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1 PROBLEM STATEMENT

An MA(oo) is given by Eq. (1.1), where L is Lag operator and €; ~ N(0, %) isiid.
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By Note 19, the convergence of series {y;} is a precondition for any further discussion regard-
ing stationary process. It turns out that the very same condition also ensures the existence of
stationary solution to the difference equation Eq. (1.1). The condition is illustrated as in Eq.
(1.2), which means the infinite series {¢;} has square summability.
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The proof of the condition can be found in Note 19 (similar consideration regarding conver-
gence is given in Note 8 when (1-¢L) ! is defined), and the convergence of Cauchy sequences
are used in both Note 19 and Note 8. Refer to Note 9 for proof of the convergence of Cauchy
sequences.

Absolute summability of infinite series {¢;} is defined as Eq. (1.3).
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Itis also stated in Note 19 that absolute summability is a slight stronger condition than square
summability.

Prove that absolute summability is stronger than square summability by elaborating the fol-
lowing two aspects.



1. Any absolute-summable series is square-summable.

2. There exists a series which is square-summable but not absolute-summable.

2 ELABORATION

First, the proof of the proposition that any absolute-summable series is certainly square-
summable can be found in Note 21.
Second, the series which is not absolute-summable but square summable is denoted as {d;},

defined as )
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whose (absolute) sum is Harmonic series, given as
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The Harmonic series is divergent, so as the absolute sum of {d;}. The proof of Harmonic series
divergence can be found in Note 22. The square sum of {d;}, which is called Basel series, given

as
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is convergent. Solving the convergent limit of the Basel series is called the Basel problem.
The proof is given in Note 23, in which the proof via Fourier series needs further attention.
It applies the Parseval’s identity for Fourier series, whose proof can be found in Note 24. The
proof uses Mutual orthogonality of sine and cosine functions, and the feature is elaborated
in Note 25.



