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1 PROBLEM STATEMENT

The state space model of a system is defined as

x(t+1)=Fx(t)+ v(1),

(1.1)
y(t) = Hx(t) + e().
where v(f) and e(f) are complex-valued uncorrelated sequences with zero mean and
vIOY, sy s (B Ri2
E(e(t)) (v (s)e (s) = (R21 Ry )5z,s- (1.2)

According to [1], after reaching stationary state, the mean of x(¢) and y(t) are both 0, namely
my =0 and my, = 0. The covariance of x(), namely Ry(, 1), denoted as P, is given as

<X> . .
P=) FIRF. (1.3)
j=0

By Egs. (4.20) and (4.21) in [1], after reaching stationary state the output covariance function
is given as

Ry(t,t)= HPH" + Ry, (1.4)
Ry(t+1,)= HF'PH* + HF" 'Ri5,7>0 (1.5)
Ry(t—7,8)= HPF*"H* + Ry F*"" VH*, >0 (1.6)

The spectrum of a time series, say {y(?)}, is defined as

$y(2)= > Ry(t+n, 0z " (1.7)

n=—00



By [1], in the stationary case, the spectrum of y(t) is given as

¢y(2) =H(zI-F)'Ri(z *I-F) *H* +R,
H(zI-F) 'Ry + Ry (2 *I1-F) *H*, (1.8)

which is calculated via the transfer function model rather than state space model. Elaborate
that the same result can also be given via the state space model.

2 ELABORATION
Take Egs. (1.4), (1.5) and (1.6) into Eq. (1.7), we obtain

o0 [
¢y(2) = HPH* + Ry + Y_(HF"PH* + HF" 'Ri)z™ "+ Y (HPF*"H* + Ry F*" YV H*) 2™,

n=1 m=1

2.1)
which can be rewritten as
o0 o0
¢y(2) =HPH* + Ry + H(Y_ F"z ")PH* + H(Y_ F" 'z "R,
n=1 n=1
(o0} oo
+HP(Y. F*™z™H* + R (). F*" V™ H*, 2.2)
m=1 m=1
First of all, we take care of Y F"z~".
o0 oo
Sp=Y F'z" = S,=Y (Fz )" = (I-Fz ")S,=Fz! = (zI-F)S,=F
n=1 n=1
Therefore,
oo
Y F'z"=(zI-F)'F (2.3)
n=1
oo oo
S F V= (Y F'z M F = (zI-F)7! (2.4)
n=1 n=1
Similarly,
o0
Y F'z " =(z-F) 'z (2.5)
n=0

Then for Y F*™z™ we calculate Y. F"z*™ instead in order to follow the notation used in [1]

o0
* m_*xm *
Sm—ZFz = §,, =
m=1

3018

(Fz")" = (I-Fz")S;,=Fz" = (z *I-F)S},=F
1

= Si,=(z*I-F)'F
Therefore,

[
Y F*M"=F (z " I-F)7" (2.6)

m=1



(o] o0
Y P =F (Y P = (2 [-F) 7" 2.7)
m=1 m=1
Similarly,

o0

Y Pz =(z*I-F) "z (2.8)

m=0
Remark. Since (zI — F)™! is the sum of Fz, so (z] — F)~! and F can commute, namely (zI —
F)'F=F(zI-F)™'. Sodo (z *I - F)~* and F*. Besides, by the different approaches of calcu-
latingY F*"z™, we know (z *I-F)™* = (z l1-F"~ L

Take Egs. (2.4) and (2.7) into Eq. (2.2), we get

o0 (&)
$y(2)=H() F"z"P+P+P Y F*"z"H"+R,

n=1 m=1

+H(zI-F) 'Ry + Ry (z *I-F)"*H*, 2.9)

which is one step closer to Eq. (1.8). Now only the first three terms in Eq. (2.9) need to be
handled. Denote HT H* as the sum of those terms, namely

o0 o0
T=) F'z"P+P+P ) F*z™. (2.10)

n=1 m=1

Take Eq. (1.3) into Eq. (2.10) and change the order of sum operator, we get

T=) ) F'z7"FIRF/+ ) F/RF+3 Y FRFIF"Z" (2.11)
j=0n=1 j=0 j=0m=1

Denote the first term in Eq. (2.11) Ty and the sum of the rest two terms as Tj. So T = Tf+ Tp.
Then we have

w m . . . . w w 1 .
Tr=Y Y F'z "Flz IRFYZ =)y (Y (Fz)Y)Ri(F*2) . 2.12)
j=0n=1 j=0 n=j+1

For Ty, we change the order of sum operator to arrange it as

Ty=Y Fz ) R(F*2)! + Y (Fz)/R Y (F*2)™
j=0 j=0 m=j+1
. . co m-1 .
(Fz Y Ri(F*2)) + Y (Y. (Fz Y Ri(F*2)™. (2.13)
0 m=1 j=0
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We change the subscripts in the first sum of Eq. (2.13) from j to m and split the case when
m =0, then

0 oo m—1 .
Tp=(Fz HDRI(F*2°+ Y (FzH"Ri(F*2" + Y (Y. (Fz YR (F*2)™
m=1 m=1 j=0
=Fz )R(F2°+ Y () (Fz HY)R(F* )™
m=1 j=0
=Y O FEZH)HR(F* )™ (2.14)
m=0 j=0



Again we change the subscripts in the sums of Egs. (2.12) and (2.14). Use k for the outer sum
and [ for the inner sum, then

oo k
FzHhRi(F* 2+ Y. O (FzHH R (F* 2)*

e}
2

I=k+ k=0 [=0
00

ION

I
I

(

kel
Il
(e}

(Fz H)R (F*2)*

MS i M8

(Fz YRy Z(F 2~ 2.15)
k=0

~
1l

Take Egs. (2.5) and (2.8) into Eq. (2.15), we have

=(zI-F) 2R (z *I-F)~*z7!
=(z[-F) 'Rz *I-F)* (2.16)

which conclude the proof.
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