Spectrum of Output in State Space Model

Yuchao Li

August 12, 2017

1 Problem statement

The state space model of a system is defined as

$$
\begin{align*}
x(t+1) & =F x(t)+v(t), \\
y(t) & =H x(t)+e(t) . \tag{1.1}
\end{align*}
$$

where $\nu(t)$ and $e(t)$ are complex-valued uncorrelated sequences with zero mean and

$$
\mathbf{E}\binom{v(t)}{e(t)}\left(v^{*}(s) e^{*}(s)\right)=\left(\begin{array}{cc}
R_{1} & R_{12} \tag{1.2}\\
R_{21} & R_{2}
\end{array}\right) \delta_{t, s} .
$$

According to [1], after reaching stationary state, the mean of $x(t)$ and $y(t)$ are both 0 , namely $m_{x}=0$ and $m_{y}=0$. The covariance of $x(t)$, namely $R_{x}(t, t)$, denoted as P, is given as

$$
\begin{equation*}
P=\sum_{j=0}^{\infty} F^{j} R_{1} F^{* j} \tag{1.3}
\end{equation*}
$$

By Eqs. (4.20) and (4.21) in [1], after reaching stationary state the output covariance function is given as

$$
\begin{align*}
R_{y}(t, t) & =H P H^{*}+R_{2} \tag{1.4}\\
R_{y}(t+\tau, t) & =H F^{\tau} P H^{*}+H F^{\tau-1} R_{12}, \tau>0 \tag{1.5}\\
R_{y}(t-\tau, t) & =H P F^{* \tau} H^{*}+R_{21} F^{*(\tau-1)} H^{*}, \tau>0 \tag{1.6}
\end{align*}
$$

The spectrum of a time series, say $\{y(t)\}$, is defined as

$$
\begin{equation*}
\phi_{y}(z)=\sum_{n=-\infty}^{\infty} R_{y}(t+n, t) z^{-n} \tag{1.7}
\end{equation*}
$$

By [1], in the stationary case, the spectrum of $y(t)$ is given as

$$
\begin{align*}
\phi_{y}(z)= & H(z I-F)^{-1} R_{1}\left(z^{-*} I-F\right)^{-*} H^{*}+R_{2} \\
& H(z I-F)^{-1} R_{12}+R_{21}\left(z^{-*} I-F\right)^{-*} H^{*} \tag{1.8}
\end{align*}
$$

which is calculated via the transfer function model rather than state space model. Elaborate that the same result can also be given via the state space model.

2 Elaboration

Take Eqs. (1.4), (1.5) and (1.6) into Eq. (1.7), we obtain

$$
\begin{equation*}
\phi_{y}(z)=H P H^{*}+R_{2}+\sum_{n=1}^{\infty}\left(H F^{n} P H^{*}+H F^{n-1} R_{12}\right) z^{-n}+\sum_{m=1}^{\infty}\left(H P F^{* m} H^{*}+R_{21} F^{*(m-1)} H^{*}\right) z^{m} \tag{2.1}
\end{equation*}
$$

which can be rewritten as

$$
\begin{align*}
\phi_{y}(z)= & H P H^{*}+R_{2}+H\left(\sum_{n=1}^{\infty} F^{n} z^{-n}\right) P H^{*}+H\left(\sum_{n=1}^{\infty} F^{n-1} z^{-n}\right) R_{12} \\
& +H P\left(\sum_{m=1}^{\infty} F^{* m} z^{m}\right) H^{*}+R_{21}\left(\sum_{m=1}^{\infty} F^{*(m-1)} z^{m}\right) H^{*} \tag{2.2}
\end{align*}
$$

First of all, we take care of $\sum F^{n} z^{-n}$.

$$
S_{n}=\sum_{n=1}^{\infty} F^{n} z^{-n} \Longrightarrow S_{n}=\sum_{n=1}^{\infty}\left(F z^{-1}\right)^{n} \Longrightarrow\left(I-F z^{-1}\right) S_{n}=F z^{-1} \Longrightarrow(z I-F) S_{n}=F
$$

Therefore,

$$
\begin{gather*}
\sum_{n=1}^{\infty} F^{n} z^{-n}=(z I-F)^{-1} F \tag{2.3}\\
\sum_{n=1}^{\infty} F^{(n-1)} z^{-n}=\left(\sum_{n=1}^{\infty} F^{n} z^{-n}\right) F^{-1}=(z I-F)^{-1} \tag{2.4}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
\sum_{n=0}^{\infty} F^{n} z^{-n}=(z I-F)^{-1} z \tag{2.5}
\end{equation*}
$$

Then for $\sum F^{* m} z^{m}$, we calculate $\sum F^{m} z^{* m}$ instead in order to follow the notation used in [1]

$$
\begin{gathered}
S_{m}^{*}=\sum_{m=1}^{\infty} F^{m} z^{* m} \Longrightarrow S_{m}^{*}=\sum_{m=1}^{\infty}\left(F z^{*}\right)^{m} \Longrightarrow\left(I-F z^{*}\right) S_{m}^{*}=F z^{*} \Longrightarrow\left(z^{-*} I-F\right) S_{m}^{*}=F \\
\Longrightarrow S_{m}^{*}=\left(z^{-*} I-F\right)^{-1} F
\end{gathered}
$$

Therefore,

$$
\begin{equation*}
\sum_{m=1}^{\infty} F^{* m} z^{m}=F^{*}\left(z^{-*} I-F\right)^{-*} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=1}^{\infty} F^{*(m-1)} z^{m}=F^{-*}\left(\sum_{m=1}^{\infty} F^{* m} z^{m}\right)=\left(z^{-*} I-F\right)^{-*} \tag{2.7}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{m=0}^{\infty} F^{* m} z^{m}=\left(z^{-*} I-F\right)^{-*} z^{-1} \tag{2.8}
\end{equation*}
$$

Remark. Since $(z I-F)^{-1}$ is the sum of $F z$, so $(z I-F)^{-1}$ and F can commute, namely $(z I-$ $F)^{-1} F=F(z I-F)^{-1}$. So do $\left(z^{-*} I-F\right)^{-*}$ and F^{*}. Besides, by the different approaches of calculating $\sum F^{* m} z^{m}$, we know $\left(z^{-*} I-F\right)^{-*}=\left(z^{-1} I-F^{*}\right)^{-1}$.
Take Eqs. (2.4) and (2.7) into Eq. (2.2), we get

$$
\begin{align*}
\phi_{y}(z)= & H\left(\sum_{n=1}^{\infty} F^{n} z^{-n} P+P+P \sum_{m=1}^{\infty} F^{* m} z^{m}\right) H^{*}+R_{2} \\
& +H(z I-F)^{-1} R_{12}+R_{21}\left(z^{-*} I-F\right)^{-*} H^{*} \tag{2.9}
\end{align*}
$$

which is one step closer to Eq. (1.8). Now only the first three terms in Eq. (2.9) need to be handled. Denote $H T H^{*}$ as the sum of those terms, namely

$$
\begin{equation*}
T=\sum_{n=1}^{\infty} F^{n} z^{-n} P+P+P \sum_{m=1}^{\infty} F^{* m} z^{m} \tag{2.10}
\end{equation*}
$$

Take Eq. (1.3) into Eq. (2.10) and change the order of sum operator, we get

$$
\begin{equation*}
T=\sum_{j=0}^{\infty} \sum_{n=1}^{\infty} F^{n} z^{-n} F^{j} R_{1} F^{* j}+\sum_{j=0}^{\infty} F^{j} R_{1} F^{* j}+\sum_{j=0}^{\infty} \sum_{m=1}^{\infty} F^{j} R_{1} F^{* j} F^{* m} z^{m} \tag{2.11}
\end{equation*}
$$

Denote the first term in Eq. (2.11) T_{f} and the sum of the rest two terms as T_{b}. So $T=T_{f}+T_{b}$. Then we have

$$
\begin{equation*}
T_{f}=\sum_{j=0}^{\infty} \sum_{n=1}^{\infty} F^{n} z^{-n} F^{j} z^{-j} R_{1} F^{* j} z^{j}=\sum_{j=0}^{\infty}\left(\sum_{n=j+1}^{\infty}\left(F z^{-1}\right)^{n}\right) R_{1}\left(F^{*} z\right)^{j} \tag{2.12}
\end{equation*}
$$

For T_{b}, we change the order of sum operator to arrange it as

$$
\begin{align*}
T_{b} & =\sum_{j=0}^{\infty}\left(F z^{-1}\right)^{j} R_{1}\left(F^{*} z\right)^{j}+\sum_{j=0}^{\infty}\left(\left(F z^{-1}\right)^{j} R_{1} \sum_{m=j+1}^{\infty}\left(F^{*} z\right)^{m}\right) \\
& =\sum_{j=0}^{\infty}\left(F z^{-1}\right)^{j} R_{1}\left(F^{*} z\right)^{j}+\sum_{m=1}^{\infty}\left(\sum_{j=0}^{m-1}\left(F z^{-1}\right)^{j}\right) R_{1}\left(F^{*} z\right)^{m} \tag{2.13}
\end{align*}
$$

We change the subscripts in the first sum of Eq. (2.13) from j to m and split the case when $m=0$, then

$$
\begin{align*}
T_{b} & =\left(F z^{-1}\right)^{0} R_{1}\left(F^{*} z\right)^{0}+\sum_{m=1}^{\infty}\left(F z^{-1}\right)^{m} R_{1}\left(F^{*} z\right)^{m}+\sum_{m=1}^{\infty}\left(\sum_{j=0}^{m-1}\left(F z^{-1}\right)^{j}\right) R_{1}\left(F^{*} z\right)^{m} \\
& =\left(F z^{-1}\right)^{0} R_{1}\left(F^{*} z\right)^{0}+\sum_{m=1}^{\infty}\left(\sum_{j=0}^{m}\left(F z^{-1}\right)^{j}\right) R_{1}\left(F^{*} z\right)^{m} \\
& =\sum_{m=0}^{\infty}\left(\sum_{j=0}^{m}\left(F z^{-1}\right)^{j}\right) R_{1}\left(F^{*} z\right)^{m} \tag{2.14}
\end{align*}
$$

Again we change the subscripts in the sums of Eqs. (2.12) and (2.14). Use k for the outer sum and l for the inner sum, then

$$
\begin{align*}
T & =\sum_{k=0}^{\infty}\left(\sum_{l=k+1}^{\infty}\left(F z^{-1}\right)^{l}\right) R_{1}\left(F^{*} z\right)^{k}+\sum_{k=0}^{\infty}\left(\sum_{l=0}^{k}\left(F z^{-1}\right)^{l}\right) R_{1}\left(F^{*} z\right)^{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{l=0}^{\infty}\left(F z^{-1}\right)^{l}\right) R_{1}\left(F^{*} z\right)^{k} \\
& =\sum_{l=0}^{\infty}\left(F z^{-1}\right)^{l} R_{1} \sum_{k=0}^{\infty}\left(F^{*} z\right)^{k} . \tag{2.15}
\end{align*}
$$

Take Eqs. (2.5) and (2.8) into Eq. (2.15), we have

$$
\begin{align*}
T & =(z I-F)^{-1} z R_{1}\left(z^{-*} I-F\right)^{-*} z^{-1} \\
& =(z I-F)^{-1} R_{1}\left(z^{-*} I-F\right)^{-*} \tag{2.16}
\end{align*}
$$

which conclude the proof.

References

[1] Torsten Söderström, Discrete-time stochastic systems: Estimation and control, Springer \& Verlag, 2002.

