

2 Elaboration

First, we make a proposition.
Proposition. For $A, B \in M_{n}$, if A and B commute, namely $A B=B A$, then

$$
\begin{equation*}
(A+B)^{k}=C_{k}^{0} A^{k}+C_{k}^{1} A^{k-1} B+\cdots+C_{k}^{k-1} A B^{k-1}+C_{k}^{k} B^{k} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}^{j}=\frac{k!}{j!(k-j)!}, 0 \leq j \leq k . \tag{2.2}
\end{equation*}
$$

Second, for I and N, apparently $I N=N I$. Therefore, according to the proposition, we have

$$
\begin{equation*}
J(\lambda)^{k}=C_{k}^{0}(\lambda I)^{k}+C_{k}^{1}(\lambda I)^{k-1} N+\cdots+C_{k}^{k-1}(\lambda I) N^{k-1}+C_{k}^{k} N^{k} . \tag{2.3}
\end{equation*}
$$

Since $(\lambda I)^{j}=\lambda^{j} I$ for any $j \in \mathbb{N}$ and $N^{j}=0$ for $j \geq n$. Here we only elaborate the case when $k>n$, then Eq. (2.3) can be simplified as

$$
\begin{equation*}
J(\lambda)^{k}=C_{k}^{0} \lambda^{k} I+C_{k}^{1} \lambda^{k-1} N+\cdots+C_{k}^{n-1} \lambda^{k-(n-1)} N^{n-1} \tag{2.4}
\end{equation*}
$$

which conclude the proof.

