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1 PROBLEM STATEMENT

The state space model of a system is defined as

x(t +1) = F x(t )+ v(t ),

y(t ) = H x(t )+e(t ).
(1.1)

where v(t ) and e(t ) are complex-valued uncorrelated sequences with zero mean and

E
(

v(t )
e(t )

)
(v∗(s) e∗(s)) =

(
R1 R12

R21 R2

)
δt ,s . (1.2)

According to [1], after reaching stationary state, the mean of x(t ) and y(t ) are both 0, namely
mx = 0 and my = 0. The covariance of x(t ), namely Rx (t , t ), denoted as P , is given as

P =
∞∑

j=0
F j R1F∗ j . (1.3)

By Eqs. (4.20) and (4.21) in [1], after reaching stationary state the output covariance function
is given as

Ry (t , t ) = HPH∗+R2, (1.4)

Ry (t +τ, t ) = HF τPH∗+HF τ−1R12, τ> 0 (1.5)

Ry (t −τ, t ) = HPF∗τH∗+R21F∗(τ−1)H∗, τ> 0 (1.6)

The spectrum of a time series, say {y(t )}, is defined as

φy (z) =
∞∑

n=−∞
Ry (t +n, t )z−n . (1.7)
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By [1], in the stationary case, the spectrum of y(t ) is given as

φy (z) =H(zI −F )−1R1(z−∗I −F )−∗H∗+R2

H(zI −F )−1R12 +R21(z−∗I −F )−∗H∗, (1.8)

which is calculated via the transfer function model rather than state space model. Elaborate
that the same result can also be given via the state space model.

2 ELABORATION

Take Eqs. (1.4), (1.5) and (1.6) into Eq. (1.7), we obtain

φy (z) = HPH∗+R2 +
∞∑

n=1
(HF nPH∗+HF n−1R12)z−n +

∞∑
m=1

(HPF∗m H∗+R21F∗(m−1)H∗)zm ,

(2.1)
which can be rewritten as

φy (z) =HPH∗+R2 +H(
∞∑

n=1
F n z−n)PH∗+H(

∞∑
n=1

F n−1z−n)R12

+HP (
∞∑

m=1
F∗m zm)H∗+R21(

∞∑
m=1

F∗(m−1)zm)H∗. (2.2)

First of all, we take care of
∑

F n z−n .

Sn =
∞∑

n=1
F n z−n =⇒ Sn =

∞∑
n=1

(F z−1)n =⇒ (I −F z−1)Sn = F z−1 =⇒ (zI −F )Sn = F

Therefore, ∞∑
n=1

F n z−n = (zI −F )−1F (2.3)

∞∑
n=1

F (n−1)z−n = (
∞∑

n=1
F n z−n)F−1 = (zI −F )−1 (2.4)

Similarly,
∞∑

n=0
F n z−n = (zI −F )−1z. (2.5)

Then for
∑

F∗m zm , we calculate
∑

F m z∗m instead in order to follow the notation used in [1]

S∗
m =

∞∑
m=1

F m z∗m =⇒ S∗
m =

∞∑
m=1

(F z∗)m =⇒ (I −F z∗)S∗
m = F z∗ =⇒ (z−∗I −F )S∗

m = F

=⇒ S∗
m = (z−∗I −F )−1F

Therefore, ∞∑
m=1

F∗m zm = F∗(z−∗I −F )−∗ (2.6)
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∞∑
m=1

F∗(m−1)zm = F−∗(
∞∑

m=1
F∗m zm) = (z−∗I −F )−∗ (2.7)

Similarly,
∞∑

m=0
F∗m zm = (z−∗I −F )−∗z−1 (2.8)

Remark. Since (zI −F )−1 is the sum of F z, so (zI −F )−1 and F can commute, namely (zI −
F )−1F = F (zI −F )−1. So do (z−∗I −F )−∗ and F∗. Besides, by the different approaches of calcu-
lating

∑
F∗m zm , we know (z−∗I −F )−∗ = (z−1I −F∗)−1.

Take Eqs. (2.4) and (2.7) into Eq. (2.2), we get

φy (z) =H(
∞∑

n=1
F n z−nP +P +P

∞∑
m=1

F∗m zm)H∗+R2

+H(zI −F )−1R12 +R21(z−∗I −F )−∗H∗, (2.9)

which is one step closer to Eq. (1.8). Now only the first three terms in Eq. (2.9) need to be
handled. Denote HT H∗ as the sum of those terms, namely

T =
∞∑

n=1
F n z−nP +P +P

∞∑
m=1

F∗m zm . (2.10)

Take Eq. (1.3) into Eq. (2.10) and change the order of sum operator, we get

T =
∞∑

j=0

∞∑
n=1

F n z−nF j R1F∗ j +
∞∑

j=0
F j R1F∗ j +

∞∑
j=0

∞∑
m=1

F j R1F∗ j F∗m zm . (2.11)

Denote the first term in Eq. (2.11) T f and the sum of the rest two terms as Tb . So T = T f +Tb .
Then we have

T f =
∞∑

j=0

∞∑
n=1

F n z−nF j z− j R1F∗ j z j =
∞∑

j=0
(

∞∑
n= j+1

(F z−1)n)R1(F∗z) j . (2.12)

For Tb , we change the order of sum operator to arrange it as

Tb =
∞∑

j=0
(F z−1) j R1(F∗z) j +

∞∑
j=0

((F z−1) j R1

∞∑
m= j+1

(F∗z)m)

=
∞∑

j=0
(F z−1) j R1(F∗z) j +

∞∑
m=1

(
m−1∑
j=0

(F z−1) j )R1(F∗z)m . (2.13)

We change the subscripts in the first sum of Eq. (2.13) from j to m and split the case when
m = 0, then

Tb = (F z−1)0R1(F∗z)0 +
∞∑

m=1
(F z−1)mR1(F∗z)m +

∞∑
m=1

(
m−1∑
j=0

(F z−1) j )R1(F∗z)m

= (F z−1)0R1(F∗z)0 +
∞∑

m=1
(

m∑
j=0

(F z−1) j )R1(F∗z)m

=
∞∑

m=0
(

m∑
j=0

(F z−1) j )R1(F∗z)m (2.14)
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Again we change the subscripts in the sums of Eqs. (2.12) and (2.14). Use k for the outer sum
and l for the inner sum, then

T =
∞∑

k=0
(

∞∑
l=k+1

(F z−1)l )R1(F∗z)k +
∞∑

k=0
(

k∑
l=0

(F z−1)l )R1(F∗z)k

=
∞∑

k=0
(
∞∑

l=0
(F z−1)l )R1(F∗z)k

=
∞∑

l=0
(F z−1)l R1

∞∑
k=0

(F∗z)k . (2.15)

Take Eqs. (2.5) and (2.8) into Eq. (2.15), we have

T = (zI −F )−1zR1(z−∗I −F )−∗z−1

= (zI −F )−1R1(z−∗I −F )−∗ (2.16)

which conclude the proof.
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