On Linear Innovations Sequence

Yuchao Li

August 03, 2017

1 Problem statement

Suppose $X, Y_{1}, Y_{2}, \ldots, Y_{n}$ are random vectors and $1, Y_{1}, Y_{2}, \ldots, Y_{n}$ have finite second moments but not orthogonal. According to [1], by orthogonalizing this sequences we can obtain a new sequence 1. $\widetilde{Y}_{1}, \widetilde{Y}_{2}, \ldots, \widetilde{Y}_{n}$ used for linear estimating of X. Let $\widetilde{Y}_{1}=Y_{1}-E\left[Y_{1}\right]$, and for $i \geq 2$, let

$$
\begin{equation*}
\widetilde{Y}_{i}=Y_{i}-\widehat{E}\left[Y_{i} \mid Y_{1}, Y_{2}, \ldots, Y_{i-1}\right] \tag{1.1}
\end{equation*}
$$

It is claimed in the following elaboration (online version of [1], page 95 and 96) that

1. $E\left[\widetilde{Y}_{i}\right]=0$ for all i and $E\left[\widetilde{Y}_{i} \widetilde{Y}_{j}^{T}\right]=0$ for all $i \neq j$.
2. $\widehat{E}\left[X \mid Y_{1}, Y_{2}, \ldots, Y_{n}\right]=\widehat{E}\left[X \mid \widetilde{Y}_{1}, \widetilde{Y}_{2}, \ldots, \widetilde{Y}_{n}\right]$.

2 Elaboration

First, prove $E\left[\widetilde{Y}_{i}\right]=0$ for all $i . E\left[\widetilde{Y}_{1}\right]=E\left[Y_{1}\right]-E\left[E\left[Y_{1}\right]\right]=0$. Denote $Z_{i}^{T}=\left[Y_{1}^{T}, Y_{2}^{T}, \ldots, Y_{i-1}^{T}\right]$. For $i \geq 2$,

$$
\begin{equation*}
\widehat{E}\left[Y_{i} \mid Y_{1}, Y_{2}, \ldots, Y_{i-1}\right]=E\left[Y_{i}\right]+\operatorname{Cov}\left[Y_{i}, Z_{i}\right] \operatorname{Cov}\left[Z_{i}\right]^{-1}\left(Z_{i}-E\left[Z_{i}\right]\right) \tag{2.1}
\end{equation*}
$$

Apparently, $E\left[\widehat{E}\left[Y_{i} \mid Y_{1}, Y_{2}, \ldots, Y_{i-1}\right]\right]=E\left[Y_{i}\right]$. Therefore, $E\left[\widetilde{Y}_{i}\right]=0$ for $i \geq 2$ also holds. Then prove $E\left[\widetilde{Y}_{i} \widetilde{Y}_{j}^{T}\right]=0$ for all $i \neq j$. Without loss of generality, suppose that $i>j$. According to [1] page 86, $\widetilde{Y}_{i}=e_{i}$ and is orthogonal to all linear combination of $1, Y_{1}, Y_{2}, \ldots, Y_{i-1} . \widetilde{Y}_{j}$ is a linear combination of $1, Y_{1}, Y_{2}, \ldots, Y_{j}$. Since $i>j, \widetilde{Y}_{j}$ is also a linear combination of $1, Y_{1}, Y_{2}, \ldots, Y_{i-1}$. Therefore $E\left[\widetilde{Y}_{i} \widetilde{Y}_{j}^{T}\right]=0$ for all $i \neq j$.

Second, according to Eq. (1.1), \widetilde{Y}_{i} is a linear function of $1, Y_{1}, Y_{2}, \ldots, Y_{i}$. Therefore we can claim that

$$
\begin{equation*}
\tilde{Y}=B Y+c \tag{2.2}
\end{equation*}
$$

where matrix B is lower triangular matrix with all diagonal elements to be 1 . Therefore B is invertible. By [1],

$$
\begin{equation*}
\widehat{E}\left[X \mid Y_{1}, Y_{2}, \ldots, Y_{n}\right]=E[X]+\operatorname{Cov}[X, Y] \operatorname{Cov}[Y]^{-1}(Y-E[Y]) \tag{2.3}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\widehat{E}\left[X \mid \widetilde{Y}_{1}, \widetilde{Y}_{2}, \ldots, \widetilde{Y}_{n}\right]=E[X]+\operatorname{Cov}[X, \widetilde{Y}] \operatorname{Cov}[\widetilde{Y}]^{-1}(\widetilde{Y}-E[\widetilde{Y}]) \tag{2.4}
\end{equation*}
$$

Since $\operatorname{Cov}[\widetilde{Y}]=B \operatorname{Cov}[Y] B^{T}$ which leads to

$$
\operatorname{Cov}[\tilde{Y}]^{-1}=\left(B^{T}\right)^{-1} \operatorname{Cov}[Y]^{-1} B^{-1}
$$

and

$$
\operatorname{Cov}[X, \widetilde{Y}]=\operatorname{Cov}[X, B Y+c]=\operatorname{Cov}[X, Y] B^{T}
$$

Eq. (2.4) can be reformulated as
$\widehat{E}\left[X \mid \widetilde{Y}_{1}, \widetilde{Y}_{2}, \ldots, \widetilde{Y}_{n}\right]=E[X]+\operatorname{Cov}[X, Y] B^{T}\left(B^{T}\right)^{-1} \operatorname{Cov}[Y]^{-1} B^{-1} B(Y-E[Y])=\widehat{E}\left[X \mid Y_{1}, Y_{2}, \ldots, Y_{n}\right]$

REFERENCES

[1] Bruce Hajek, Random processes for engineers, Cambridge University Press, 2015.

