On Hermitian Matrix and Positive-definite Feature

Yuchao Li

July 20, 2017

1 PROBLEM STATEMENT

By definition, an $n \times n$ Hermitian Matrix H is positive definite if for any non-zero vector $z \in \mathbb{C}^n$, the scalar $z^* Hz$ is real and positive. This implies that any positive definite matrix is Hermitian, which is not obvious. This discussion shows the following two statement are equivalent:

- a) *H* is a Hermitian matrix with positive eigenvalues.
- b) *H* is a positive definite matrix.

2 ELABORATION

First, we prove that a) \Rightarrow b). Since *H* is Hermitian, by **Note 2**, *H* can be diagonalized as a diagonal matrix *D* by an unitary matrix *U*, namely $H = U^*DU$, where

$$D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Since the eigenvalues of *H* are positive, $S = \sqrt{D}$ exists and *S* is Hermitian due to that $S = S^*$. Therefore, for any non-zero vector $z \in \mathbb{C}^n$,

$$z^* Hz = z^* U^* S^* SUz = (SUz)^* SUz > 0$$

1

Therefore, *H* is an positive definite matrix.

Second, we prove that b) \Rightarrow a). Step one is to prove positive definite matrix *H* must be Hermitian. Since z^*Hz is a real scalar for all $z \in \mathbb{C}^n$, therefore, $z^*Hz = (z^*Hz)^*$. Since $(z^*Hz)^* = z^*H^*z$, therefore, $z^*Hz - z^*H^*z = 0$, which leads to that $z^*(H - H^*)z = 0$. Therefore $H = H^*$. An alternative interpretation can be that since z^*Hz is a real scalar, $z_i^*h_{ij}z_j$ and $z_j^*h_{ji}z_i$ need to be conjugate in order to cancel the imaginary part. This leads to that *H* being Hermitian. Step two is to prove that *H* has positive eigenvalues. Since $H = U^*DU$, $z^*Hz = z^*U^*DUz$. Denote k = Uz, then

$$z^*Hz = k^*Dk = \sum_{i=1}^n \lambda_i |k_i|^2$$

where k_i is the element of vector k. Since $z^*Hz > 0$, $\lambda_i > 0$ for $i = 1, \dots n$. Namely, H has positive eigenvalues.

Remark. A positive definite matrix H can always be written as A^*A where A = SU.