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Chapter 1

P. 2 Regarding the linear transformation, consider the closed convex set

C1 = {(x, y) |x > 0, y > 0, xy ≥ 1} ⊂ R2.

Its image under linear transformation A = [1, 0] is {x |x > 0}, which is convex
and open.

Regarding the vector sum, consider closed convex sets

C1 = {(x, y) |x > 0, y > 0, xy ≥ 1}, C2 = {(x, 0) |x ≤ 1}.

Then their sum is {(x, y) | y > 0}, which is an open set. This is an example
from [Note 1].

P. 3 (λ1 + λ2)C ⊂ λ1C + λ2C is always true regardless whether C is con-
vex.

P. 4 Such an r exists because it can be taken as min{r1, r2} where r1 and r2 are
the radius of balls centered at x and y respectively, that are contained in C. The
existence of r1 and r2 are asserted due to openness of C and x, y ∈ C.

P. 4

Lemma (P. 4). Let P ⊂ Rn be a polyhedral set that contains origin, and is given
by P = ∩rj=1Fj, where Fj = {x | a′jx ≤ bj} is half space. In addition, P is a
cone. Let Pj be the set F1∩· · ·∩Fj−1∩Fj+1∩· · ·∩Fr, and for j = 1, . . . , r, there
exists some x ∈ Pj that is not an element of P . Then bj = 0 for j = 1, . . . , r.

Proof. Since 0 ∈ P , then bj ≥ 0 for all j. In addition, since for j = 1, . . . , r,
there exists some x ∈ Pj that is not an element of P , then P ⊂ Pj and P 6= Pj .
We prove the claim by contradiction given that bj ≥ 0. Assume bj > 0. Then
for all y ∈ Pj \ P , where Pj \ P 6= ∅, we have y ∈ Pj and a′jy > bj > 0
since y 6∈ Fj . However, since a′jy > 0, bj/(a

′
jy) ∈ (0, 1) and y ∈ Pj , we

have a′j(bjy)/(a′jy) ∈ Fj , and a′k(bjy)/(a′jy) ≤ bk for all k 6= j, which means
(bjy)/(a′jy) ∈ P . This is a contradiction with y 6∈ P since P is a cone and
y = λ(bjy)/(a′jy) with λ = (a′jy)/bj > 0. Thus the assumption is false. The
same arguments apply to every j = 1, . . . , r. Thus, bj = 0 for all j.
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P. 8 For a improper convex function f : C → [−∞,∞], it holds that f(x) = −∞
∀x ∈ int

(
dom(f)

)
. This statement can be found in 2.5, P. 41, [Rockafellar and

Wets 98].

To see that, we first note that for the case f(x) = ∞, the statement holds.
Otherwise, denote as x̄ where f(x̄) = −∞, and we have that x̄ ∈ dom(f).
Then for any x ∈ int

(
dom(f)

)
, there exists r > 0 such that the open ball

centered at x with radius r contained in dom(f). Pick z = x+ βx− βx̄, where
0 < β < r/‖x−x̄‖, then we have x = αz+(1−α)x̄, where α = 1/(1+β) ∈ (0, 1).
Since z ∈ dom(f), there exists ω such that (z, w) ∈ epi(f). By convexity of f ,
we have f(x) ≤ αw + (1− α)w′ for all ω′ ∈ R. Therefore, f(x) = −∞.

P. 9 This definition is given with the understanding that for any subset A ⊂
[−∞,∞], the infimum of A ∪ {−∞}, namely inf(A ∪ {−∞}), is −∞; and the
infimum inf{∞} is ∞. Similarly, sup(A ∪ {∞}) = ∞, and sup{−∞} = −∞.
Note that to have objects such as supR or sup{∞} defined, we are operating
on the ordered set [−∞,∞], namely, for set Y ⊂ [−∞,∞], supY is defined as
the greatest element in [−∞,∞] such that it is no less than all y ∈ Y .

P. 11 The inverse is not true, that is, given a closed function f : X → [−∞,∞],
its effective domain domf can be open. One such example is f(x) = 1/x defined
over (0,∞).

On the other hand, if a function f : X → [−∞,∞] is closed, its extension to
any X, denoted as f̄ , such that X ⊂ X and

f̄(x) =

{
f(x), x ∈ X,
∞, x ∈ X \X,

is also closed.

P. 13

Lemma (1, P. 13). Let {an}, {bn} ⊂ (−∞,∞] be two convergent sequence with
both limits limn→∞ an, limn→∞ bn in (−∞,∞]. It holds that

lim
n→∞

an + lim
n→∞

bn = lim
n→∞

(an + bn). (1)

Proof. Denote a = limn→∞ an b = limn→∞ bn. If a = b = ∞, then we have
limn→∞ an + limn→∞ bn = ∞. In addition, for any k ∈ R, there exists Na
and Nb such that an > k/2 for all n > Na and bn > k/2 for all n > Nb.
Therefore, an + bn > k for all n > max{Na, Nb}. Per definition, this means
that limn→∞(an + bn) =∞.

Otherwise, without loss of generality, assume a ∈ R. Then there exists N such
that {an}∞n=N ⊂ R. Since sequences {an}∞n=N and {an}∞n=1 has the same limits,
and so do {bn}∞n=N and {bn}∞n=1, and {an + bn}∞n=N and {an + bn}∞n=1, then
we work with {an}∞n=N , {bn}∞n=N , and {an + bn}∞n=N . Denote their limits as ā,
b̄, and a+ b. By [Abstract DP Note Lemma 2, P. 42], we have ā + b̄ = a+ b.
Therefore, the desired relation follows.
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Note that the above results can be extended to any finitely many convergent
sequences which are within (−∞,∞] with their limits in (−∞,∞].

Similarly, the above result would also hold if {an}, {bn} ⊂ [−∞,∞) are two
convergent sequence with both limits limn→∞ an, limn→∞ bn in [−∞,∞).

Lemma (2, P. 13). Given functions fi : Rn → (−∞,∞], i = 1, 2, ..., m, that
are all closed, then the function f : Rmn → (−∞,∞] given as

f(x) =

m∑
i=1

fi(xi)

where x = (x1, ..., xm) ∈ Rmn, is also closed.

Proof. We first show that for any {xki }∞k=1 ⊂ Rn that converges to xi ∈ Rn,
the sequence {inf`≥k fi(x

`
i)}∞k=1 and its limit are within (−∞,∞]. Since for

all i, fi(x) is closed thus lower semicontinuous, then given arbitrary xi ∈ Rn,
every sequence {xki } ⊂ Rn that converges to xi, we have lim infk→∞ fi(x

k
i ) ≥

fi(xi) > −∞, and the sequence {inf`≥k fi(x
`
i)}∞k=1 is monotonically increasing.

If fi(xi) ∈ R, then for a finite fi < fi(xi), there exists some K such that

for all k ≥ K, inf`≥k fi(x
`
i) ≥ fi. If fi(xi) = ∞, then the monotonically

increasing sequence {inf`≥k fi(x
`
i)}∞k=1 has limit ∞, which means there exists

some K such that for all k ≥ K, inf`≥k fi(x
`
i) ≥ fi. In either case, we have

min{fi(x1
i ), fi(x

2
i ), . . . , fi(x

K−1
i ), fi} as a lower bound of inf`≥0 fi(x

`
i), which

is finite.

Then we show that the function f is lower semicontinuous. For every x =
(x1, . . . , xm) ∈ Rmn, we look at every sequence {xk} that converges to x with
xk = (xk1 , . . . , x

k
m). It is obvious that xki → xi. Due to lower semicontinuity of

fi, we have for every i, fi(xi) ≤ lim infk→∞ fi(x
k
i ). By above arguments, we see

that {inf`≥k fi(x
`
i)}∞k=1 and lim infk→∞ fi(x

k
i ) are all within (−∞,∞] for all i,

and so the term
∑m
i=1 lim infk→∞ fi(x

k
i ) is properly defined. Therefore, we have

f(x) =

m∑
i=1

fi(xi) ≤
m∑
i=1

lim inf
k→∞

fi(x
k
i ) = lim

k→∞

( m∑
i=1

inf
`≥k

fi(x
`
i)
)

(2)

where the last equality is due to [Lemma 1, P. 13] and the comments fol-
lowed. Since for all i it holds that inf`≥k fi(x

`
i) ≤ fi(x

j
i ) for all j ≥ k, then∑m

i=1 inf`≥k fi(x
`
i) ≤

∑m
i=1 fi(x

j
i ) for all j ≥ k. Therefore,

∑m
i=1 inf`≥k fi(x

`
i) ≤

inf`≥k
(∑m

i=1 fi(x
`
i)
)

= inf`≥k f(x`). Clearly the sequence {inf`≥k f(x`)} is
monotonically increasing and thus convergent, then by [Abstract DP Note Lemma
1, P. 42], we have

lim
k→∞

( m∑
i=1

inf
`≥k

fi(x
`
i)
)
≤ lim inf

k→∞
f(xk). (3)

Combine Eqs. (2) and (3) and we get the desired result.
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Note that in the above proof, we use inf`≥k fi(x
`
i), with the understanding that

{fi(x`i)}`≥k is a subset of R ∪ {∞}, or may even be {∞} in the event that
fi(x

`
i) = ∞ ∀` ≥ k. In either case, its infimum is considered well-defined, and

inf{∞} =∞, as is commented in [COT Note P. 9].

Lemma (3, P. 13). Given functions fi : Rn → (−∞,∞], i = 1, 2, ..., m, that
are all convex, then the function f : Rmn → (−∞,∞] given as

f(x) =

m∑
i=1

fi(xi)

where x = (x1, ..., xm) ∈ Rmn, is also convex.

Proof. Since fi : Rn → (−∞,∞] is convex, per definition, epi(fi) is convex,
then one can show that ∀x1, x2 ∈ Rn and θ ∈ [0, 1], it holds that fi

(
θx1 + (1−

θ)x2

)
≤ θfi(x1) + (1− θ)fi(x2). Then we have ∀x, y ∈ Rmn and θ ∈ [0, 1] where

x = (x1, ..., xm) and y = (y1, ..., ym), it holds that

f
(
θx+ (1− θ)y

)
=

m∑
i=1

fi
(
θxi + (1− θ)yi

)
≤

m∑
i=1

θfi(xi) + (1− θ)fi(yi)

=θf(x) + (1− θ)f(y).

Now we need to show that epi(f) is convex. To see that, given (x,w), (y, v) ∈
epi(f), we have f

(
θx+(1−θ)y

)
≤ θf(x)+(1−θ)f(y) ≤ θw+(1−θ)v. Therefore,

epi(f) is convex.

P. 13 The proof here uses also Prop. A.2.2(d).

P. 17 Denote g : (0, 1]→ R as

g(α) =
f
(
x∗ + α(z − x∗)

)
− f(x∗)

α
,

which is well-defined since x∗, z ∈ C and C is convex. Then due to f dif-
ferentiable at x∗, then for any sequence {αk} ⊂ (0, 1] that converges to 0, it
holds that limk→∞ g(αk) = −ε < 0 where −ε = ∇f(x∗)′(z − x). Then it holds
that

∃δ ∈ (0, 1]
(
∀α
(
α ∈ (0, δ] =⇒ g(α) < −ε/2

))
. (4)

To prove this, we assume otherwise is true, which states

∀δ
(
δ ∈ (0, 1] =⇒ ∃α ∈ (0, δ]

(
g(α) ≥ −ε/2

))
. (5)

By this statement, we take δn = 1/n and there exists αn ∈ (0, 1/n] such that
g(αn) ≥ −ε/2 and αn → 0, which contradicts g(α) ↓ −ε. Therefore (5) is false
and (4) is true.
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P. 17 Denote Cw = C ∩ {‖z − x‖ ≤ ‖z − w‖}, then we have Cw ⊂ C. Denote
f = infx∈Cw f(x). Then by the definition of infimum, f is also the infimum of
C. Since the minimum is attained in Cw at x∗, then x∗ ∈ Cw ⊂ C. Therefore,
the minimum is attained in C.

P. 18 To see this, due to the assumption that∇2f(x) is not positive semidefinite,
then there exists a unitary vector u such that u′∇2f(x)u < 0. Since ∇2f(x) is
continuous, which means

∂2f(x)

∂xi∂xj
, i, j = 1, ..., n (6)

are continuous for all i and j, then the function g(x) = u′∇2f(x)u, which is the
weighted sum of (6) with weights uiuj , is also continuous. Therefore, ∃ε > 0
such that g(x + αεu) < 0 for all α ∈ [0, 1]. Therefore, we set z = εu and we
have z′∇2f(x+ αz)z < 0 for all α ∈ [0, 1].

P. 20 [COTe1] Ex 1.11 (b), P. 17. To see the equality hold, denote as S1 and
S2 the following sets

S1 =
{∑
i∈I

αi(xi − x̄)
∣∣xi ∈ C, i ∈ I,∑

i∈I
αi = 1, I is a finite set

}
,

S2 =
{∑
i∈I

βi(xi − x̄)
∣∣xi ∈ C, i ∈ I, I is a finite set

}
.

Then for every s ∈ S1, we see that s ∈ S2. On the other hand, for every s ∈ S2,
we have s =

∑
i∈I βi(xi − x̄) =

∑
i∈I βi(xi − x̄) + (1 −

∑
i∈I βi)(x̄ − x̄), and

therefore s ∈ S1. So we have S1 = S2.

P. 20 [COTe1] Ex 1.11 (b), P. 17.

Lemma (COTe1, P. 17). Given a set X, for the subspace V spanned by X,

V =
{∑
i∈I

αixi

∣∣∣xi ∈ X, αi ∈ R, ∀i ∈ I, I is a finite set
}
, (7)

denote its dimension as m. Then there exists x1, ..., xm ∈ X that are linearly
independent, and forms a basis of V .

Proof. We first prove that there exists x1, ..., xm ∈ X that are linearly indepen-
dent. Without loss of generality, we assume the maximum number of vectors in
X that are linearly independent are n, which is smaller than m, and the set of
vectors as x∗1, ..., x

∗
n. Then all x ∈ X can be written as linear combinations of

x∗1, ..., x
∗
n (otherwise, assume x cannot, then the set of vectors x∗1, ..., x

∗
n, x are

linearly independent, which contradicts the assumption). Since V has dimen-
sion m, then denote its basis as s1, ..., sm. Since si ∈ V , then si =

∑
`∈I β

i
`x
i
`.

Since xi` can be written as linear combinations of x∗1, ..., x
∗
n, by rewriting every
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xi` with x∗1, ..., x
∗
n, we get si =

∑n
j=1 α

i
jx
∗
j . Now for the basis set s1, ..., sm, we

consider λ1, ..., λm ∈ R such that
∑m
i=1 λisi = 0, then we have

n∑
j=1

m∑
i=1

λiα
i
jx
∗
j = 0.

Since x∗1, ..., x
∗
n are linearly independent, then

∑m
i=1 λiα

i
j = 0 for j = 1, ..., n.

Therefore, we get a set of linear equations AΛ = 0 where Λ = (λ1, ..., λm)
and A is a n ×m matrix with jith element of A as αij . Then there would be

nontrivial λ1, ..., λm that fulfills
∑m
i=1 λisi = 0. Therefore, the assumption is

false. If on the other hand, the maximum number n is bigger than m, it is a
direct contradictions with the dimension m. Therefore, the proof is done.

P. 24 To see this, consider vector z which is in Sα ∩ aff(C). Then z could
be written as z = xα + δu where δ ∈ (0, αε) and u is a unite length vector.
Since xα ∈ C, the affine hull of C can be written as xα + M where M is the
subspace parallel to aff(C) [refer to comment on P. 229]. Since z ∈ aff(C), then
u ∈ M . Since x ∈ C, we also have aff(C) = x + M . Therefore, x + δ

αu ∈
x+M = aff(C). In addition, x+ δ

αu ∈ S in view of definition of δ. Therefore,

z = α(x+ δ
αu) + (1− α)x̄.

P. 25 X ⊂ C since due to assumption that 0 ∈ C, then any x ∈ X can be
interpreted as x =

∑m
i=1 αizi + (1−

∑m
i=1 αi)0, which is a convex combination

of elements in C.

P. 26

Lemma (1, P. 26). Let C ⊂ Rn be a nonempty set and x̄ ∈ C. Then it holds
that aff(C) = x̄+ aff(C − x̄).

Proof. It is clear that 0 ∈ C − x̄. In addition, denote aff(C) = x̄+ S, where by
the arguments given in the proof of [COTe1] Ex 1.11(b), P. 17, we have

S =
{∑
i∈I

αi(xi − x̄)
∣∣xi ∈ C, i ∈ I,∑

i∈I
αi = 1, I is a finite set

}
. (8)

On the other hand, by the conclusion of [COTe1] Ex 1.11 (b), P. 17, we have

aff(C − x̄) =
{∑
i∈I

αi(xi − x̄)
∣∣xi ∈ C, i ∈ I,∑

i∈I
αi = 1, I is a finite set

}
. (9)

Clearly, we have aff(C− x̄) = S. Therefore, we have aff(C) = x̄+aff(C− x̄).

Lemma (2, P. 26). Let C ⊂ Rn be a nonempty set, and y ∈ Rn. Then it holds
that aff(C + y) = y + aff(C).
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Proof. Since C is nonempty, denote as x an element of C. Then we have (x +
y) ∈ (y + C). By [Lemma 1, P. 26], we have aff(C) = x + aff(C − x), and
aff(C + y) = x+ y + aff

(
C + y − (x+ y)

)
= x+ y + aff

(
C − y

)
. Therefore, we

have aff(C + y) = y + aff(C).

Lemma (3, P.26). Given a nonempty convex set C ⊂ Rn, if x̄ ∈ ri(C), then
for every y ∈ Rn, x̄+ y ∈ ri(y + C).

Proof. Since we have x̄ ∈ ri(C), then x̄+y ∈ (y+C) and aff(C+y) = y+aff(C)
by [Lemma 2, P. 26]. Then there exists an open ball centered at x̄ with radius
ε, which we denote as Bε(x̄), such that Bε(x̄)∩ aff(C) ⊂ C. On the other hand,
we have Bε(x̄ + y) = Bε(x̄) + y, aff(C + y) = aff(C) + y as given above, then
Bε(x̄+ y) ∩ aff(C + y) ⊂ y + C, which means x̄+ y ∈ ri(C + y).

P. 28

Lemma (P. 28). Let C ⊂ Rn be a nonempty convex set. Then it holds that
ri
(
ri(C)

)
= ri(C).

Proof. By [COT Prop. 1.3.5 (a), P. 28], we have cl
(
ri(C)

)
= cl(C). Namely, C

and C̄ = ri(C) have the same closure. Then by [COT Prop. 1.3.5 (c), P. 28],
they have the same relative interior, viz., ri

(
ri(C)

)
= ri(C).

P. 29

Lemma (P. 29). Let X ⊂ Rn be a nonempty set and A an m×n matrix. Then
it holds that cl

(
A · cl(X)

)
= cl(A ·X).

Proof. In [COT Prop. 1.3.6 (b), P. 29], it is proved that A · cl(X) ⊂ cl(A ·X).
Therefore, it holds that cl

(
A · cl(X)

)
⊂ cl(A ·X). To see the reverse, for every

y ∈ cl(A ·X), there exists {yk} ⊂ A ·X such that yk → y. However, we have
A ·X ⊂ A · cl(X). Therefore, {yk} ⊂ A · cl(X) and y ∈ cl

(
A · cl(X)

)
.

P. 31

Lemma (1, P. 31). Let X1, X2 be two nonempty sets of Rn. Then it holds that
aff(X1 ×X2) = aff(X1)× aff(X2).

Proof. Denote the dimensions of aff(X1), aff(X2) as m1 and m2 respectively.
Then by [COTe1 Ex 1.11 (b), P. 17], we have, for some x1

1, . . . , x
1
m1
, x̄1 ∈ X1,

and x2
1, . . . , x

2
m2
, x̄2 ∈ X2,

aff(X1) =
{
y
∣∣∣ y =

m1∑
i=1

α1
i (x

1
i − x̄1) + x̄1

}
,

aff(X2) =
{
y
∣∣∣ y =

m2∑
i=1

α2
i (x

2
i − x̄2) + x̄2

}
.

(10)
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For any (y1, y2) ∈ X1 ×X2, we have (y1, y2) ∈ aff(X1) × aff(X2). In addition,
aff(X1) × aff(X2) is affine (one can verify this by using the definition of affine
set). Therefore, aff(X1 ×X2) ⊂ aff(X1)× aff(X2).

As for the reverse direction, for any (y1, y2) ∈ aff(X1) × aff(X2), we have, by
(10),

y1 =

m1∑
i=1

βi(x
1
i − x̄1) + x̄1,

y2 =

m2∑
i=1

γi(x
2
i − x̄2) + x̄2.

Therefore, we have

(y1, y2) =

m1∑
i=1

βi
(
(x1
i , x̄

2)− (x̄1, x̄2)
)

+

m2∑
i=1

γi
(
(x̄1, x2

i )− (x̄1, x̄2)
)

+ (x̄1, x̄2)

=

m1∑
i=1

βi(x
1
i , x̄

2) +

m2∑
i=1

γi(x̄
1, x2

i ) +
(
1−

m1∑
i=1

βi −
m2∑
i=1

γi
)
(x̄1, x̄2),

which is affine combination of elements in X1 × X2. Therefore, the proof is
complete.

Lemma (2, P. 31). Let Si, Ti be two sequence of sets indexed by I. Then we
have

∏
i∈I Si ∩

∏
i∈I Ti =

∏
i∈I(Si ∩ Ti).

Proof. x ∈
∏
i∈I Si ∩

∏
i∈I Ti implies that

∀i(i ∈ I =⇒ xi ∈ Si) ∧ ∀i(i ∈ I =⇒ xi ∈ Ti).

Applying the second inference rule to the first, we get

∀i(i ∈ I =⇒ xi ∈ Si ∧ xi ∈ Ti),

which per definition of set intersection, we have

∀i(i ∈ I =⇒ xi ∈ Si ∩ Ti),

and we have x ∈
∏
i∈I(Si ∩ Ti). The reverse can be similarly proven.

Lemma (3, P. 31). Let C1, C2 be two nonempty convex sets of Rn. Then it
holds that ri(C1 × C2) = ri(C1)× ri(C2).

Proof. Here we apply the infinity norm. For x1 ∈ ri(C1), x2 ∈ ri(C2), we
have Bε1(x1) ∩ aff(C1) ⊂ C1, and Bε2(x2) ∩ aff(C2) ⊂ C2, where Bε1(x1) is
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a ball centered at x1 with radius ε1 measured by infinity norm. Denote ε =
min{ε1, ε2}. Then we have Bε

(
(x1, x2)

)
⊂ Bε1(x1)×Bε2(x2). Then we have

Bε
(
(x1, x2)

)
∩ aff(C1 × C2) ⊂Bε1(x1)×Bε2(x2) ∩ aff(C1 × C2)

=Bε1(x1)×Bε2(x2) ∩ aff(C1)× aff(C2)

=
(
Bε1(x1) ∩ aff(C1)

)
×
(
Bε2(x2)× aff(C2)

)
⊂C1 × C2,

where the first equality is due to [Lemma 1, P. 31], and the second equality is due
to [Lemma 2, P. 31]. Therefore, ri(C1)× ri(C2) ⊂ ri(C1 × C2). For the reverse
direction, we need to show that given Bε

(
(x1, x2)

)
∩ aff(C1 × C2) ⊂ C1 × C2,

x1 ∈ ri(C1), and x2 ∈ ri(C2). The proof is entirely similar.

P. 31 Since {x1
k} and {x2

k} are both bounded sequences in Rn, then {(x1
k, x

2
k)}

is a bounded sequence in R2n (most easily seen via infinity norm). Therefore,
{(x1

k, x
2
k)} has a convergent subsequence.

P. 32

Lemma (1, P. 32). Given a set X, denote as V a subspace spanned by X with
dimension m. Let {z1, . . . , zn} ⊂ X be a set of linearly independent elements
and n < m. Then there exists a basis of V which includes {z1, . . . , zn}.

Proof. By [Lemma COTe1, P. 17], there exists {x1, . . . , xm} ⊂ X that form a
basis of V . Then every element of {x1, . . . , xm} can be either independent or
not with {z1, . . . , zn}. Taking those that are independent with {z1, . . . , zn}
and form the set {x1, . . . , xk}. We argue that n + k = m. Assume otherwise,
then if n + k > m, it is a direct contradiction. If n + k < m, then since any
element of V can be written as linear combination of elements in {x1, . . . , xm}\
{x1, . . . , xk} and {x1, . . . , xk}, and elements in {x1, . . . , xm} \ {x1, . . . , xk}
are linear combination of {z1, . . . , zn}. Therefore, every element in V can be
written as linear combination of {z1, . . . , zn, x

1, . . . , xk}. Therefore, it is a
basis and n+k < m results in a contradiction with the dimension. By the same
argument, we can see that the set {z1, . . . , zn, x

1, . . . , xk} is a basis of V .

Lemma (2, P. 32). Given nonempty convex sets C1 and C2, it holds that aff(C1∩
C2) ⊂ aff(C1) ∩ aff(C2).

Proof. When C1∩C2 = ∅, the relation clearly holds. Otherwise, for any x ∈ C1∩
C2, it holds that x ∈ aff(C1) and x ∈ aff(C2), and therefore x ∈ aff(C1)∩aff(C2),
namely C1 ∩ C2 ⊂ aff(C1) ∩ aff(C2) Since intersection of affine sets are affine.
Therefore, aff(C1) ∩ aff(C2) is an affine set which contains C1 ∩ C2. Therefore,
aff(C1 ∩ C2) ⊂ aff(C1) ∩ aff(C2).

An alternative proof can be given as follows.
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Proof. When C1 ∩ C2 = ∅, the relation clearly holds. Otherwise, denote as x̄
some element of C1 ∩C2. Denote as m the dimension of aff(C1 ∩C2). Then by
[COTe1 Ex 1.11 (b), P. 17], we have for some x1, . . . , xm ∈ C1 ∩ C2, it holds
that

aff(C1 ∩ C2) =
{
y
∣∣∣ y =

m∑
i=1

αi(xi − x̄) + x̄
}
. (11)

As for aff(C1), by [COTe1 Ex 1.11 (b), P. 17] and [Lemma 1, P. 32], it can be
written as

aff(C1) =
{
y
∣∣∣ y =

m∑
i=1

αi(xi − x̄) +

m1∑
i=m+1

β1
i (z1

i − x̄) + x̄
}
, (12)

where z1
i ’s are elements in C1 and m1 is the dimension of aff(C1). Similarly, we

have

aff(C2) =
{
y
∣∣∣ y =

m∑
i=1

αi(xi − x̄) +

m2∑
i=m+1

β1
i (z2

i − x̄) + x̄
}
. (13)

Clearly, we have aff(C1 ∩ C2) ⊂ aff(C1) ∩ aff(C2).

From Eqs. (11), (12), and (13), we can see that the reason that aff(C1∩C2) and

aff(C1)∩ aff(C2) may not be equal is that the set of vectors {z1
i − x̄}m

1

i=m+1 and

{z2
i − x̄}m

2

i=m+1 may be linearly dependent.

By [Lemma 2, P. 32], we can have an alternative proof for ri(C1) ∩ ri(C2) ⊂
ri(C1 ∩ C2). For x ∈ ri(C1) ∩ ri(C2), we have Bε1(x) ∩ aff(C1) ⊂ C1 and
Bε2(x)∩ aff(C2) ⊂ C2 where the balls are measured by the infinity norm. Then
denote ε = min{ε1, ε2}, and we have

Bε(x) ∩ aff(C1 ∩ C2) ⊂Bε(x) ∩ aff(C1) ∩ aff(C2)

⊂Bε(x) ∩ aff(C1)

⊂C1.

The relation Bε(x)∩ aff(C1 ∩C2) ⊂ C2 can be proved the same way. Therefore,
we have Bε(x) ∩ aff(C1 ∩ C2) ⊂ C1 ∩ C2.

P. 32

Lemma (3, P. 32). Given nonempty convex sets C1 and C2, if ri(C1)∩ri(C1) 6=
∅, then it holds that aff(C1 ∩ C2) = aff(C1) ∩ aff(C2).

Proof. In view of [Lemma 2, P. 32], we only need to show that aff(C1)∩aff(C2) ⊂
aff(C1∩C2). Since ri(C1)∩ri(C2) is nonempty, denote x ∈ ri(C1)∩ri(C2). Then
by [COTe1 Ex 1.24(a), P. 32], for any y ∈ aff(C1)∩aff(C2), there exists γ1, γ2 > 0
such that z1 = x + γ1(x − y) ∈ C1 and z2 = x + γ2(x − y) ∈ C2. Without loss
of generality, we assume γ1 ≤ γ2. Then in view of the convexity of C2, we
see that z1 is convex combination of x and z2 and therefore z1 ∈ C2, namely

10



z1 ∈ C1 ∩ C2. Then we have z1, x ∈ C1 ∩ C2 and y is affine combination of z1

and x. Therefore, any affine set containing C1 ∩ C2 contains y, which means
y ∈ aff(C1 ∩ C2).

P. 32 Here we fill in some details. By Prolongation Lemma, there exist γ1, γ2 >
0, such that z1 ∈ C1 and z2 ∈ C2 where z1 = x+γ1(x−y) and z2 = x+γ2(x−y).
With out loss of generality, assume γ1 ≤ γ2. Then due to convexity of C2, we
can see that z1 ∈ C2. Therefore, z1 ∈ C1 ∩ C2.

P. 33 We now give two examples to see that when A−1 · ri(C) is empty, the
relation does not hold.

(1) Consider matrix A and set C as

A =

[
1 0
1 0

]
, C = {(x, y) |x ≥ 0, y = 0}.

Then we have A−1 · ri(C) = ∅, and ri(A−1 · C) = {(0, 0)} 6= A−1 · ri(C).

(2) Consider matrix A and set C as

A =

[
1 0
1 0

]
, C = {(x, y) |x > 0, y = 0}.

Then we have A−1 ·ri(C) = ∅, and cl(A−1 ·C) = ∅ 6= {(0, 0)} = A−1 ·cl(C).

P. 34 Given an affine set S, its affine hull aff(S) is S. Therefore, its relative
interior ri(S) is S as well, due to the definition.

P. 35 Denote the projection mapping as T , e.g., T (x, y) = x. Then ri(D) =
ri(T · C). By [COT Prop. 1.3.6 (a), P. 29], we have ri(D) = T · ri(C), which
means, ∀x,

x ∈ ri(D) ⇐⇒ ∃y
(
(x, y) ∈ ri(C)

)
. (14)

On the other hand, we also have, per the definition of nonempty set, that
∀x,

∃y
(
(x, y) ∈ ri(C)

)
⇐⇒ Mx ∩ ri(C) 6= ∅. (15)

Then we have, ∀(x, y),

(x, y) ∈ ri(C) =⇒Mx ∩ ri(C) 6= ∅ (16)

⇐⇒ ∃y′
(
(x, y′) ∈ ri(C)

)
⇐⇒ x ∈ ri(D).

Note that in (16), asserting (x, y) ∈ ri(C) contains more information than Mx∩
ri(C) 6= ∅ therefore implies Mx∩ ri(C) 6= ∅, since not only have we asserted that
Mx ∩ ri(C) is nonempty, but also we have given an element (x, y) of the set,
about which (here ‘which’ refers to the element (x, y)) we may say more if we
would like to.
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Since via above derivation, we have (x, y) ∈ ri(C) =⇒ x ∈ ri(D) ∧ (x, y) ∈
Mx ∩ ri(C), then it would imply that ∃x′

(
x′ ∈ ri(D) ∧ (x, y) ∈ Mx′ ∩ ri(C)

)
(similar to the derivation in (16) via arguing that the set of x′ is nonempty).
Via above derivation, we establish ri(C) ⊂ ∪x∈ri(D)

(
Mx ∩ ri(C)

)
. The reverse

direction is easy to show.

In addition, note that the strict orthodox way to define T · ri(C) would be, for
x ∈ T · ri(C),

∃x′∃y′
(
(x′, y′) ∈ ri(C) ∧ T (x′, y′) = x

)
⇐⇒ ∃x′∃y′

(
(x′, y′) ∈ ri(C) ∧ x′ = x

)
⇐⇒ ∃x′∃y′

(
(x, y′) ∈ ri(C) ∧ x′ = x

)
⇐⇒ ∃y′

(
(x, y′) ∈ ri(C)

)
∧ ∃x′(x′ = x),

where the first ⇐⇒ is due to definition of T , the second is per the primitive
=, and the third is by rules of bound quantifiers and their ranges. Since it is
always true that

∀x
(
∃x′(x′ = x)

)
,

so the orthodox definition is simplified to be the right-hand side of (14). Similar
arguments go for (15).

P. 36 If the point x is origin o, then by setting αi = 1/2n, the statement holds.
Otherwise x 6= o and denote x = (x1, . . . , xn) where |xi| ≤ 1. Then we consider
points on the line connecting x and o, namely {α(x1, . . . , xn) |α ∈ R}. Without
loss of generality, we assume that 1 ∈ arg maxi |xi|, then we have

(x1, x2, . . . , xn) = β
(
1,
x2

x1
, . . . ,

xn

x1

)
+ (1− β)

(
− 1, −x

2

x1
, . . . , −x

n

x1

)
,

where β = (1 + x1)/2 ∈ [0, 1]. Therefore, we see that x is a convex combi-
nation of (1, x2/x1, . . . , xn/x1) and −(1, x2/x1, . . . , xn/x1). Now if we focus
on (1, x2/x1, . . . , xn/x1), we see that if all the terms xi/x1 ∈ {1,−1}, we are
done; otherwise, repeat above procedure with X replaced by X1 = {x | ‖x‖∞ ≤
1, x1 = 1}, and o replaced by o1 = (1, 0, . . . , 0). Eventually, the term x would
be written as convex combination of ei’s.

Intuitively, what we have done above is to first construct the line connecting x
and o. This line would intersect with facets (including edges) of X with two
points. Those two points can form a convex combination of x. Either one of
the two points can then be written as convex combination of corners of the
corresponding facets by repeating the above procedures.

P. 36 This is without loss of generality since for any {xk} that xk → 0, there
exists K such that xk ∈ X for all k ≥ K. In addition, when xk = 0, we can
define yk and zk randomly, such as yk = e1 and zk = −yk, and the followup
proof could be carried out identically.

P. 37 Note that the relative interior is the interior itself.
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P. 37 Another way for construction is as follows. If the sequence {xk} is identi-
cally x̄, then the followup discussion trivially hold. Otherwise, assume first that
x̄ = inf C. Then for sequence {xk} ⊂ C that converges to x̄, we have xk ≥ x̄.
In addition, we see that {xk} is bounded and x̄0 = sup{xk} is a limit point of
C. Since C is closed, we have x̄0 ∈ C. In addition, since {xk} is not identically
x̄, then there exists xk > x̄, which implies that x̄0 > x̄. Therefore, for all xk, it
holds that

xk = αkx̄0 + (1− αk)x̄,

where αk ∈ [0, 1]. When x̄ = supC, entirely similar arguments could be ap-
plied.

P. 38 Here we emphasize that for a given function f : X → [−∞,∞], we define
its closure cl f as

(cl f)(x) = inf
{
w
∣∣ (x,w) ∈ cl

(
epi(f)

)}
, ∀x ∈ Rn. (17)

Lemma (1, P. 38). Given a function f : X → [−∞,∞], the closure of its
epigraph cl

(
epi(f)

)
is a legitimate epigraph.

Proof. We prove the above claim by showing that cl
(
epi(f)

)
= epi(cl f), where

cl f is the closure of f . For every (x,w′) ∈ cl
(
epi(f)

)
, it holds that (cl f)(x) ≤

w′, and therefore (x,w′) ∈ epi(cl f).

Now we need to prove epi(cl f) ⊂ cl
(
epi(f)

)
and we use infinity norm to measure

the distance. For every (x,w) ∈ epi(cl f), ∞ > (cl f)(x) ≥ −∞. If (cl f)(x) >
−∞, then for all positive integer k, there exists (x,wk) ∈ cl

(
epi(f)

)
such that

wk < (cl f)(x) + 1/k. Since (x,wk) ∈ cl
(
epi(f)

)
, there exists (xk, w

k
k) ∈ epi(f)

that is in the 1/k neighborhood of (x,wk). Therefore, (xk, w
k
k) ∈ epi(f) is in

the 2/k neighborhood of (x, (cl f)(x)), and we can see that {xk, wkk} ⊂ epi(f)
converges to (x, (cl f)(x)). Therefore, (x, (cl f)(x)) ∈ cl

(
epi(f)

)
. Denote w −

(cl f)(x) as δ. Then we can see that {xk, wkk + δ} ⊂ epi(f) and converges to
(x,w). If (cl f)(x) = −∞, then there exists (x,w′) ∈ cl

(
epi(f)

)
such that w′ <

w. Then there exists {xk, w′k} ⊂ epi(f) that converges to (x,w′). Then {xk, w′k+
w − w′} ⊂ epi(f) and converges to (x,w), which concludes the proof.

P. 38 The convex closure of a function f : X → [−∞,∞] is defined as

(čl f)(x) = inf
{
w
∣∣ (x,w) ∈ cl

(
conv

(
epi(f)

))}
, ∀x ∈ Rn. (18)

We have the following lemmas hold.

Lemma (2, P. 38). Given a function f : X → [−∞,∞], if (x,w) ∈ conv
(
epi(f)

)
,

then it holds that (x,w′) ∈ conv
(
epi(f)

)
for all w′ ≥ w.

Proof. Due to Caratheodory’s theorem [COT Prop. 1.2.1, P. 20], (x,w) ∈
conv(epi(f)) implies that (x,w) =

∑
i∈I αi(xi, wi) where (xi, wi) ∈ epi(f) and∑

i∈I αi = 1. Denote w′ − w as β. Then (xi, wi + β) ∈ epi(f). Therefore,∑
i∈I αi(xi, wi + β) ∈ conv(epi(f)), which concludes the proof.
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Lemma (3, P. 38). Given a function f : X → [−∞,∞], the closure of the
convex hull of its epigraph cl

(
conv

(
epi(f)

))
is a legitimate epigraph.

Proof. We prove this statement via showing that epi(čl f) = cl
(
conv

(
epi(f)

))
,

where čl f is defined in (18).

First, to show cl
(
conv

(
epi(f)

))
⊂ epi(čl f), we note that for (x,w) ∈ cl

(
conv

(
epi(f)

))
,

we have (čl f)(x) ≤ w, which implies that (x,w) ∈ epi(čl f).

Then we show the reverse direction. For every (x,w) ∈ epi(čl f), we have
(čl f)(x) ≤ w. If (čl f)(x) > −∞, then there exists {(x,wk)} ⊂ cl

(
conv

(
epi(f)

))
such that wk → (člf)(x). Then for every k, there exists (xk, w

k
k) ∈ conv

(
epi(f)

)
such that ‖xk − x‖∞ ≤ 1/k, and ‖wkk − wk‖∞ ≤ 1/k. Therefore, we see that
(xk, w

k
k) →

(
x, (čl f)(x)

)
, which implies that

(
x, (čl f)(x)

)
∈ cl

(
conv

(
epi(f)

))
.

Denote w − (čl f)(x) as β. By [Lemma 2, P. 38], we have that {(xk, wkk +
β)} ⊂ conv

(
epi(f)

)
, and (xk, w

k
k + β) → (x,w), which implies that (x,w) ∈

cl
(
conv

(
epi(f)

))
. If instead (čl f)(x) = −∞, then there exists (x,w′) ∈ cl

(
conv

(
epi(f)

))
such that w′ ≤ w. Then there exists {(xk, w′k)} ⊂ conv

(
epi(f)

)
such that

(xk, w
′
k) → (x,w′). Denote w − w′ as β′ and {(xk, w′k + β′)} ⊂ conv

(
epi(f)

)
and (xk, w

′
k + β′)→ (x,w), which concludes the proof.

P. 38 The convex closure of a function f : X → [−∞,∞] is defined as

(čl f)(x) = inf
{
w
∣∣ (x,w) ∈ cl

(
conv

(
epi(f)

))}
, ∀x ∈ Rn.

Lemma (4, P. 38). Given a function f : X → [−∞,∞], its convex closure čl f
is the closure of function F : Rn → [−∞,∞], defined as

F (x) = inf
{
w
∣∣ (x,w) ∈ conv

(
epi(f)

)}
, ∀x ∈ Rn. (19)

Proof. In view of [Lemma 1, P. 38], we show that epi(čl f) = cl
(
epi(F )

)
. In view

of [Lemma 3, P. 38], we in turn need to show that cl
(
conv

(
epi(f)

))
= cl

(
epi(F )

)
.

For every (x,w) ∈ cl
(
conv

(
epi(f)

))
, ∃{(xk, wk)} ⊂ conv

(
epi(f)

)
such that

(xk, wk)→ (x,w). Since conv
(
epi(f)

)
⊂ epi(F ), so we have (x,w) ∈ cl

(
epi(F )

)
.

To show the reverse, assume (x,w) ∈ cl
(
epi(F )

)
. Then ∃{(xk, wk)} ⊂ epi(F )

such that (xk, wk)→ (x,w). For every k, F (xk) ≤ wk. By the definition of F , if
F (xk) > −∞, then exists (xk, zk) ∈ conv

(
epi(f)

)
such that zk ∈ [F (xk), F (xk)+

1/k]. By [Lemma 2, P. 38], we then have (xk, wk + 1/k) ∈ conv
(
epi(f)

)
. If

F (xk) = −∞, then there exists (xk, zk) ∈ conv
(
epi(f)

)
such that zk ≤ wk, and

by [Lemma 2, P. 38], we then have (xk, wk + 1/k) ∈ conv
(
epi(f)

)
. By above

arguments, we see that {(xk, wk + 1/k)} ⊂ conv
(
epi(f)

)
and (xk, wk + 1/k)→

(x,w). Therefore (x,w) ∈ cl
(
conv

(
epi(f)

))
, which concludes the proof.
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Notice that conv(epi(f)) may not be an epigraph. To see this, consider function
f : (−1, 1)→ R defined as

f(x) =

{
x+ 1, x ∈ (−1, 0]

−x+ 1, x ∈ (0, 1)

Then one can see conv(epi(f)) = {(x, y) |x ∈ (−1, 1), y > 0}, which is not
an epigraph. To see another example, consider f : R → R defined as f(x) =
1/(1+x2). Then we have conv(epi(f)) = {(x, y) | y > 0}. The point of emphasis
here for the second example is that the function f is now closed, but the convex
hull of its epigraph is still not an epigraph itself.

P. 38 Refer to [COT Prop. 1.3.6 (b), P. 29] and [Lemma, P. 29].

P. 39 Such sequence exists and can be constructed in the following way. Denote
R = {y | y = (cl f)(x), x ∈ Rn}. Then f∗ = inf R. If f∗ > −∞, then ∀k, there
exists x̄k ∈ Rn and yk ∈ R such that yk < f∗ + 1/k and yk = (cl f)(x̄k). In
addition, yk ≥ inf R > −∞, so (x̄k, yk) ∈ cl

(
epi(f)

)
. Therefore, setting w̄k = yk

will do. Otherwise, f∗ = −∞. Then for all −k − 1, there exists x̄k ∈ Rn and
yk ∈ R such that yk < −k − 1 and yk = (cl f)(x̄k). Then (x̄k,−k) ∈ cl

(
epi(f)

)
as −k > −k−1 > yk. Then setting w̄k = −k will do. Note that the set R could
be of the form {−∞}, in which case inf{−∞} = −∞.

P. 40 To see this, note that f ≥ cl f . Therefore, cl f being proper implies that
f(x) > −∞ ∀x. In addition, since cl f is proper, we have epi(cl f) = cl

(
epi(f)

)
is

nonempty and convex. Therefore, dom(cl f), which is the projection of epi(cl f),
is nonempty and convex. Therefore, ri

(
dom(cl f)

)
is convex and nonempty.

By above arguments in the proof, we have f(x) = (cl f)(x) ∈ R for all x ∈
ri
(
dom(cl f)

)
. Therefore, f is proper.

P. 41 To see that g is convex and closed, we fill in some details. Define set Ḡ
as Ḡ = {(z, t) | z = y + α(x − y), α ∈ [0, 1], t ∈ R}. Then define as G the set
epi(cl f)∩Ḡ. Since epi(cl f), Ḡ are both closed and convex, then by [COT Prop.
1.1.1 (a), P. 2] and [COT Prop. A.2.4 (b), P. 235], we have that G is closed and
convex. Define affine function h : R2 → Rn+1 as h(α, ω) = A[α, ω]′ + b where A
and b are

A =

[
x− y 0

0 1

]
, b =

[
y
0

]
.

Then one can see that epi(g) = h−1(G). Due to [COT Prop. A.2.6 (c), P. 237]
and [COT Prop. 1.1.1 (e), P. 3], we see that epi(g) is closed and convex.

P. 41 For an example, consider function f : R2 → [−∞,∞] as

f(x, y) =


0, (x, y) = (0, 0),

−∞, x > 0, y = 0,

∞, otherwise.

Then one can see that the function is convex and improper, taking −∞ at all
points in ri

(
dom(f)

)
.
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P. 42 The result of [COT Prop. 1.3.8, P. 32] can be extended to any finitely
many nonempty convex sets, that is, for Ci nonempty convex sets i = 1, . . . , m,
if ∩mi=1ri(Ci) 6= ∅, then ∩mi=1ri(Ci) = ri(∩mi=1Ci). We take m = 3 as an exam-
ple. Given ∩3

i=1ri(Ci) 6= ∅, then ∩2
i=1ri(Ci) 6= ∅, and we have ∩2

i=1ri(Ci) =
ri(∩2

i=1Ci). Then it holds that ∩3
i=1ri(Ci) = ∩2

i=1ri(Ci) ∩ ri(C3) = ri(C1 ∩
C2) ∩ ri(C3). Since ∩3

i=1ri(Ci) 6= ∅, then ri(C1 ∩ C2) ∩ ri(C3) 6= ∅. Therefore,
ri(C1 ∩ C2) ∩ ri(C3) = ri(∩3

i=1Ci).

P. 43 For a nonempty convex set C, its recession cone RC is always nonempty
and containing origin.

P. 45 More precisely, due to the fact that ‖zk‖ → ∞.

P. 45 [COTe1] Ex 1.36 (a), P. 43. Alternatively, this can be proved as follows.
Since by [COT Prop. 1.3.5 (b), P. 28] we have ri

(
cl(C)

)
= ri(C), and by [COT

Prop. 1.4.2 (b), P. 45] that RC = Rri(C) when C is closed, then the result
follows.

P. 46 Such a limit point d exists since the sequence {dk} has constant norm 1
and therefore is bounded. In addition, this also implies that the limit point d has
norm 1 therefore is nonzero. To see that it is without loss of generality to assume
‖zk − x‖ is monotonically increasing, we first note that given any unbounded
{zk}, there is a subsequence that is monotonically increasing and unbounded.
To see this, we first note that given 1, there is some k1 such that zk1 > 1. Then
given i and zki , there exists ki+1 > ki such that zki+1 > max{i + 1, zki} due
to {zk} being unbounded. Denote the index set {ki} as K. Then for every
‖zi − x‖ with i ∈ K, there exists K such that for all k ≥ K and k ∈ K,
‖zk‖ ≥ ‖zi − x‖ + ‖x‖, which implies ‖zj − x‖ ≥ ‖zi − x‖ for some j > i.
Therefore, there exists a subsequence of {zk} where ‖zk − x‖ is monotonically
increasing.

P. 46 Note that with Ci being convex, and ∩i∈ICi 6= ∅, it always holds that
∩i∈IRCi ⊂ R∩i∈ICi , without requiring Ci being closed. We may give a symbolic
elaboration. We have per definition of set intersection,

d ∈ ∩i∈IRCi ⇐⇒ ∀i(i ∈ I =⇒ d ∈ RCi), (20)

x ∈ ∩i∈ICi ⇐⇒ ∀i(i ∈ I =⇒ x ∈ Ci). (21)

Then we have ∀d,

d ∈ ∩i∈IRCi
⇐⇒ ∀i(i ∈ I =⇒ d ∈ RCi) ∧ ∀x

(
x ∈ ∩i∈ICi ⇐⇒ ∀i(i ∈ I =⇒ x ∈ Ci)

)
=⇒ ∀x

(
x ∈ ∩i∈ICi =⇒ ∀i(i ∈ I =⇒ x ∈ Ci ∧ d ∈ RCi)

)
, (22)

where Eq. (22) can be interpreted as applying the inference rule of the right-
hand side of Eq. (20) to the right-hand side of Eq. (21). Now we focus on the
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condition ∀i
(
i ∈ I =⇒ d ∈ RCi ∧ x ∈ Ci), and we have

∀i
(
i ∈ I =⇒ d ∈ RCi ∧ x ∈ Ci)

=⇒ ∀i
(
i ∈ I =⇒ d ∈ RCi ∧ x ∈ Ci =⇒ ∀α(α ≥ 0 =⇒ x+ αd ∈ Ci)

)
(23)

=⇒ ∀i
(
i ∈ I =⇒ ∀α(α ≥ 0 =⇒ x+ αd ∈ Ci)

)
=⇒ ∀α

(
α ≥ 0 =⇒ ∀i(i ∈ I =⇒ x+ αd ∈ Ci)

)
(24)

=⇒ ∀α(α ≥ 0 =⇒ x+ αd ∈ ∩i∈ICi) (25)

Eq. (23) is per the definition of recession cone, Eq. (24) is due to the following
facts

∀x ∈ X∀y ∈ Y P (x, y) ⇐⇒ ∀y ∈ Y ∀x ∈ XP (x, y), (26)

∀x ∈ X∀y ∈ Y P (x, y) ⇐⇒ ∀x
(
x ∈ X =⇒ ∀y(y ∈ Y =⇒ P (x, y))

)
, (27)

∀x
(
x ∈ X =⇒ ∀y(y ∈ Y =⇒ P (x, y))

)
⇐⇒ ∀x∀y

(
x ∈ X ∧ y ∈ Y =⇒ P (x, y)

)
,

(28)

where Eq. (28) can be directly proven, and Eq. (25) is per the definition of
∩i∈ICi. Collect above results, we have ∀d,

d ∈ ∩i∈IRCi
=⇒ ∀x

(
x ∈ ∩i∈ICi =⇒ ∀α(α ≥ 0 =⇒ x+ αd ∈ ∩i∈ICi)

)
⇐⇒ ∀x∀α(x ∈ ∩i∈ICi ∧ α ≥ 0 =⇒ x+ αd ∈ ∩i∈ICi) (29)

where Eq. (29) is due to Eq. (28). In fact, in Eq. (23) we have also used Eq. (28).
That is, if orthodox definition of d ∈ RC is given as ∀x∀α(x ∈ C ∧ α ≥ 0 =⇒
x+ αd ∈ C), then we have

d ∈ RCi ∧ x ∈ Ci ⇐⇒ x ∈ Ci ∧ ∀x′∀α(x′ ∈ Ci ∧ α ≥ 0 =⇒ x′ + αd ∈ Ci)
⇐⇒ x ∈ Ci ∧ ∀x′

(
x′ ∈ Ci =⇒ ∀α(α ≥ 0 =⇒ x′ + αd ∈ Ci)

)
=⇒ ∀α(α ≥ 0 =⇒ x+ αd ∈ Ci).

In fact, if the direction of recession and recession cone are also defined for any
nonempty set, then given any group of sets Ci such that ∩i∈ICi 6= ∅, it would
still hold that ∩i∈IRCi ⊂ R∩i∈ICi , without requiring Ci being convex or closed,
which can be seen from the proof given above. Therefore, in what follows,
for any statements that we prove, if the results still hold without requiring
convexity, given that the direction of recession and recession cone are defined
for any nonempty set (instead of confined to nonempty convex set), we will
write the statements as ’... (convex) ...’, namely putting ’convex’ in parentheses,
indicating that the term ’convex’ is in the statements solely because that the
direction of recession and recession cone are defined only for nonempty convex
sets in this book.

P. 49 For a symmetric positive semidefinite n×n matrix Q, it holds that

d′Qd = 0 ⇐⇒ Md = 0 ⇐⇒ Qd = 0,
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where Q = M ′M . The first ⇐⇒ is obvious. For the second one, given Md = 0,
we have Qd = M ′0 = 0, and given Qd = 0, we have d′Qd = 0, which implies
Md = 0.

P. 50 It is clear from the proof that C ∩ S⊥ is always nonempty.

P. 51 We fill in some details here. Per definition of S, we have

∀x∀v
(
(x, v) ∈ S ⇐⇒ x ∈ Vγ ∧ v = γ

)
. (30)

By the definition of recession cone, we have ∀d∀w, (d,w) ∈ RS if and only
if

∀x∀v∀α
(
(x, v) ∈ S ∧ α ≥ 0 =⇒ (x, v) + α(d,w) ∈ S

)
⇐⇒ ∀x∀v∀α

(
x ∈ Vγ ∧ v = γ ∧ α ≥ 0 =⇒ x+ αd ∈ Vγ ∧ v + αw = γ

)
⇐⇒ ∀x∀v∀α

(
x ∈ Vγ ∧ v = γ ∧ α ≥ 0 =⇒ x+ αd ∈ Vγ ∧ αw = 0 ∧ v = γ

)
⇐⇒ ∀x∀α

(
x ∈ Vγ ∧ α ≥ 0 =⇒ x+ αd ∈ Vγ ∧ αw = 0

)
⇐⇒ ∀x∀α

(
x ∈ Vγ ∧ α ≥ 0 =⇒ x+ αd ∈ Vγ

)
∧ ∀α(α ≥ 0 =⇒ αw = 0)

⇐⇒ d ∈ RVγ ∧ w = 0,

where the first step is due to Eq. (30), and the last step is due to the definition
of RVγ and property of 0. Then collect above results, we have

∀d∀w
(
d ∈ RVγ ∧ w = 0 ⇐⇒ (d,w) ∈ RS

)
. (31)

On the other hand, we also have

∀d∀w
(
(d,w) ∈ RS ⇐⇒ (d, 0) ∈ Repi(f) ∧ w = 0

)
. (32)

Then combining above two equations, we have

∀d∀w
(
d ∈ RVγ ∧ w = 0 ⇐⇒ (d, 0) ∈ Repi(f) ∧ w = 0

)
⇐⇒ ∀d

(
d ∈ RVγ ⇐⇒ (d, 0) ∈ Repi(f)

)
,

which is the desired result.

P. 51 In view of [COT Prop. 1.1.2, P. 10], Vγ is always closed.

P. 52

Lemma (1, P. 52). Let f : Rn → (−∞,∞] be a closed proper convex function,
and x ∈ dom(f). If d ∈ Rf and β ≥ α ≥ 0, then f(x+ αd) ≥ f(x+ βd).

Proof. Denote γ = f(x). Then x + αd, x + βd ∈ Vγ due to the definition of
d. Therefore, f(x + αd) and f(x + βd) are both finite. Then consider Vκ with
κ = f(x+αd). Then we see that x+βd = x+αd+(β−α)d ∈ Vκ, which implies
f(x+ βd) ≤ κ.

P. 52
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Lemma (2, P. 52). Let f : Rn → (−∞,∞] be a closed proper convex function,
and x ∈ Vγ , where Vγ is a nonempty level set of f . If x + αd 6∈ Vγ for some d
and α > 0, then x+ βd 6∈ Vγ for all β ≥ α.

Proof. Since f is convex, then Vγ is convex. Assume above is false, namely,
there exists β ≥ α, such that x + βd ∈ Vγ . Then in view of Vγ being convex,
this implies that x+ αd ∈ Vγ , which is a contradiction.

P. 52

Lemma (3, P. 52). Let f : Rn → (−∞,∞] be a closed proper convex function,
and x ∈ Vγ , where Vγ is a nonempty level set of f . If d 6∈ Rf , then there exists
some α > 0, such that for all β, κ with α ≤ β < κ,

i) if f(x+ βd) =∞, then f(x+ κd) =∞;

ii) if f(x+ βd) <∞, then f(x+ βd) < f(x+ κd).

In addition, it holds that sup{f(x+ δd) | δ ≥ 0} =∞.

Proof. Since x ∈ Vγ and d 6∈ Rf , then there exists some α > 0 such that
x+αd 6∈ Vγ . Then it holds that f(x+αd) > γ ≥ f(x). In view of [Lemma 2, P.
52], it holds that for all β, κ ∈ [α,∞), we have f(x + βd), f(x + κd) ∈ (γ,∞].
If f(x + βd) = ∞, then in view of convexity of f , we have f(x + κd) = ∞. If
f(x+ βd) <∞, then we have

x+ βd =
β

κ
(x+ κd) +

κ− β
κ

x.

Then by convexity of f , we have

f(x+βd) ≤ β

κ
f(x+κd)+

κ− β
κ

f(x) ⇐⇒ f(x+βd)− κ− β
κ

f(x) ≤ β

κ
f(x+κd).

Since f(x+ βd) > γ ≥ f(x) and f(x+ βd) <∞, we have

f(x+ βd)− κ− β
κ

f(x+ βd) <
β

κ
f(x+ κd) ⇐⇒ f(x+ βd) < f(x+ κd).

Regarding the unboundedness of sup{f(x+ δd) | δ ≥ 0}, note that for all k ∈ N,
we have x ∈ Vγ+k. Since d 6∈ Rf , then there exists δk such that x+ δkd 6∈ Vγ+k,
which implies f(x+ δk) > γ + k. Therefore sup{f(x+ δd) | δ ≥ 0} =∞.

P. 54

Lemma (1, P. 54). Let A1 ∈ Rm, A2 ∈ Rn be nonempty sets. If A1 × A2 is
closed, then both A1 and A2 are closed.
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Proof. We take A2 as an example. We apply ‖ · ‖∞ for all three spaces Rm, Rn
and Rm+n. For any {ak2} ⊂ A2 that is convergent in Rn, we see that for every
a1 ∈ A1, the sequence {(a1, a

k
2)} ⊂ A1×A2 is convergent. Since A1×A2 is closed,

there exists (ā1, ā2) ∈ A1 × A2 such that limk→∞ ‖(a1, a
k
2) − (ā1, ā2)‖∞ = 0.

Since ā2 ∈ A2 due to (ā1, ā2) ∈ A1×A2 and ‖ak2−ā2‖∞ ≤ ‖(a1, a
k
2)−(ā1, ā2)‖∞,

we see that A2 is closed.

Lemma (2, P. 54). Let f : Rn → (−∞,∞] be a closed proper convex function.
The recession cone of its epigragh epi(f), denoted as Repi(f), is the epigraph of
a closed proper convex function.

Proof. Since f : Rn → (−∞,∞] is a closed proper convex function, then epi(f)
is a nonempty closed convex set. Then by [COT Prop. 1.4.1 (a), P. 43], Repi(f)

is a nonempty closed convex set. For every d ∈ Rn, denote as Md the set
{(d, v) | v ∈ R}. Note that for every d, Md is closed, and therefore so is Md ∩
Repi(f). In addition, let T : Rn+1 → R be the projection mapping T (d, v) = v.
Then for every d, one can prove via definition that

Md ∩Repi(f) = {d} × T
(
Md ∩Repi(f)

)
.

Then for every d such that Md ∩ Repi(f) 6= ∅, due to [Lemma 1, P. 54], we

see that T
(
Md ∩ Repi(f)

)
is closed. Then what left to show is for every d

such that Md ∩ Repi(f) 6= ∅, the set T
(
Md ∩ Repi(f)

)
shall be a closed interval

that is bounded below and unbounded above. For d = 0, it is obvious that
T
(
M0 ∩ Repi(f)

)
= [0,∞) since f is proper. For every d 6= 0 such that Md ∩

Repi(f) 6= ∅, there exists (d, v) ∈ Repi(f). Then for every x ∈ dom(f), we have

−∞ < f(x + αd) ≤ f(x) + αv < ∞ for all α ≥ 0, since
(
x, f(x)

)
∈ epi(f).

In addition, ∀v′ ∈ T
(
Md ∩ Repi(f)

)
, it holds for every fixed α ≥ 0 that −∞ <

f(x + αd) ≤ f(x) + αv′ < ∞, which means vd = inf T
(
Md ∩ Repi(f)

)
∈ R.

Since T
(
Md ∩ Repi(f)

)
is closed, then vd ∈ T

(
Md ∩ Repi(f)

)
. It is obvious that

∀v′ ≥ vd, v′ ∈ T
(
Md∩Repi(f)

)
due to the definition of epigraph, which concludes

the proof.

P. 55 Per definition, we have ∀d ∈ Rn,

rf (d) = inf{v ∈ R | (d, v) ∈ Repi(f)}.

Since f is proper, we have ∀x ∈ dom(f), (x, f(x)) ∈ epi(f). In addition, since
f is proper, closed and convex, we have ∀x ∈ dom(f), (x, f(x)) ∈ epi(f), which
implies ∀d ∈ Rn and ∀v ∈ R,

(d, v) ∈ Repi(f) ⇐⇒ ∀α ≥ 0
(
(x+ αd, f(x) + αv) ∈ Repi(f)

)
(33)

⇐⇒ ∀α > 0
(
(x+ αd, f(x) + αv) ∈ Repi(f)

)
(34)

⇐⇒ sup
α>0

f(x+ αd)− f(x)

α
≤ v, (35)
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where (33) is due to the [COT Prop. 1.4.1 (b), P. 43] and the condition
(x, f(x)) ∈ epi(f), (34) is due to the condition (x, f(x)) ∈ epi(f), and (35)
is due to the definition of supremum and f(x) ∈ R so that f(x+ αd)− f(x) is
properly defined. Therefore, we have ∀x ∈ dom(f), ∀d ∈ Rn,

{v ∈ R | (d, v) ∈ Repi(f)} =
{
v ∈ R

∣∣∣ sup
α>0

f(x+ αd)− f(x)

α
≤ v
}
.

Therefore, we have ∀x ∈ dom(f), ∀d ∈ Rn,

rf (d) = inf
{
v ∈ R

∣∣∣ sup
α>0

f(x+ αd)− f(x)

α
≤ v
}
,

which in turn implies that

rf (d) = sup
α>0

f(x+ αd)− f(x)

α
, (36)

regardless of the choice of x ∈ dom(f). Another interesting point to note is

that for d such that rf (d) = inf ∅ = ∞, we have f(x+αd)−f(x)
α = ∞ for all

x ∈ dom(f).

P. 56 We fill in some details here. For 0 < α ≤ β, we have x + αd = x +
(α/β)(x+βd−x) = (1−α/β)x+ (α/β)(x+βd) for all x. Then due to f being
proper convex, we have

f(x+ αd)− f(x)

α
≤ (1− α/β)f(x) + (α/β)f(x+ βd)− f(x)

α
=
f(x+ βd)− f(x)

β
.

To see that limα→∞
f(x+αd)−f(x)

α is properly defined, we first note that by above

arguments, we have rf (d) = supα>0
f(x+αd)−f(x)

α > −∞ due to f being proper
and [Lemma 2, P. 54]. We take rf (d) ∈ R as an example and the case rf (d) =∞
is entirely similar. Define gx,d : (0,∞) → R∗ as gx,d(α) = f(x+αd)−f(x)

α where
x ∈ dom(f). Then one can see that gx,d(α) > −∞ for all α > 0, and by above
arguments it is nondecreasing. We then show that for every sequence {αk}
such that αk > 0 and αk → ∞, limk→∞ gx,d(αk) = rf (d). To see this, due

to the definition of supremum and rf (d) = supα>0
f(x+αd)−f(x)

α ∈ R, for every
ε > 0, there exists β > 0 such that gx,d(β) > rf (d) − ε. Since αk → ∞ and
gx,d is nondreasing, then there exists some K such that αk > β for all k > K
and therefore gx,d(αk) > rf (d) − ε. On the other hand, gx,d(αk) ≤ rf (d) =
supα>0 gx,d(α). So per definition, limk→∞ gx,d(αk) = rf (d). For the case where
rf (d) = ∞, similar arguments can be applied. Therefore, for every sequence
{αk} such that αk > 0 and αk → ∞, limk→∞ gx,d(αk) = rf (d), which means
limα→∞ gx,d(α) = rf (d).

P. 56 To see that limα→∞∇f(x+αd)′d is well-defined, we define gx,d : (0,∞)→
R∗ as gx,d(α) = f(x+αd)−f(x)

α where x ∈ dom(f). Note that for every sequence
{αk} where αk > 0 and αk →∞, it holds that

gx,d(αk) ≤ ∇f(x+ αkd)′d,
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where ∇f(x+αkd)′d ∈ R. Take limit inferior on both sides and we have

rf (d) ≤ lim inf
k→∞

∇f(x+ αkd)′d. (37)

Similarly, due to the following holds

∇f(x+ αkd)′d ≤ rf (d),

we also have
lim sup
k→∞

∇f(x+ αkd)′d ≤ rf (d). (38)

Combining Eqs. (37) and (38), we see for every {αk} where αk > 0 and
αk → ∞, limk→∞∇f(x+ αkd)′d = rf (d). Therefore, limα→∞∇f(x+ αd)′d =
rf (d).

P. 57 The first and the third equalities are due to [COT Prop. 1.4.7, P. 55].
To see the second equality hold, for x ∈ dom(f1 + f2) and all d ∈ Rn, we

denote gix,d : (0,∞)→ R∗ as gix,d(α) = fi(x+αd)−fi(x)
α with i = 1, 2. Then from

[COT Note P. 56], due to fi being proper, closed, and convex, for any {αk}
such that αk > 0 and αk → ∞, {gix,d(αk)} ⊂ (−∞,∞], nondecreasing, with
limit in (−∞,∞]. Similarly, due to f1 + f2 being proper, closed, and convex,
{g1
x,d(αk) + g2

x,d(αk)} ⊂ (−∞,∞] is nondecreasing, and has limit in (−∞,∞].
Then due to [Lemma 1, P. 13], for the chosen {αk}, we have

lim
k→∞

g1
x,d(αk) + lim

k→∞
g2
x,d(αk) = lim

k→∞

(
g1
x,d(αk) + g2

x,d(αk)
)
.

Since per [COT Note P. 56], we have limα→∞ gix,d(α) = limk→∞ gix,d(αk), i =

1, 2, and limα→∞
(
g1
x,d(α)+g2

x,d(α)
)

= limk→∞
(
g1
x,d(αk)+g2

x,d(αk)
)
, the second

equality follows.

P. 58

Lemma (P. 58). Let {Ck} be a nested sequence of nonempty closed sets in Rn.
Then ∩∞k=1Ck is empty if and only if every sequence {xk} that has the property
xk ∈ Ck ∀k is unbounded.

Proof. We first prove the if part. Assume ∩∞k=1Ck 6= ∅ and x̄ ∈ ∩∞k=1Ck. Then
for the sequence xk ≡ x̄, we have xk ∈ Ck and the sequence is bounded.

For the only if part, we prove the result by contradiction. Given ∩∞k=1Ck = ∅,
if there exists {xk} such that it is bounded and xk ∈ Ck ∀k, then we see that
{xi}∞i=k ⊂ Ck for all k. Denote as C̃k the closure of the set {xi}∞i=k, and C̃k is
compact due to {xi}∞i=k being bounded. Since Ck is closed and contains {xi}∞i=k,

we have C̃k ⊂ Ck for all k. In addition, it is straightforward to see that {C̃k} is
nested. Then by [COT Prop. A.2.4 (h), P. 235], we have ∩∞k=1C̃k 6= ∅. However,

we also have ∩∞k=1C̃k ⊂ ∩∞k=1Ck = ∅, which is a contradiction. This concludes
the proof.

22



P. 59 Note that for any collection of (convex) sets {Ci}i∈I , if ∩i∈ICi 6= ∅. then
it holds that ∩i∈IRCi ⊂ R∩i∈ICi . Refer to [COT Note P. 46] for more details.
However, it is possible that {Ci}i∈I = ∅ and R∩i∈ICi is undefined, yet ∩i∈IRCi
contains nonzero elements. One example is Ci = [i,∞) where I = N. Then
1 ∈ ∩i∈IRCi yet ∩i∈ICi = ∅. Note that for any collection of nonempty (convex)
sets {Ci}i∈I , ∩i∈IRCi is always nonempty since it contains 0.

P. 59

Lemma (1, P. 59). Let {Ck} be a nested sequence of nonempty closed convex
sets. Then given any sequence {xk} of nonzero vectors such that xk ∈ Ck for
all k and ‖xk‖ → ∞, any limit point of {xk/‖xk‖} is an element of ∩∞k=0RCk .

Proof. If there is no such sequence {xk}, then the statement is vacuously true.
Otherwise, since the sequence {xk/‖xk‖} is bounded, it has convergent subse-
quence. Denote the index set of one such subsequence as K1 and its limit as d.
Then we will show for every Ci, d is its direction of recession. First, we note that
the limit of {xk}k∈K1

is also infinity. Then for any xi ∈ Ci, there exists a subse-
quence of {xk}k∈K1 with index set K2 ⊂ K1 \ {0, . . . , i} such that ‖xk‖ > ‖xi‖
for all k ∈ K2 and therefore ‖xk − xi‖ 6= 0, and {xk}k∈K2 ⊂ Ci. In addition,
due to construction, we have the limits of {xk}k∈K2

and {xk/‖xk‖}k∈K2
to be

∞ and d respectively. Then we show that the limit of {(xk−xi)/‖xk−xi‖}k∈K2

exists and is d. To see this, we write (xk − xi)/‖xk − xi‖ as

xk − xi
‖xk − xi‖

=
xk
‖xk‖

· ‖xk‖
‖xk − xi‖

− xi
‖xk − xi‖

.

It is clear that the limits of {‖xk‖/‖xk − xi‖}k∈K2
and {xi/‖xk − xi‖}k∈K2

are
1 and 0 respectively. Therefore, the limit of {(xk − xi)/‖xk − xi‖}k∈K2

exists
and is d. Then we can apply the arguments for proving [COT Prop. 1.4.2 (a),
P. 45-46] to show that d is a direction of recession of Ci, where it would also
rely on the fact that Ci is closed and convex and [COT Prop. 1.4.1 (b), P. 43]
can be applied.

This result above proves that given a nested sequence {Ck} of nonempty closed
sets, if in addition the sets are convex, then any asymptotic directions of the
nested sequence is also an element of ∩∞k=0RCk . Refer to [Bet07] for the defini-
tion of asymptotic direction.

P. 59

Lemma (2, P. 59). Let {Ck} be a nested sequence of nonempty closed convex
sets. Then {Ck} does not have asymptotic sequence if and only if every sequence
{xk} that fulfills the condition xk ∈ Ck ∀k is a bounded sequence.

Proof. We first prove the if part. Since every sequence {xk} that fulfills the
condition xk ∈ Ck is a bounded sequence, then no sequence fulfills ‖xk‖ → ∞.
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Conversely, for the only if part, given that there exists an unbounded sequence
{xk} such that xk ∈ Ck, we apply [COT Note Lemma 1, P. 59], and we can
construct an asymptotic sequence, which proves the only if part. Note that
since [COT Note Lemma 1, P. 59] relies on the nested sets being convex, so the
statement here also need the convexity condition.

Lemma (3, P. 59). Let {Ck} be a nested sequence of nonempty closed con-
vex sets. Then {Ck} does not have asymptotic sequence if and only if the set
∩∞k=0RCk is the singleton {0}.

Proof. The if part of the statement is obvious per definition of asymptotic se-
quence. For the only if part, by [COT Note Lemma 2, P. 59], {Ck} does not
have asymptotic sequence if and only if every sequence {xk} that fulfills the
condition xk ∈ Ck ∀k is a bounded sequence. We will show that this implies
that there exists some index ` such that C` is bounded. Indeed, assume that Ck
is unbounded for all k, then we can construct an unbounded sequence {xk} that
fulfills the condition xk ∈ Ck ∀k, which is a direct contradiction. Therefore,
{Ck} having no asymptotic sequence implies for some `, C` is bounded. Then
due to [COT Prop. 1.4.2 (a), P. 45], we have ∩∞k=0RCk = {0}.

The only if part of above proof relies on the convexity property of {Ck} through
the use of [COT Note Lemma 2, P. 59]. We will give an alternative proof which
does not rely on the convexity property. The if part is neglected.

Proof. For the only if part, assume that d ∈ ∩∞k=0RCk and d 6= 0. Since Ck is
nonempty, there is a sequence {zk} such that zk ∈ Ck and zk 6= 0. Then we
construct a sequence {xk} as follows. We set x0 = z0. Then we set xk = zk+αkd
such that ‖xk‖/‖xk−1‖ > k and αk‖d‖/‖zk‖ > k for some αk > 0. Due to d
being a common direction of recession, we have xk ∈ Ck for all k. In addition,
we have ‖xk‖ > 2k−1‖x0‖. Therefore, ‖xk‖ → ∞. In addition, we have

xk
‖xk‖

=
zk
‖xk‖

+
αkd

‖xk‖
.

By triangular inequality, we have

αk‖d‖ − ‖zk‖ ≤ ‖xk‖ = ‖zk + αkd‖ ≤ αk‖d‖+ ‖zk‖

Due to the construction of xk, we have ‖zk‖ < αk‖d‖/k. Therefore, we have

k − 1

k
αk‖d‖ < ‖xk‖ <

k + 1

k
αk‖d‖.

Dividing above inequality with αk‖d‖ and taking limits gives ‖xk‖/(αk‖d‖)→ 1.
Since we have

‖zk‖
‖xk‖

=
‖zk‖
αk‖d‖

· αk‖d‖
‖xk‖

→ 0,
αkd

‖xk‖
=

αkd

αk‖d‖
· αk‖d‖
‖xk‖

→ d

‖d‖
,

Therefore, the sequence {xk} is asymptotic.
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P. 60

Lemma (1, P. 60). Let {xk} and {yk} be two positive sequences such that
yk →∞ and xk/yk → a where a ∈ (0,∞). Then xk →∞.

Proof. Since xk/yk → a, then for some ε > 0 such that a − ε > 0, there
exists some K1 such that xk/yk > a − ε for all k > K1. In addition, since
yk →∞, then for every N , there exists K2 such that yk > N/(a−ε). Therefore,
xk > yk(a− ε) > N for all k > max{K1,K2}. Therefore, xk →∞.

Lemma (2, P. 60). Let C1, C2, . . . , Cr be nonempty (convex) sets, and RC1 , . . . , RCr

as their recession cones. Denote as T the Cartesian product C1×C2×· · ·×Cr.
Then it holds that

RT = RC1 ×RC2 × · · · ×RCr .

Proof. Denote as I the index set {1, 2, . . . , r}. Per definition, d = (d1, . . . , dr) ∈
RT if and only if ∀t = (t1, . . . , tr) ∈ T, ∀α ≥ 0, it holds that (t1 +αd1, . . . , tr +
αdr) ∈ T . Per definition of T , the previous proposition is true if and only if
∀i ∈ I, ∀ci ∈ Ci and ∀α ≥ 0, ci + αdi ∈ Ci, which in turn holds if and only if
∀i ∈ I, di ∈ RCi .

We may give a more symbolic elaboration as follows.

Proof. ∀d, d ∈ RT if and only if (per definition of recession cone)

∀t
(
t ∈ T =⇒ ∀α ≥ 0(t+ αd ∈ T )

)
⇐⇒ ∀t

((
∀i(i ∈ I =⇒ ti ∈ Ci)

)
=⇒

(
∀α ≥ 0∀i(i ∈ I =⇒ ti + αdi ∈ Ci)

))
(39)

⇐⇒ ∀i
(
i ∈ I =⇒ ∀α ≥ 0∀ci(ci ∈ Ci =⇒ ci + αdi ∈ Ci)

)
(40)

⇐⇒ ∀i(i ∈ I =⇒ di ∈ RCi) (41)

⇐⇒ d ∈ RC1 ×RC2 × · · · ×RCr , (42)

where (39) is due to the definition of T being a Cartesian product, (40) can be
proven, (41) is due to the definition of RCi , and (42) is due to the definition of
RC1 ×RC2 × · · · ×RCr .

Lemma (3, P. 60). Let {C1
k}, {C2

k}, . . . , {Crk} be retractive nested sequences of
nonempty closed (convex) sets. Then {Tk} is retractive nested sequence closed
(convex) sets, where

Tk = C1
k × C2

k × · · · × Crk .
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Proof. Given any asymptotic sequence {xk} of {Tk}, we need to prove that it
is retractive. Denote as I the index set {1, 2, . . . , r}. Since {xk} is asymtotic,
we have xk is nonzero and

‖xk‖ → ∞,
xk
‖xk‖

→ d

‖d‖
,

where by [COT Note Lemma 2, P. 60], we have d = (d1, . . . , dr) and di ∈ RCi
for all i ∈ I. Denote as I0 the set where di = 0 for i ∈ I0, and I1 = I \ I0. Then
we only need to focus on {xik} where i ∈ I1. First, we note that for i ∈ I1,

xik
‖xk‖

→ di

‖d‖
6= 0 =⇒ ‖xik‖

‖xk‖
→ ‖d

i‖
‖d‖

6= 0,

which in turn implies ‖xik‖ → ∞ in view of [COT Note Lemma 1, P. 60]. This
means that there can only be finitely many zero terms in {xik}∞k=0. Therefore,
without loss of generality, we assume the sequence is nonzero, and we have
‖xk‖
‖xik‖

→ ‖d‖
‖di‖ . Therefore, it holds that

xik
‖xik‖

=
xik
‖xk‖

· ‖xk‖
‖xik‖

→ di

‖d‖
· ‖d‖
‖di‖

=
di

‖di‖
.

Therefore, the sequence {xik}∞k=0 is asymptotic, therefore retractive. As a result,
for k > k̄, we have xk − d ∈ T , where k̄ = maxi∈I1{k̄i}i∈I1 , and k̄i is the index
for sequence {xik}∞k=0 to have the retractiveness property.

P. 60

Lemma (4, P. 60). A closed half space C in Rn is retractive, where C =
{x | a′x ≤ b}, a ∈ Rn, and b is a scalar.

Proof. Given any asymptotic sequence {xk} where xk/‖xk‖ → d/‖d‖, we need
to show that the sequence is retractive, namely, for some k̄, it holds that

a′(xk − d) ≤ b, ∀k ≥ k̄. (43)

First, we note that for the given asymptotic sequence {xk}, since a′xk ≤ b, then
a′xk/‖xk‖ ≤ b/‖xk‖. Taking limits on both sides, we have a′d/‖d‖ ≤ 0, which
implies a′d ≤ 0. Now we assume that {xk} is not retractive. Then there exists
a subsequence {xk}k∈K with indices K such that (43) does not hold, namely
a′xk > a′d+ b for all k ∈ K. Therefore, we have for all k ∈ K,

a′d+ b < a′xk ≤ b =⇒ a′d+ b

‖xk‖
<
a′xk
‖xk‖

≤ b

‖xk‖
. (44)

Since we have

lim
k∈K,k→∞

‖xk‖ =∞, lim
k∈K,k→∞

xk
‖xk‖

=
d

‖d‖
,
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then we take the limits of the right side inequalities of (44), we have a′d = 0.
This contradicts the assumption that a′xk ≤ b, and a′xk > a′d+ b for all k ∈ K.
Therefore, the assumption is false and {xk} is retractive.

P. 62 Without loss of generality, we assume ‖xk‖ 6= 0 ∀k ∈ K.

P. 62 Due to [COT Note Lemma 1, P. 59].

P. 65 Without loss of generality, we assume that ‖yk − y‖ is monotonically
decreasing. This is because that for any sequence {yk} that converges to y, there
exists a subsequence {yk}k∈K such that ‖yk − y‖ is monotonically decreasing
for k ∈ K. Such an assumption is needed in order to have the constructed set
sequence {Ck} to be nested.

P. 65 The set X∩Ck is nonempty for all k. To see this, per definition of yk, there
exists some xk ∈ X ∩ C such that Axk = yk. In addition, xk ∈ Nk. Therefore,
xk ∈ X ∩ C ∩Nk, which amounts to that the set X ∩ Ck is nonempty.

P. 65 Judged solely by the proof here, it also suffices to have the condition
RX ∩ RC ⊂ LC hold, instead of the condition RX ∩ RC ∩ N(A) ⊂ LC in the
proposition statement [COT Prop. 1.4.13, P. 64]. However, since RX∩RC ⊂ LC
always implies RX ∩RC ∩N(A) ⊂ LC while the vice versa does not hold, using
RX ∩RC ∩N(A) ⊂ LC in the proposition covers broader situations, thus gives
stronger results.

P. 66 This amounts to the case where the set sequence {Ck} constructed in
[COT Prop. 1.4.13 Proof, P. 65] are compact sets, in view of Ck being convex
and [COT Prop. 1.4.2 (a), P. 45].

P. 68 Given that both C1, C2 ⊂ Rn are nonempty and a 6= 0, we have
supx∈C1

a′x ∈ (−∞,∞], and infx∈C2
a′x ∈ [−∞,∞). If in addition, it holds

that supx∈C1
a′x ≤ infx∈C2

a′x, then both supx∈C1
a′x and infx∈C2

a′x are real-
valued.

P. 70

Lemma (1, P. 70). Let S ⊂ Rn be a subspace. Then S is closed.

Proof. When S = Rn, the result holds. Otherwise, denote as b1, . . . , b` a basis
of S. For any convergent sequence {sk} ⊂ S, we will show that its limit is in

S. Since sk ∈ S, then sk =
∑`
i=1 α

k
i bi. Since {sk} is convergent, it is therefore

bounded by some M > 0. Therefore, {αki }∞k=0 is bounded by M/‖bi‖ in view of
|αki |·‖bi‖ ≤ ‖sk‖. Therefore, the sequence {αk} ⊂ R`, where αk = (αk1 , . . . , α

k
` ),

is bounded and has limit point ᾱ, which is the limit of the subsequence {αk}k∈K.

Denote as s̄ =
∑`
i=1 ᾱibi. Then we have {sk}k∈K converges to s̄ in view of

‖sk − s̄‖ ≤
∑`
i=1 |αki − ᾱi| · ‖bi‖. Since the limit is unique, then we see that S

is closed.

Lemma (2, P. 70). Let A ⊂ Rn be an affine set. Then A is closed.
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Proof. The proof is essentially the same as [COT Note Lemma 1, P. 70].

Lemma (3, P. 70). Let X ⊂ Rn be some nonempty set. If int(X) 6= ∅, then
aff(X) = Rn.

Proof. Since int(X) 6= ∅, then there exists some x̄ ∈ X and ε > 0 such that
Bε ⊂ X, where Bε = {x | ‖x − x̄‖ < ε}. Denote as e1, . . . , en a set of unit
length basis of Rn. Then it is clear that x̄ + νei ∈ Bε i = 1, . . . , n for some
ν < ε. Therefore, x̄+span(e1, . . . , en) ⊂ aff(X) ⊂ Rn. In view of the facts that
span(e1, . . . , en) = Rn and x̄ ∈ Rn, we conclude the proof.

Lemma (4, P. 70). Let C ⊂ Rn be some nonempty convex set. Then int(C) = ∅
if and only if aff(C) 6= Rn

Proof. The if part is proven by [COT Note Lemma 3, P 70]. For the only if
part, given int(C) = ∅, assume aff(C) = Rn. Then by definition of relative
interior, we see that int(C) = ri(C). On the other hand, by [COT Prop. 1.3.2
(a), P. 24], we have ri(C) 6= ∅, which is a contradiction. Therefore, we have
aff(C) 6= Rn.

Lemma (5, P. 70). Let C ⊂ Rn be a nonempty convex set. Then int(C) =
int
(
cl(C)

)
.

Proof. If int(C) 6= ∅, then by [COT Note Lemma 3, P. 70], we have aff(C) = Rn
and ri(C) = int(C) per definition. In addition, since aff

(
cl(C)

)
= aff(C) [COAe1

Ex 1.18(a), P. 20], we also have ri
(
cl(C)

)
= int

(
cl(C)

)
. In view of [COT Prop.

1.3.5 (b), P. 28], we have int(C) = int
(
cl(C)

)
.

If int(C) = ∅, then by the only if part of [COT Note Lemma 4, P. 70], aff(C) 6=
Rn. Since aff

(
cl(C)

)
= aff(C), we have aff

(
cl(C)

)
6= Rn. Then again by the if

part of [COT Note Lemma 4, P. 70] and due to cl(C) being convex, we have
int
(
cl(C)

)
= ∅.

Note that in [Lemmas 4, 5, P. 70], convexity is needed. For an example where
X is nonempty, and nonconvex and has empty interior, while its closure has
nonempty closure, consider X ⊂ R as the set of all rational numbers. Then its
closure is R, which has nonempty interior.

P. 73

Lemma (P. 73). Let X1 and X2 be two nonempty sets. Then X1 and X2 can
be properly separated if and only if there exists some a such that

sup
x∈X1

a′x ≤ inf
x∈X2

a′x, inf
x∈X1

a′x < sup
x∈X2

a′x. (45)
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Proof. If X1 and X2 can be properly separated, then there exists some nonzero a
and scalar b that define a hyperplaneH such that supx∈X1

a′x ≤ b ≤ infx∈X2 a
′x.

In addition, at least one of the two sets is not contained in H. Assume X1 6⊂ H,
then there exists x ∈ X1 such that a′x < b, which has the strict inequality hold.
The case where X2 6⊂ H can be similarly argued.

If Eq. (45) hold, we first note that a is nonzero. In addition, by the arguments
given in [COT Note P. 68], we see that supx∈X1

a′x, infx∈X2
a′x are both real

numbers. Denote as b the value supx∈X1
a′x. We will show that the hyperplane

H defined by a and b properly separate X1 and X2. Per definition, we see
that H separates X1 and X2. If H contains both X1 and X2, then the strict
inequality in Eq. (45). Therefore, H properly separates X1 and X2.

P. 73 Let C1 and C2 be two nonempty convex sets such that C1 ∩ C2 = ∅
and aff(C1 ∪ C2) = Rn. Let hyperplane H separate C1 and C2. If H does not
properly separate C1 and C2, then C1 ∪ C2 ⊂ H where H is affine and is of
n − 1 dimension, which is a contradiction of aff(C1 ∪ C2) = Rn. Therefore,
the assumption is false and every hyperplane that separates C1 and C2 must
properly separate them.

75

Lemma (1, P. 75). Let X1, X2 be two nonempty sets of Rn. Then it holds that
aff(X1 +X2) = aff(X1) + aff(X2).

Proof. Denote the dimensions of aff(X1), aff(X2) as m1 and m2 respectively.
Then by [COTe1 Ex 1.11 (b), P. 17], we have, for some x1

1, . . . , x
1
m1
, x̄1 ∈ X1,

and x2
1, . . . , x

2
m2
, x̄2 ∈ X2,

aff(X1) =
{
y
∣∣∣ y =

m1∑
i=1

α1
i (x

1
i − x̄1) + x̄1

}
,

aff(X2) =
{
y
∣∣∣ y =

m2∑
i=1

α2
i (x

2
i − x̄2) + x̄2

}
.

(46)

For any y1 + y2 ∈ X1 + X2, we have y1 + y2 ∈ aff(X1) + aff(X2). In addition,
aff(X1) + aff(X2) is affine (one can verify this by using the definition of affine
set). Therefore, aff(X1 +X2) ⊂ aff(X1) + aff(X2).

As for the reverse direction, for any y1 + y2 ∈ aff(X1) + aff(X2), we have, by
(46),

y1 =

m1∑
i=1

βi(x
1
i − x̄1) + x̄1,

y2 =

m2∑
i=1

γi(x
2
i − x̄2) + x̄2.
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Therefore, we have

y1 + y2 =

m1∑
i=1

βi
(
(x1
i + x̄2)− (x̄1 + x̄2)

)
+

m2∑
i=1

γi
(
(x̄1 + x2

i )− (x̄1 + x̄2)
)

+ (x̄1 + x̄2)

=

m1∑
i=1

βi(x
1
i + x̄2) +

m2∑
i=1

γi(x̄
1 + x2

i ) +
(
1−

m1∑
i=1

βi −
m2∑
i=1

γi
)
(x̄1 + x̄2),

which is affine combination of elements in X1 + X2. Therefore, the proof is
complete.

By above result, we have aff(Ĉ) = aff(C) + S⊥ = Rn. Since Ĉ is convex, then
per definition we have int(Ĉ) = ri(Ĉ), which, due to [COT Prop. 1.3.2 (a), P.
24], is nonempty.

P. 75

Lemma (2, P. 75). Let A1, A2 ⊂ R be two sets of scalars, and B = A1 + A2.
Then it holds that supA1 + supA2 = supB.

Proof. Denote āi = supAi, i = 1, 2, ā = ā1 + ā2, and b̄ = supB. Then we have

∀b
(
b ∈ B ⇐⇒ ∃a1 ∈ A1∃a2 ∈ A2(b = a1 + a2) =⇒ b ≤ ā

)
.

Therefore, we have b̄ ≤ ā.

Next, we will show that b̄ < ā cannot hold. For the case ā =∞, we can see that
B is also unbounded above and therefore b̄ = ∞. Otherwise, ā < ∞. If b̄ < ā,
then there exists some ε > 0 such that ā − 2ε > b̄. Then there exists ai ∈ Ai
such that ai > āi − ε for i = 1, 2. This implies a1 + a2 ∈ B and a1 + a2 > b̄,
which is a contradiction. Therefore, we have b̄ = ā.

Note that for A1, A2 ⊂ R being two sets of scalars, and B = A1 + A2, we also
have inf A1 + inf A2 = inf B.

Here, by setting B = {a′x |x ∈ Ĉ}, A1 = {a′x |x ∈ C}, A2 = {a′z | z ∈ S⊥}, we
get the desired result.

P. 76

Lemma (P. 76). Let A1, A2 be two nonempty sets. Then 0 ∈ A1 − A2 if and
only if A1 ∩A2 6= ∅.

Proof. For the only if part, given 0 ∈ A1−A2, then ∃a1 ∈ A1∃a2 ∈ A2(a1 = a2),
which implies ∃a1 ∈ A1 ∩A2, which is equivalent to A1 ∩A2 6= ∅.

For the if part, given A1 ∩A2 6= ∅, then ∃a1 ∈ A1 ∩A2. Since ∀a∃b(a = b), then
∃a1 ∈ A1∃a2 ∈ A2(a1 − a2 = 0), which per definition, means 0 ∈ A1 −A2.
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P. 76 Apart from [COT Note Lemma P. 76], it also applies [COT Note Lem-
mas P. 73, Lemma 2, P. 75], and the fact that for a set A ⊂ R, inf A =
sup(−A).

P. 78 To see this, note that

x ∈ P ∩ ri(C) =⇒ x ∈ P ∩ ri(C) ∩ C =⇒ x ∈ P ∩ ri(C) ∩ aff(C).

P. 78

Lemma (1, P. 78). Let P = {x | a′jx ≤ bj , j = 1, . . . , m} ⊂ Rn be a polyhedron,

and x̄ ∈ Rn. Then P = x̄+ P̄ , where P̄ = {x | a′jx ≤ bj − a′j x̄, j = 1, . . . , m}.

Proof. For x ∈ P , we have a′jx ≤ bj for all j, which implies a′j(x− x̄) ≤ bj−a′j x̄,

namely x− x̄ ∈ P̄ . Therefore, we have x ∈ x̄+ P̄ .

Conversely, x ∈ x̄ + P̄ implies x− x̄ ∈ P̄ , which indicates that a′jx ≤ bj for all
j, namely x ∈ P .

P. 78

Lemma (2, P. 78). P = {x | a′jx ≤ bj , j = 1, . . . , m} ⊂ Rn be a polyhedron. If
a′j x̄ < bj for all j = 1, . . . , m, then x̄ ∈ int(P ).

Proof. Denote as Fj the closed half space {x | a′jx ≤ bj}. Then it is clear that
P = ∩mj=1Fj . We will show that for every Fj , there exists an εj > 0 such that
the closed ball with center x̄ and radius εj is fully contained in Fj , then the
ball with center x̄ and radius ε = min{ε1, . . . , εm} is then fully contained in P ,
which shows x̄ being an interior point.

We take F1 as an example. Since a′1x̄ < b1, then the distance from x̄ to the
hyperplane H1 = {x | a′1x = b1} is d1 = |a′1x̄ − b1|/‖a1‖. Then for all v with
‖v‖ ≤ d1, we have x̄+ v ∈ F1. To see this, note that

a′1(x̄+ v) ≤ a′1x̄+ |a′1v| ≤ ‖a1‖ · ‖v‖+ a′1x̄ ≤ |b1 − a′1x̄|+ a′1x̄ = b1,

where the second inequality is by Cauchy–Schwarz inequality, the third inequal-
ity is due to ‖v‖ ≤ d1, and the equality is due to x̄ ∈ F1. Therefore, by setting
ε1 = d1, we have the desired result.

We fill in some details for the followup arguments. If 0 is an interior point of P ,
then by [COT Note Lemma 3, P. 70], we have aff(P ) = Rn and ri(P ) = int(P ).
Then since 0 ∈ ri(P ) ∩ C ⊂ ri(P ) ∩ aff(C), while ri

(
aff(C)

)
= aff(C), we have

ri(P ) ∩ ri
(
aff(C)

)
6= ∅. Therefore, by [COT Note Lemma 3, P. 32], we have

aff(D) = aff
(
P ∩ aff(C)

)
= aff(P ) ∩ aff

(
aff(C)

)
= aff(C). In addition, by

[COT Prop. 1.3.8, P. 32], we have 0 ∈ ri(P ) ∩ ri
(
aff(C)

)
= ri

(
P ∩ aff(C)

)
=

ri(D). Then for any x ∈ ri(C) ⊂ aff(C), the line defined by 0 and x belongs
to aff(C) = aff(D). Due to 0 ∈ ri(D), then there exists some ε > 0, such that
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εx ∈ D, then by Line Segment Principle, every point between 0 and εx belongs
to ri(D).

P. 79

Lemma (1, P. 79). Let P = K∩Q where K = {x | a′jx ≤ 0, j = 1, . . . , m} ⊂ Rn
and Q = {x | a′jx ≤ bj , bj > 0, j = m+ 1, . . . , m̄} ⊂ Rn. Then K = cone(P ).

Proof. Let x ∈ cone(P ), then x =
∑`
i=1 α

ixi with xi ∈ P and α ≥ 0. Then for

j = 1, . . . , m, a′jx = a′j
∑`
i=1 α

ixi ≤ 0, indicating that x ∈ K.

Conversely, if x ∈ K and x is nonzero, then a′jx ≤ 0 for j = 1, . . . , m. In
addition, due to [COT Note Lemma 2, P. 78], we have 0 ∈ int(Q). Then
∃ε > 0 such that ‖v‖ ≤ ε implies v ∈ Q. Therefore, we have (ε/‖x‖)x ∈
Q ∩K = P . Then we have x = α(ε/‖x‖)x where α = ‖x‖/ε > 0, which implies
x ∈ cone(P ).

P. 79

Lemma (2, P. 79). Let A ⊂ Rm+n+` be a nonempty set with elements of the
form (x, y, z), PXY = {(x, y) | ∃z ∈ R` such that (x, y, z) ∈ A}, PX = {x | ∃y ∈
Rn∃z ∈ R` such that (x, y, z) ∈ A}, and P̄X = {x | ∃y ∈ Rn such that (x, y) ∈
PXY }. Then PX = P̄X .

Proof.

x ∈ PX ⇐⇒ ∃y ∈ Rn∃z ∈ R` such that (x, y, z) ∈ A
⇐⇒ ∃y ∈ Rn such that (x, y) ∈ PXY ⇐⇒ x ∈ P̄X .

Above result shows that projection step by step is equivalent to projection all
together.

Lemma (3, P. 79). Let P ⊂ Rn+m be the polyhedron set {(x, y) | a′jx + c′jy ≤
bj , j = 1, . . . , `}. Then PX = {x | ∃y ∈ Rm such that (x, y) ∈ P} is a polyhe-
dron.

Proof. We consider m = 1 and for m > 1, the proof can be done by induction
in view of [COT Note Lemma 2, P. 79].

Denote J = {1, 2, . . . , `}, J0 = {j | j ∈ J, cj = 0}, J+ = {j | j ∈ J, cj > 0},
and J− = {j | j ∈ J, cj < 0}. In what follows, we apply the Fourier-Motzkin
elimination to construct a projection set. For (x, y) ∈ P , we have

a′kx ≤ bk, k ∈ J0,

(a′jx)/cj ≤ bj/cj − y ⇐⇒ −(a′jx)/cj + bj/cj ≥ y, j ∈ J+,

(a′ix)/ci ≥ bi/ci − y ⇐⇒ −(a′ix)/ci + bi/ci ≤ y, i ∈ J−.
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Denote as āj = −aj/cj , and b̄j = bj/cj for j ∈ J+ ∪ J−, and define the set P̄X
given as

P̄X = {x | ā′jx+ b̄j ≥ ā′ix+ b̄i, j ∈ J+, i ∈ J−, a′kx ≤ bk, k ∈ J0}.

We claim PX = P̄X . To see this, if x ∈ PX , then by above computation and
definition of P̄X , we have x ∈ P̄X . Conversely, if x ∈ P̄X , then minj∈J+ ā

′
jx +

b̄j ≥ maxi∈J− ā
′
ix + b̄i. Define y = minj∈J+ ā

′
jx + b̄j , and we have (x, y) ∈ P ,

implying that x ∈ PX .

Lemma (4, P. 79). Let P1 and P2 be two polyhedral sets of Rn. Then P =
P1 + P2 is a polyhedron.

Proof. We define the set P̄ = {(x, y, z) |x ∈ P1, y ∈ P2, z = x + y}. It is clear
that P̄ is a polyhedron of R3n. In addition, define P̄Z = {z | ∃x ∈ Rn∃y ∈
Rn such that (x, y, z) ∈ P̄}. By [COT Note Lemma 3, P. 79], we know P̄Z is a
polyhedron. In addition, per definition, we see that P̄Z = P . Therefore, P is a
polyhedron.

P. 79 Note that the set K is polyhydron and also a cone. Then by [COT Note
Lemma, P. 4], we see that the halfspaces used to define K pass through 0.

P. 79

Lemma (5, P. 79). Let H = {x | a′x = 0} be a hyperplane in Rn that defines
a closed half space F = {x | a′x ≤ 0}. Let S be a subspace such that S 6⊂ H
and S ∩ H 6= ∅. Denote as A the set S ∩ F and let F̄ be a closed half space
{x | ā′x ≤ 0} such that S ∩H ⊂ F̄ . Then if ri(A) ∩ F̄ 6= ∅, it holds that A ⊂ F̄ .

Proof. First, in view of [COT Note Lemma 3, P. 70, Lemma 2, P. 78], we have
ri(F ) = int(F ) = {x | a′x < 0}. Besides, per definition, ri(S) = S. Since
S 6⊂ H, then there exists s ∈ S such that a′s < 0, namely s ∈ ri(F ). Therefore,
ri(F ) ∩ ri(S) 6= ∅. Then, in view of [COT Prop. 1.3.8, P. 32], we have ri(A) =
ri(F ) ∩ ri(S) = {x | a′x < 0, x ∈ S}.

Denote as ` the dimension of H ∩S, which is a subspace (or origin) in view that
H and S are both subspaces. Denote as V = {v1, . . . , v`} a set of orthogonal
basis of H∩S. Then span(v1, . . . , v`) ⊂ H and thus a′vj = 0 for j = 1, . . . , `. (`
could be 0, in which case V is an empty set.) Denote as V ∪U an orthogonal basis
of H, where U = {u1, . . . , un−`−1} and thus V ∪ U ∪ {a} forms an orthogonal
basis of Rn. In addition, let S have dimension m, and denote as V ∪ W an
orthogonal basis of S where W = {w1, . . . , wm−`}. We will show that the set
W is singleton, and ` = m−1. First, we note that W is not empty since S 6⊂ H.
In addition, a′w 6= 0 for w ∈W , as otherwise, we have w ∈ S∩H, contradicting
that span(v1, . . . , v`) = S ∩ H. Second, if W has more than one element, say
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w1 and w2, then

w1 =

n−`−1∑
i=1

αiui + β1a, w2 =

n−`−1∑
i=1

γiui + β2a,

in view that w1, w2 are orthogonal to V , and β1, β2 are nonzero since a′w 6= 0
for w ∈W and a′u = 0 for u ∈ U . On the other hand, we have β2w1−β1w2 ∈ S
since S is a subspace, β2w1 − β1w2 is nonzero since w1 and w2 are linearly
independent, and β2w1 − β1w2 ∈ H since it is linear combination of U . Thus
β2w1 − β1w2 ∈ S ∩ H. However, this is a contradiction to span(v1, . . . , v`) =
S ∩ H since β2w1 − β1w2 is nonzero and also orthogonal to V thus linearly
independent. Therefore, the assumption is false and W is singleton. This means
S = span(v1, . . . , v`, w1) and ` = m− 1.

Now we are ready to prove the main result. Since S∩H ⊂ F̄ , then S∩H ⊂ LF̄ ,
namely ā′v = 0 for v ∈ V . For every z̄ ∈ ri(A), it holds that

z̄ =
∑̀
i=1

κ̄ivi + η̄w1,

and we have η̄a′w1 < 0 with η̄ 6= 0 since z̄ ∈ ri(A). If there exists a z̄ ∈ ri(A)
that is also in F̄ , then we have η̄ā′w1 ≤ 0. Then for every z ∈ ri(A) where

z =
∑̀
i=1

κivi + ηw1,

it holds that ηa′w1 < 0, η/η̄ > 0. Thus, we have ā′z = ηā′w1 = (η/η̄)η̄ā′w1 ≤ 0
as η/η̄ > 0, η̄ā′w1 ≤ 0. This means z ∈ F̄ .

P. 79

Lemma (6, P. 79). Let C be a nonempty convex set that is contained in a closed
half space F whose corresponding hyperplane is denoted as H. In addition, C
is not contained in H. Denote as C̄ the set aff(C) ∩ F . Then ri(C) ⊂ ri(C̄).

Proof. First, we note that ri(F ) = F \H. Since C ⊂ F and C 6⊂ H, then there
exists x ∈ C such that x ∈ ri(F ). Therefore, ri(F )∩ri

(
aff(C)

)
= ri(F )∩aff(C) 6=

∅. Thus, we have ri(C̄) = ri(F ) ∩ aff(C), per [COT Prop. 1.3.8, P. 32]. On the
other hand, since C 6⊂ H, C ⊂ F , and ri(F ) = F \ H, by [COT Eq. (1.33),
P. 77], we have ri(C) ⊂ ri(F ). On the other hand, ri(C) ⊂ aff(C). Therefore,
ri(C) ⊂ ri(F ) ∩ aff(C).

P. 79

Lemma (7, P. 79). Let A, B be two nonempty subsets of Rn and x ∈ Rn. Then

(A+ x) ∩ (B + x) = (A ∩B) + x. (47)
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Proof. If A ∩ B = ∅, one can verify that both sides of Eq. (47) are emptysets.
Otherwise, assume A ∩B 6= ∅. Then we have

y ∈ (A+ x) ∩ (B + x) =⇒ (y ∈ A+ x) ∧ (y ∈ B + x)

=⇒ (y − x ∈ A) ∧ (y − x ∈ B)

=⇒ y − x ∈ (A ∩B)

=⇒ y ∈ (A ∩B) + x.

Conversely, we have

y ∈ (A ∩B) + x =⇒ y − x ∈ (A ∩B)

=⇒ (y − x ∈ A) ∧ (y − x ∈ B)

=⇒ (y ∈ A+ x) ∧ (y ∈ B + x)

=⇒ y ∈ (A+ x) ∩ (B + x).

We rewrite the critical steps of the proof arguments replacing the part starting
from ’We thus assume that P ∩ C 6= ∅, and by using ...’.

Assume P ∩ C 6= ∅ and y ∈ P ∩ C. Then by using similar arguments as given
in the proof, we can see that P = y + P̄ , where

P̄ = {x | a′jx ≤ 0, j = 1, . . . , m, a′ix ≤ bi, bi > 0, i = m+ 1, . . . , m̄},

so that y is not an interior point of P .

Then denote M = H ∩aff(C), and we have y ∈M since y ∈ P ∩C ⊂ aff(C) and
also y ∈ H. Define K = cone(P̄ ) + M . We claim K ∩ ri(C) = ∅ and proof is
done by contradiction. Assume x̄ ∈ K∩ri(C). Then x̄ = u+v with u ∈ cone(P̄ )
and v ∈ M . u must be nonzero since otherwise we have x̄ = v ∈ ri(C) while
v ∈M ⊂ H, which means v ∈ ri(C) ∩H, contradicting with ri(C) ∩H = ∅. In
view of the proof of [COT Note Lemma 1, P. 79], we have u = αw with α > 0
and w ∈ P̄ . In fact, α can be arbitrarily large, as indicated in the proof of [COT
Note Lemma 1, P. 79]. It is clear that w+ y ∈ P since w ∈ P̄ . In what follows,
we will show that w + y ∈ ri(C). First, we note that

w + y = x̄/α− v/α+ y = (x̄− y)/α+ y − (v − y)/α.

Then since (x̄ − y)/α + y = x̄/α + (α − 1)/αy, α > 0 can be chosen to be
arbitrarily large such that 1/α, (α − 1)/α ∈ (0, 1), x̄ ∈ ri(C), y ∈ C, then by
Line Segment Principle, we see that (x̄−y)/α+y ∈ ri(C). Since M is affine and
y ∈M , then S = M − y is a subspace and LM = S. Since M ⊂ C and M 6= ∅,
then S = LM ⊂ LC = Lri(C), by [COT Prop. 1.4.3 (b) (c), P. 47]. Then v ∈M
yields v− y ∈ S ∈ Lri(C). Therefore, w+ y = (x̄− y)/α+ y− (v− y)/α ∈ ri(C).

Thus we have shown that w + y ∈ P ∩ ri(C), contradicting P ∩ ri(C) = ∅.
Therefore, K ∩ ri(C) = ∅.
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Due to [COT Note Lemma 4, P. 79], K = cone(P̄ )+S+y is a polyhedral set. In
addition, denote as K̄ the set cone(P̄ ) +S, which is also polyhedral. Also, K̄ is
a cone per definition. Therefore, by [COT Note Lemma, P. 4], K̄ can be defined
by a set of half spaces F̄1, . . . , F̄r that passes through 0. Similarly, denote as
Fi = F̄i + y, i = 1, . . . , r. Clearly, we have S ⊂ F̄i, M ⊂ Fi. Then we apply
[COT Note Lemma 5, P. 79], S in the lemma being aff(C)− y, A in the lemma
being the set C−y, the hyperplane H in the lemma being H−y here, the set F̄
in the lemma being F̄i for any i = 1, . . . , r here. Then by [COT Note Lemma
7. P. 79], we have S = M − y = H ∩ aff(C)− y = (H − y)∩

(
aff(C)− y

)
. Then

there exists some F̄i, say F̄1, that does not contain any relative interior points
of C − y. Then by [COT Note Lemma 3, P. 26], F1 ∩ ri(C) = ∅. Therefore,
the hyperplane defining F1 separates K and C while does not contain C. Since
P ⊂ K ⊂ F1, and C ⊂ C, the proof is complete.

P. 79 Note that when P ∩C 6= ∅, we have P ∩C ⊂M = H∩aff(C). To see this,
for x ∈ P ∩C, since C ⊂ aff(C), we have x ∈ P ∩C ∩ aff(C). Thus, x ∈ D ∩C.
Since H properly seperate C and D, then x ∈ H. Thus, x ∈ H ∩ aff(C) =
M .

P. 80 First, we note that there is some hyperplane H that contains C in one
of its closed half spaces. Since C does not contain any vertical line, then there
exists (u,w) 6∈ C. Then by [COT Prop. 1.5.1, P. 69], there exists some H that
contains C in one of its closed half space.

P. 81 Alternatively, we can directly argue about set C. Since C ⊂ cl(C), it holds
that µ′u > γ > µ′u, ∀(u,w) ∈ C. Then by part (a), there exists some (µ, β)
and γ with β 6= 0 such that µ′u + βw > γ, ∀(u,w) ∈ C. Then similar to the
proof, we can find some ε > 0 such that a hyperplane with normal (µ+ εµ, εβ)
strictly separates C and (u,w).

P. 81 Alternative arguments for this part can be given as follows: By part (a),
there exists some (µ, β) with β 6= 0 such that the closed half space F defined by
(µ, β) contains C. Then by the definition of closure, we have cl(C) ⊂ F .

P. 82 To have the inequality hold, what we require is to have ε > 0 and

γ + εγ > µ′u+ ε(µ′u+ βw) ⇐⇒ γ − µ′u > ε(µ′u+ βw − γ).

Divide ε on both sides and note that γ − µ′u > 0, then (γ − µ′u)/ε ↑ ∞ as
ε ↓ 0.

P. 83 Let X ⊂ [−∞,∞]. Then supX = − inf(−X). This is obvious when
X ⊂ [−∞,∞). When ∞ ∈ X, the relation also holds since −∞ ∈ (−X) and
− inf(−X) = −(−∞) =∞ = supX.

P. 83 When f(x) = ∞ for all x, we have f?(y) = supx∈Rn{x′y − f(x)} =
sup{−∞} = −∞ for all y. If there exists some x̄ such that f(x̄) = −∞, then
x̄′y − f(x̄) = ∞. Then we have f?(y) = ∞ for all y. Therefore, when f is
improper, f? is constant −∞, or ∞, both being closed convex. When f is
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proper, we have f(x) > −∞ for all x and dom(f) 6= ∅. Since for all y, we have
x′y − f(x) = −∞ for all x ∈ Rn \ dom(f), then we have

sup{x′y − f(x) |x ∈ Rn} = sup
(
{x′y − f(x) |x ∈ dom(f)} ∪ {−∞}

)
= sup{x′y − f(x) |x ∈ dom(f)}.

Then by [COT Prop. 1.1.6, P. 13], we see that f? is closed convex.

In addition, if there exists some ȳ such that f?(ȳ) = −∞, then f?(y) = −∞
for all y. To see this, note that f?(ȳ) = supx∈Rn{x′ȳ − f(x)} = −∞. Since
x′ȳ − f(x) ≥ −∞ for all x, then x′ȳ − f(x) = −∞, ∀x. Therefore, we have
f(x) =∞+ x′ȳ =∞ for all x due to x′ȳ ∈ R. As a result of above discussion,
we see f?(y) = −∞ for all y.

P. 86 Note that f being proper does not imply that čl f is proper. To see this,
we consider an example f : R→ R defined as

f(x) =

{
− 1
|x| , x 6= 0,

0, x = 0.

Then we can see that the vertical line through origin belongs to conv
(
epi(f)

)
.

In fact, conv
(
epi(f)

)
= R2. Since epi(čl f) = cl

(
conv

(
epi(f)

))
, then we see that

čl f is improper.

P. 86 Since epi(f) does not contain vertical lines, then by Nonvertical Hyper-
plane Theorem, there exists some µ, β 6= 0 and α, such that µ′x+βw ≥ α for all
(x,w) ∈ epi(f). Since w can be arbitrarily large while the inequality still holds,
we have β > 0. Thus by setting y = µ/β, and c = α/β, we get the asserted
relation.

P. 87 Since f is proper, then dom(f) 6= ∅ and y′z−f(z) ∈ R for all z ∈ dom(f).
In addition, y′z− f(z) = −∞ for all z ∈ Rn \ dom(f). Thus, supz∈dom(f){y′z−
f(z)} = supz∈Rn{y′z − f(z)}.

P. 87 In fact, what is claimed here requires the following holds:

inf
x∈Rn
{g(x)− x′y} = sup{c ∈ R |w − x′y ≥ c, ∀(x,w) ∈ epi(g)}. (48)

When g(x) =∞ for all x ∈ Rn, we have epi(g) = ∅. Thus, infx∈Rn{g(x)−x′y} =
inf{∞}, and sup{c ∈ R |w − x′y ≥ c, ∀(x,w) ∈ epi(g)} = supR = ∞. Namely,
Eq. (48) hold.

When g(x̄) = −∞ for some x̄, we have infx∈Rn{g(x) − x′y} = −∞. On the
other hand, {c ∈ R |w − x′y ≥ c, ∀(x,w) ∈ epi(g)} = ∅ since w − x̄′y can be
made arbitrarily small and sup ∅ = −∞. Thus, what is left to show is when g
is proper.

Indeed, given that g is proper, we have ∀c ∈ R,

w − x′y ≥ c, ∀(x,w) ∈ epi(g) ⇐⇒ g(x)− x′y ≥ c, ∀x ∈ Rn

⇐⇒ c ≤ inf
x∈Rn
{g(x)− x′y}.
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Thus, we have

{c ∈ R |w − x′y ≥ c, ∀(x,w) ∈ epi(g)} =
{
c ∈ R | c ≤ inf

x∈Rn
{g(x)− x′y}

}
.

When infx∈Rn{g(x) − x′y} = −∞, we see the set above is empty and thus
Eq. (48) holds. Otherwise, infx∈Rn{g(x)−x′y} <∞ since g is proper. Then we
have

sup
{
c ∈ R | c ≤ inf

x∈Rn
{g(x)− x′y}

}
= inf
x∈Rn
{g(x)− x′y}.

What is argued in the proof is that

{c ∈ R |w−x′y ≥ c, ∀(x,w) ∈ epi(f)} = {c ∈ R |w−x′y ≥ c, ∀(x,w) ∈ epi(čl f)}.

Then in view of Eq. (48), we have f?(y) = f̌?(y).

P. 88 Let f be a closed proper convex function. Let HN denote the intersection
of all closed halfspaces that contain epi(f) and have nonvertical corresponding
hyperplanes. We will use the arguments given in [COT Prop. 1.5.4, Proof, P.
73] and apply [COT Prop. 1.5.8 (b), P. 80] to show the assertion. First, by
[COT Prop. 1.5.8 (a), P. 80], we know the closed halfspaces that contain epi(f)
and have nonvertical corresponding hyperplanes do exist. Then by intersection,
we have epi(f) ⊂ HN . Conversely, if (x,w) 6∈ epi(f), since f is closed, then
by [COT Prop. 1.5.8 (b), P. 80], there exists a nonvertical hyperplane that
strictly separates (x,w) and epi(f). Thus, (x,w) 6∈ HN . Therefore, we see that
HN = epi(f).

P. 89 We can see that cl δC is proper due to δC being proper and [COT Prop.
1.3.15 (a), P. 40]. In particular, we have the following lemmas hold.

Lemma (1, P. 89). Let C ⊂ Rn be a nonempty convex set and δC be its indicator
function. Then the closure of δC , viz., cl δC , is equal to δcl(C).

Proof. We first show that dom(cl δC) = cl(C). Due to [COT Prop. 1.3.15 (a), P.
40], we have cl

(
dom(cl δC)

)
= cl

(
dom(δC)

)
= cl(C). Thus, dom(cl δC) ⊂ cl(C).

Also by the same proposition, we have cl δC(x) = δC(x) = 0 ∀x ∈ ri(C). Thus,
we have ri(C) ⊂ V0, where V0 is the 0-level set of cl δC . Per definition, we have
V0 ⊂ dom(cl δC). Since cl δC is closed, by [COT Prop. 1.1.2, P. 10], V0 is closed,
and as a result, we have cl

(
ri(C)

)
⊂ V0. Put the above relations together and

we have
cl
(
ri(C)

)
⊂ V0 ⊂ dom(cl δC) ⊂ cl(C).

By [COT Prop. 1.3.5 (a), P. 28], we also have cl
(
ri(C)

)
= cl(C). Thus, V0 =

dom(cl δC) = cl(C). Therefore, cl δC(x) =∞ ∀x 6∈ cl(C).

Since cl δC(x) = δC(x) = 0 ∀x ∈ ri(C), what is left to show is that cl δC(y) = 0
∀y ∈ cl(C) \ ri(C). Fix some x ∈ ri(C), and for all y ∈ cl(C) \ ri(C) and
α ∈ (0, 1), we have δC

(
y+α(x− y)

)
= 0 since by Line Segment Principle [COT
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Prop. 1.3.1, P. 24], y + α(x − y) ∈ ri(C). Thus, by [COT Prop. 1.3.15 (b), P.
40], for all y ∈ cl(C) \ ri(C), it holds that

cl δC(y) = lim
α↓0

δC
(
y + α(x− y)

)
= 0.

The above proof has relied on the set C being convex. In fact, a more general
result also hold, which does not rely on convexity, as we will show next.

Lemma (2, P. 89). Let X ⊂ Rn be a nonempty set and δX be its indicator
function. Then the closure of δX , viz., cl δX , is equal to δcl(X).

Proof. We first note that, in view of [COT Prop. 1.1.2, P. 10], the function
δcl(X) is closed as all its level sets are either cl(X) or ∅, being closed either way.
Then we see that the δcl(X) is majored by δX since δcl(X)(x) = δX(x) for x ∈ X
and δcl(X)(x) ≤ δX(x) otherwise. So δcl(X) is a closed function majored by δX .

Next, denote as V0 is 0-level set of cl δX . Since cl δX ≤ δX , then X ⊂ V0.
By [COT Prop. 1.1.2, P. 10], V0 is closed. Therefore, we have cl(X) ⊂ V0,
namely cl δX(x) ≤ 0 for all x ∈ cl(X). By [COT Prop. 1.3.14 (a), P. 39],
cl δX(x) ≥ δcl(X) for all x. Thus, cl δX(x) = 0 for all x ∈ cl(X) and cl δX(x) =∞
for all x ∈ Rn \ cl(X).

P. 89 Given a set X, its indicator function δX is closed if and only if X is
closed. This can be seen by applying [COT Prop. 1.1.2, P. 10].

Chapter 3

P. 121 A direct consequence of X∗ 6= ∅ is that f∗ ∈ R, since f∗ = f(x) for all
x ∈ X∗ and X∗ ⊂ X ∩ dom(f) 6= ∅.

P. 124

Lemma (P. 124). Let {an} ⊂ R be a convergent real sequence with a limit
limn→∞ an in R∗. Then for any α ∈ R, the sequence {αan} ⊂ R is convergent
with its limit given by

lim
n→∞

αan = α lim
n→∞

an.

Proof. We neglect the case where limn→∞ an ∈ R. We consider the case
limn→∞ an =∞, while the other case is entirely similar.

Given limn→∞ an =∞, if α = 0, by arithmetic rule, we have α limn→∞ an = 0,
while αan = 0 for all n therefore {αan} convergent and the result holds. If
α > 0, we have α limn→∞ an = ∞, and it’s clear that the sequence {αan} has
limit ∞. The case where α < 0 is neglected.
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Denote as āk = F (x̄, z̄k) and ãk = F (x̃, z̃k). Since āk → f(x̄) < ∞ and ãk →
f(x̃) <∞, and F takes values in (−∞,∞], it is then without loss of generality
to assume that {āk}, {ãk} ⊂ R. For any α ∈ (0, 1), denote as b̄k = αāk,
b̃k = (1 − α)ãk. It is clear by [COT Note Lemma, P. 124] that {b̄k}, {b̃k} ⊂ R
are both convergent and has limits in [−∞,∞). Then by [COT Note Lemma 1,
P. 13] and its followup discussion, we have

lim
k→∞

(b̄k + b̃k) = lim
k→∞

b̄k + lim
k→∞

b̃k. (49)

In addition, by [COT Note Lemma, P. 124], we have limk→∞ b̄k = α limk→∞ āk,
limk→∞ b̃k = (1− α) limk→∞ ãk. In summary, what we’ve shown above is that
for any α ∈ (0, 1),

lim
k→∞

(
αF (x̄, z̄k) + (1− α)F (x̃, z̃k)

)
=α lim

k→∞
F (x̄, z̄k) + (1− α) lim

k→∞
F (x̃, z̃k)

=αf(x̄) + (1− α)f(x̃),

therefore the inequality

f
(
αx̄+ (1− α)x̃

)
≤ lim
k→∞

(
αF (x̄, z̄k) + (1− α)F (x̃, z̃k)

)
= αf(x̄) + (1− α)f(x̃)

follows. For the case where α = 0 or 1 the above inequality also holds since
0 · x = 0 for all x ∈ R∗.

P. 125

Lemma (P. 125). Let F : Rn+m → (−∞,∞] be a closed proper convex function.
Then for any x̄ ∈ Rn such that F (x̄, z) < ∞ for some z ∈ Rm, the function
gx̄ : Rm → [−∞,∞] given by gx̄(z) = F (x̄, z) is a closd proper convex function.

Proof. Since by assumption, for the given x̄, F (x̄, z) <∞ for some z ∈ Rm, then
gx̄(z) < ∞ for some z. In addition, since F is proper, then gx̄(z) = F (x̄, z) >
−∞ for all z. Therefore, gx̄ is proper.

Next, we will show that gx̄ is closed and convex by looking at its epigraph. We
denote as X̄ the set {(x, z, w) |x = x̄}, and introduce the projection P̄ given as

P̄ =

[
0 I 0
0 0 1

]
,

where I is a m×m identity matrix. Then we look at the set P̄
(
epi(F )∩X̄

)
. Due

to the assumption that F (x̄, z) < ∞ for some z ∈ Rm, epi(F ) ∩ X̄ 6= ∅. Since
epi(F ) is convex, then P̄

(
epi(F )∩X̄

)
is convex. Since Repi(F )∩X̄ = Repi(F )∩RX̄

as epi(F ) ∩ X̄ 6= ∅, and RX̄ = {(0, dz, dw) | (dz, dw) ∈ Rm+1}, we see that
N(P̄ ) ∩Repi(F )∩X̄ = {(0, 0, 0)}, which implies that P̄

(
epi(F ) ∩ X̄

)
is closed.

In the end, we show that epi(gx̄) = P̄
(
epi(F ) ∩ X̄

)
. If (z, w) ∈ epi(gx̄), then

by the definition of gx̄, F (x̄, z) ≤ w, which implies (x̄, z, w) ∈ epi(F ) ∩ X̄,
resulting in (z, w) ∈ P̄

(
epi(F ) ∩ X̄

)
. Conversely, if (z, w) ∈ P̄

(
epi(F ) ∩ X̄

)
,

then (x̄, z, w) ∈ epi(F )∩ X̄, which implies F (x̄, z) ≤ w. By the definition of gx̄,
we have (z, w) ∈ epi(gx̄). Therefore, gx̄ is a closed proper convex function.
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Appendix A

P. 228 For f : X → Y , and U ⊂ X, V ⊂ Y , our orthodox definition of f(U)
and f−1(V ) are given as

f−1(V ) ={x ∈ X | f(x) ∈ V },
f(U) ={y ∈ Y | ∃x ∈ U, y = f(x)}.

P. 229

Lemma (1, P. 229). Given an affine set A = x+ S where S is a subspace, for
every x̄ ∈ A, it holds that A = x̄+ S.

Proof. Note that x̄ ∈ x + S, so we have x̄ = x + s̄ where s̄ ∈ S. Therefore, for
every x′ = x+ s′, it holds that x′ = x+ s̄+ s′ − s̄ where s′ − s̄ ∈ S. Therefore,
x′ ∈ x̄ + S, which gives x + S ⊂ x̄ + S. The reverse inclusion uses the same
arguments.

Lemma (2, P. 229). Given an affine set A = x + S where S is a subspace, if
a1, . . . , am ∈ A, then for scalars α1, . . . , αm such that

∑m
i=1 αi = 1, it holds

that
∑m
i=1 αiai ∈ A.

Proof. Since ai ∈ A, then we have ai = x+si where si ∈ S for all i = 1, . . . , m.
Then we have

∑m
i=1 αiai =

∑m
i=1 αi(x+ si) = x+

∑m
i=1 αisi ∈ A.

Lemma (3, P. 229). Given an affine set A = x + S where S is a subspace, if
x ∈ S, then A = S.

Proof. Since x ∈ S, then −x ∈ S, which implies 0 = x− x ∈ A. By [COT Note
Lemma 1, P. 229], A = 0 + S = S.

Lemma (4, P. 229). Let A be a nonempty set such that for all a1, a2 ∈ A,
αa1 + (1− α)a2 ∈ A for all α ∈ R. Then A is an affine set.

Proof. Since A is nonempty, then there exists some ā ∈ A. Then A = ā+A− ā.
Denote as S̄ the set A− ā. We will show that S̄ is a subspace. For all x, y ∈ x̄,
we have x+ ā, y + ā ∈ A. For any α, β ∈ R, we have

αx+ βy =α(x+ ā− ā) + β(y + ā− ā)

=α(x+ ā) + β(y + ā)− (α+ β)ā

From the property of A, it is easy to show that for all a1, a2, a3 ∈ A, αa1 +
βa2 + (1 − α − β)a3 ∈ A for all α, β ∈ R. Then we see that αx + βy + ā =
α(x+ ā) + β(y + ā) + (1− α− β)ā ∈ A, which implies αx+ βy ∈ S̄. Therefore,
S̄ is a subspace. Then A = ā+ S̄ is an affine set.
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