Proof of Parseval's Theorem

Yuchao Li

August 05, 2017

1 Problem statement

Suppose $A(x)$ and $B(x)$ are two square integrable (with respect to the Lebesgue measure), complex-valued functions on \mathbb{C} of period 2π with Fourier series

$$
\begin{equation*}
A(x)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n x} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B(x)=\sum_{n=-\infty}^{\infty} b_{n} e^{i n x} \tag{1.2}
\end{equation*}
$$

respectively. Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} A(x) \bar{B}(x) \mathrm{d} x=\sum_{n=-\infty}^{\infty} a_{n} \bar{b}_{n} . \tag{1.3}
\end{equation*}
$$

Prove the theorem.

2 Elaboration

The result is a natural result of mutual orthogonality of sine and cosine functions. Since

$$
\begin{equation*}
\int_{-\pi}^{\pi} e^{i n x} e^{-i m x} \mathrm{~d} x=\int_{-\pi}^{\pi} e^{i(n-m) x} \mathrm{~d} x=\int_{-\pi}^{\pi} \cos ((n-m) x)+i \sin ((n-m) x) \mathrm{d} x . \tag{2.1}
\end{equation*}
$$

The result is 2π when $n-m=0$ and 0 otherwise. Therefore, apply Eqs. (1.1) and (1.2) into the left hand side of Eq. (1.3), we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} A(x) \bar{B}(x) \mathrm{d} x & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{n} \bar{b}_{m} e^{i(n-m) x} \mathrm{~d} x \\
& =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{-\pi}^{\pi} a_{n} \bar{b}_{m} e^{i(n-m) x} \mathrm{~d} x
\end{aligned}
$$

Sine only when $n=m$ the term would preserve so the proof is done.

