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Chapter 1

P. 2 Suppose that h(x) is nonlinear. For a given x, there may not exist a vector
d such that h(x + ad) = 0 for all & > 0 that are sufficiently small.

P. 2 Let us denote by S the set {« | h(z) = 0}. First, we have,

lim f(x) + %Ck\h(x)|2 _ {f(x) ifzels,

cRp—00 00 otherwise.

If S =0, we have inf,cs f(z) = oo, and

. 1 2
Jim f(2) + Selh(2)]" = oo
for all z € R™ so that its infimum is also co. Otherwise, if S is nonempty,
then

inf lim f(z)+ %ck|h(x)|2 =inf lim f(z)+ %cﬂh(m)\g = 1relgf(ac)

zERT cp— 0 €S cp—>00

P. 8 Let us denote by afj the ijth element of matrix Ay. From the definition of
matrix norm |Ag/|, it can be seen that |Ag| > |a§j|. Therefore, limy_,o0 |Ak| =0
implies that limy_, afj =0.

P.8

Lemma (1, P. 8). Let {ri} be a sequence on the real line. There exists a
subsequence {ry}k that is monotone.

Proof. Consider the index set defined as K = {k[7, > ry for alln > k}. If
the set K is infinite, by setting K = K, we obtain a sequence {ry}x that is
monotonically nondecreasing.

Suppose that the set K is finite. Let k; be some index that does not belong
to K and k; > max K. Then there exists some ks > ki such that Thy > Thy-
Since ko > ki, then ko & K. Therefore, there exists some ks > ko such that
Tk, > T'ks. Continue in this way, we construct the set K = {kq, k2, ...} and the
corresponding subsequence is monotonically decreasing. Q.E.D.



The following result is known as the Bolzano-Weierstrass theorem.

Lemma (2, P. 8). Let {r} be a bounded sequence on the real line. There exists
a subsequence {r} i that is convergent.

Proof. According to [Lemma 1, P.8], {r;} has a monotone subsequence. We
assume first that {ry} x is a nondecreasing subsequence. Then one can see that
its limit is sup,c g {rx}. The case where {r;} has a nonincreasing subsequence
can be show similarly. Q.E.D.

Lemma (3, P. 8). Let {sp} C R™ be a bounded sequence. There exists a subse-
quence {sy} k that is convergent.

Proof. Let us denote by st the ith component of sj. Since {s;} is bounded, the
sequences {st },i=1,2,...,n, are all bounded. Then there exists a subsequence
{st}k, that is bounded according to [Lemma 2, P.8]. Consider now the sequence
{s?}k,. Similarly, [Lemma 2, P.8] implies that there exists some Ko C K such
that {si} K, is convergent. Repeating this n steps, and we get some set K, such
that {s}}k, is convergent. Moreover, since any subsequence of a convergent
sequence is convergent, we have {si}x ,i=1,...,n — 1, are convergent. As a
result, {s}k, is convergent. Q.E.D.

P. 8 Suppose that {ry} is unbounded below. Its limit superior can be either
finite or —oco. To see this, consider r, = —k when k is even and r, = 1/k when
k is odd. In this case, we have limsup,_, ., = 0.

P. 9 Let us denote by S the set N2 Sk. To see that S is nonempty, consider
a sequence {sy} where s; € Sy, as Sy is nonempty for all k. Since the sets
Sk C R™ are compact, we may use certain canonical way to construct {sx} so
that axiom of countable choice is not neededﬂ Then using the construction in
the proof of [Lemma 3, P. 8], we obtain a subsequence {sy} i that is convergent.
Denote by § the limit of {si}x. Since Sg, k =0,1,..., are closed, then 5 € S,
for all k. Therefore, 5§ € S.

LSuppose that X belongs to ™ and is compact. We show that there is a canonical way to
select a vector z € X. Since the function fo(x) = |z| is continuous on z and X is compact, we
have that inf,¢ x |z| is finite. Let {x} be a sequence such that fo(zy) converges to inf,cx |z|.
Such a sequence exists due to the definition of infimum. Since the sequence is also bounded,
there exists a subsequence {zy}x that is convergent. The limit of {xx}x, denoted by z*,
belongs to X due to X being compact. Given that fo is continuous and limge i fo(zr) =
inf e x |z|, we have fo(z*) = inf e x |x|. As aresult, the set Xo = arg minge x || is nonempty
and contains at least x*. Moreover, it is closed since every sequence that belongs to Xo has
its limit in Xo (due to X being compact and fo being continuous) and is also bounded. Next,
consider the function fi(z) = x' where 2! denotes the first element of 2. Using entirely
identical arguments with fi in place of f and X in place of X, we obtain a compact set X;.

After proceeding similarly, we construct the sequence of sets X1, Xa,...,X,. We surely
have X,, as a singleton. To see this, we note that by construction, X,_; contains vectors x
with their first n — 1 elements being equal. Then the vector with the minimum last element
must be unique. We can use the unique element in X,, as our canonical choice.



To see that S is closed, let {sx} be some convergent sequence in S. Then
{sx} C Sy for all k. Let 5 be the limit of {s;}. Since Sk, k = 0,1,..., are
closed, then 5 € Sj, for all k. Therefore, s € S.

P. 9 We say a function f : Sy +— Sy is continuous at x € Sy if f(zx) — f(x)
whenever {z,} C S and s — z; see [NLP 3rd, P. 754].

P. 9 For a function f : X — R, where X C R™ is an open set, its partial
derivatives of order 0 is simply the function itself. As a result, if f is continuous
over X, we write f € CY over X.

P. 10 For the definitions of V2, f(z,y), V2, f(x,y), V2, f(z,y), see [NLP P.
767]. If f : X — R is a real-valued function of (z,y), where x = (z1,...,2,) €
R,y = (y1,...,y) € R, and X C R™'" is an open set, then the nota-
tions V. f(z,y), Vyf(x,y), and the correct notations V2, f(x,y), V3, f(x,y),
V2, f(z,y) introduced here remain valid. Similarly, if f : X — R™ where
X C ™7 is an open set, the notation V,f(z,y) and V,f(z,y) introduced
here remain valid.

P. 11 It is implied implicitly in Implicit Function Theorem 1 that for all z €
S(z;e€), (z,¢(z)) € 5.

P. 12 We prove Implicit Function Theorem 2 by using Implicit Function The-
orem 1. We make use of the following lemma.

Lemma (1, P. 12). Let X C R™ be a compact set and Y C R"™ be an open set
such that X CY. There exists some € > 0 such that S(X;e) C Y.

Proof. When Y = R", the conclusion holds trivially. Otherwise, denote by Z
the complement of Y in ™, which is nonempty and closed. Consider the scalar
0 defined as
0= inf |z-—z|
reX,z€Z

We will show that § > 0 by contradiction. Suppose § = 0, then there exists
some sequence {zx} C X and {z,} C Z such that |z — 25| — 0. Since the
set X is compact, there exists a convergent subsequence {xj}x. Denote by z*
the limit of {zx}x and we have z* € X. Moreover, z* is also the limit of the
subsequence of {z} i since |z — x*| < |z — k| + |z — 2*|. As Z is a closed
set, this implies that * € Z. This leads to a contradiction as z* € X C Y and
Z is the complement of Y. Therefore, we have § > 0.

Define ¢ = §/2. We will show that S(X;e) C Y. If y € S(X;e), then there
exists some x € X such that |z — y| < € < §, which means that y & Z by the
definition of §. Q.E.D.

Denote by Z some arbitrary point in X. Applying Implicit Function Theorem
1, there exists some ez > 0 and 6z > 0, and a function ¢z : S(Z;€z) — S(F; 0z)
such that hlx, ¢z (x)] = 0 for all z € S(T;¢ez) and ¢z(Z) = y. Since h(z,g) =0



for all z € X, we have that ¢z(z) = 7 for all z € S(Z;€z) N X by the uniqueness
of the function ¢z (). Moreover, if p > 1, we have for all x € S(Z; ez)

Vos(x) = —Vih[z, ¢2(2)] [Vyhlz, ¢z (2)] .

Next, we note that the set U, %S (Z;€z) is an open set and X C U, %S(Z;€z).
Given that X is compact, there exists some vectors Z;, i = 1,2,...,m, such
that X C U™, S(Z;;€z,). Let € U™ S(Z;;€z,). We will show that for the
values ¢z, (Z) agree for all ¢ in the set Iz = {i|Z € S(Z;;€z,)}. Suppose that
i* € argmax;er, 0z, so that S(7;0z,) C S(7;0z,.) for all ¢ € Iz. In other
words, the values of ¢z,(Z), ¢ = 1,2,...,m, are all within S(7;0z,.). Applying
the uniqueness property of ¢z,., we have that ¢z,(Z) agree for all ¢ and we can
define a function ¢ that maps U, S(Z;; €z,) to UM, S(; dz,) by setting its value
at T equal to ¢z,(Z) for any ¢ € I;. Applying [Lemma 1, P. 12], there exists
some € > 0 such that S(X;e) C U™, S(Z;;€z,). By setting 6 = maxi—1___m &,
we complete the proof.

P. 13 Consider the sequence ¢(8+1/k)*. We will show that it converges linearly
with convergence rate 3 by verification. Let g > 0 and B e (B,1). Then there
exists some k such that 8+ 1/k < B. Moreover, there exists some k > k such
that (8 + 1/k)* /3% < G/q. As a result, for all k > k, we have

a(B+1/k)* < a(B+1/R)* = a(B+ 1/R)*F((8 + 1/k)* /8] B*
<q(B +1/k)**a/q)B* < aB".
The verification for the sequence converging at most at ratio § is straightfor-
ward.

The convergence speed of the sequence ¢85+ (1/%) can be verified by making use
of the following result.

Lemma (1, P. 13). Let a > 0 be some scalar and consider the function f :
(0,00) = R defined as f(x) = a*/*. There holds lim, o f(x) = 1. Moreover,
if a <1, we have f(z) <1 for all x, and if a > 1, we have f(x) > 1.

Proof. Note that a(1/*) = (e(ln “))(1/1) = e(ma)/z Then the conclusion follows.
Q.E.D.

In addition, for the function f : (0,00) — R defined as f(z) = 0%, we have
f(z) =0 for all z € (0,00).

P. 15 In what follows, we either fill in some details or provide alternative argu-
ments for the proofs.

(a) Let ¢ > 0, 3 € (3,1), and B e (B,5). Since lim supy,_, oo e,lc/k < 8, there
exists some k such that Sup;> e,lc/k < 3, which means that e < * for all k > k.
Since 3 < 3, there exists some k > k such that (3/3)F < ¢. As a result, for all



k >k, Bk = Bk_E(B/B)EBE < qﬂ’“_’;B’_C < ¢B*. This shows that the sequence e,
converges at least linearly with ratio 8. Conversely, since for every 8 € (5,1),
there exists some k such that e, < 3% for all k > k, or equivalently e1 k< B
In other words, we have supysj ek/ < ﬁ Using the fact that sup,sj ek/k is
decreasing with k, we have lim sup,_, . ek " < B. Since the inequality holds for
all B € (8,1), we have limsup,,_, . ei/k <inf(8,1) = B.

(b) The proof presented in [COLMM] uses the fact that limg_,o g%/ = 1; see
[Lemma 1, P. 13]. Next, we provide an alternative proof. Suppose that for some
k, we have er < qp* for all k> k. Let ¢>0and 3 € (8,1). There exists some

k > k such that (8/B)* < q/q. Using the derivation as in part (a), we have
qB* < gB* for all k > k.

(c) The proof presented in [COLMM] uses the fact that limg oo B;/k = 1;
see [Lemma 1, P. 13]. Alternatively, let ¢ > 0, and (2 € (B2,1). Consider
B2 € (B2, 32). There exists some k such that egi1/ex < By for all k > k. As a

result, we have e; < e,;Bk_’; = ¢fF for all k > k, where ¢ = e,;/ﬁk. Using part
(b), we have that ey converges faster than g35.

P. 16 (a) Consider ¢ > 0, 8 € (0,1), and p € (1,p). Let B € (0,3). Since
limg_ o0 e,lg/ik = 0, there exists some k such that el/p < B for all & > I~c or
equlvalently e < BP for all k > k. Since 8 < 3, then there exists some
k> k such that (5/6) < g for all k > k. Then we have ¢, < 7 =
(B/B)P ﬁp < qﬁp for all k& > k. Conversely, fix some p. Since for every
B € (0,1), there exists some k such that e < Bﬁk for all k > k. Equivalently,
we have e,le/ﬁk < B for all k > k. Since § can be arbitrarily small and e,lf/ﬁk >0,

_k

we have limy_, o e,lg/p =0.

For the statement regarding the convergence at most superlinearly with order
p > 1, the proof is similar, except that in the only if part, fixing p, we also need

— —k —
to show that there exists some k such that e,lc/ PP <1 for all k& > k. Indeed,
since e — 0, there exists some k such that e, < 1 for all kK > k. Then we have

e,lg/ﬁk < 18" — 1 for all k > k.

(b) Suppose there exists some k such that e, < qﬁpk for all k > k. For every
P € (1,p), we have e,lc/ﬁk < /7" @/ for all k > k. Taking limit superior on
both sides, we have lim supy,_, ., ei/ﬁk < limy_ 00 ¢/7" BP/D)" = 0. In view of the
fact that e,lc/ﬁk > 0 for all k, this implies that limg_,o, = e,lc/p = 0. Applying

part (a) we get the desired result. Similarly we prove the result concerning the
convergence at most superlinearly with order p.

(c) We prove the part concerning the convergence at least superlinearly with
order p. Since limsup,_,.(ext1/€h) < oo, there exists some k and ¢ > 0
such that for all k& > k, we have e < ce,C for all k > k. This implies that



Chim < C(E;’:Olpi)egm for all & > k and m > 1. Therefore, we obtain the
inequality

PR (St /P
€l S CE0 € . (1)

Focusing on the exponent of ¢, we have

— % —/5+m: pm_]- _ 1 o .
(;p)/p (p—1)pF+m (p—l)p’?((p/p) L/p").

There holds that

v—1 iy =k m =k+m
RO DHra A Vi A A 2
k

(cl/(p’1)> (1/8*) /)™ (Cl/(p—l)) (*1/ﬁfc+m)e£1/ﬁfc)(p/[j)m
)

(61/(;;—1)612) (/%) w/p)™ (Cl/(p—l)) (~1/5*

Since e, — 0, we can choose k sufficiently large such that cl/(p_l)e,; < 1. In
view of p < p, we have that

_k —\m _ —k+m

lim (Cl/(p—l)ea (1/p )(p/p) —0. lim (Cl/(p_l))( 1/p ) _

m—o0 m—roo

Therefore, taking the limit superior with respect to m on both sides of Eq. ,
_k —k

we have limsup,,_, es/” < 0. Also we have e,/” > 0 for all k, therefore we

—k
obtain e,lc/ P — 0. Applying part (a) completes the proof. Similarly we prove

the result concerning the convergence at most superlinearly with order p.
P. 17 In particular, we have ay; > 0.

P. 17 Let A be a positive definite matrix. It can be written as A = LL’, where L
is a unique lower triangular matrix whose diagonal elements are positive.

P. 18 To see uniqueness, by induction we have L; is unique. Suppose that 4; 1
can be uniquely written as A;_1 = L;_1L}_;. Suppose that

Lii 0
A= .
[ li A}
Then we have I:i_lli;fl = A'L—17 Ei—lli = Oy, and l;lz + )\7421 = Q- By induction
hypothesis, we have L; 1 = L;—1. Moreover, the vector /; is uniquely determined
by the equations L;_1l; = «;. The uniqueness of \;; follows as it is required to
be positive.

P. 18 The computation L;_1l; = «; requires (i — 1)/2 multiplications. For a
matrix of dimension n, the total multiplication involved is

IR
5;(22—1).



Using the equation > ;i* = n(n + 1)(2n 4 1)/6, we have that the total mul-
tiplication is approximately n?3 /6.

P. 20 The proposition here should be interpreted as follows.
Lemma (1, P. 20). Let f : R™ — R be a conlinuous function. If either
(a) for every sequence {xy} satisfying |xg| — oo, we have f(xp) — oo, or

(b) more generally, for some a € R, the set {z| f(x) < a} is nonempty and
compact,

then there exists a global minimum for (UP).

Proof. Denote a = inf eqn f(z). Clearly we have a € [—00,00), and there exists
some sequence xj, such that f(z) — a.

Suppose condition (a) hold. We show that the sequence {zj} is bounded by
contradiction. If {zx} is unbounded, then there exists some subsequence {zy}x
such that |z)| — co as k € K and k — oo. This implies that limye x g—oo f(Tk) =
00, which is a contradiction. Therefore, the sequence {z}} is bounded. By
[Lemma 3, P. 8], there exists a subsequence {z}}% that is convergent. Denote
by z* its limit. Then we have limy o0 f(zx) = limy 7z, f(@k) = f(z*) > cc.
Moreover, f(z*) = a, thus attaining the global minimum.

Next, we show that condition (a) implies condition (b). As is shown, we have
a > oo. Let a > a and consider the set X = {z]| f(x) < a}. It is nonempty
since x* € X. Moreover, it is closed since f is continuous. Suppose that X is
unbounded. Then there exists some {xy} such that |zp| — oco. However, this
implies that f(xy) — oo as per condition (a). Therefore, X must be bounded,
thus compact.

Lastly, suppose condition (b) hold. Since the set X = {z|f(z) < a} is
nonempty, we have a < a. If a = «, then every element in the set X at-
tains the minimum. Otherwise, there exists some k such that z € X for all

k > k. Since X is compact, there exists a subsequence {Ty}>f rex that is
convergent. Its limit, denoted by x*, attains the global minimum. Q.E.D.

Note that there exists some functions that satisfy condition (b) but not (a). For
example, consider f: R +— R defined as

—x—1 ifz<0,

f)=82z—-1 if0<z<3,
6

otherwise.

Here condition (b) is satisfied while condition (a) is not. Also, without f being
continuous, condition (b) alone is not sufficient to ensure the existence of global



minimum. To see this, consider the function f : % — R defined as

—lnz ifx <O,
fl®)=1<0 if 2 =0,
Inx otherwise.

P. 20

Lemma (2, P. 20). Let h: [0,k) — R be a continuous function, where k is a
positive real number or co. Suppose that for some real numbers a € R, we have
h(0) < a. Then there exists some & € (0, k) such that h(a) < a for all [0,a].

Proof. Suppose there is no such @ Then for all 1/k > 0, there exists some
ay € (0,1/k] such that h(ay) > a. Then we have limg_,o h(ag) > a, which
contradicts with the continuity of h at 0. Q.E.D.

Lemma (3, P. 20). Let v € (0,1) and Vf(z)'d < 0, where f € C* over R™.
There exists an interval (0,&] such that every a € (0,a] satisfies

f(2) = f(a + ad) > —7aV f(x)'d.

Proof. Define g(a) = f(z + ad). Note that dg(a)/0a = V f(x + ad)'d. Define
h(a) = 0g(a))/0a for a > 0, which is continuous. Clearly we have h(0) < 0,
and, as a result, h(0) < vh(0). By [Lemma 2, P. 20] with a = yh(0) and k = oo,
there exists some & such that h(&) < vh(0) for all & € (0, a], or equivalently,
0g(&)/0a < v0g(0) /0. Consequently, for every & € (0, @], there holds

@) = g(0)+ [ %5t < g0) 412

which is equivalent to the desired inequality. Q.E.D.

Applying [Lemma 3, P. 20], we have that for given scalars s, 8, and o with
s> 0,8 €(0,1), and o € (0, %), Armijo rule is always well defined. Indeed,
by setting v = o, we see that the inequality used in Armijo rule is satisfied for
sufficiently large m.

P. 21 In Goldstein rule, we must have ap > 0, as otherwise it would imply
f(@rs1) > f(or).
P 22

Lemma (1, P. 22). Let h: [0,k) — R be a continuous function, where k is a
positive real number or co. Suppose that for some real numbers a,b € R such
that a < b, we have h(0) < a and h(«) & [a,b] for all « € [0,K). There holds
that sup,eo, ) h(a) < a.



Proof. Define ¢ as ¢ = sup X, where
X ={al0<a<k, and h(a) < a for all a € [0,a]}.

In view of [Lemma 2, P. 20], the set X is nonempty and contains some a > 0.
If ¢ is K, we have sup,¢( ) h(@) < a. Otherwise, assume ¢ < . As a result,
we have (c+ 1/k) ¢ X and ¢+ 1/k < & for all sufficiently large k. Therefore,
there exits some ¢, € [0, c+ 1/k] such that h(cg) > a. Since h(a) & [a, b] for all
a € [0, k), we have that h(cy) > b for all k. Moreover, in view of the definition
of ¢, we have ¢, > c¢. We can show that the function A is not continuous at
¢ by considering the sequences {c¢ — 1/k} and {c}, which is a contradiciton.
Therefore, we have ¢ = k. Q.E.D.

Define h(e) = dg(a)/de, a = Bh(0), b = 0. Suppose A is empty. By applying
[Lemma 1, P. 22] with k = oo, we have h(a) < Sh(0) for all & > 0. Then for
every a > 0, we have

9(@) = 9(0) + / " h(a)da < g(0) + Bh(0)a,

which goes to —oo as & — oco. Since g is bounded below, so A is not empty.
Moreover, A is closed and bounded below. Therefore, we have & € A.

Since h(0) < BRh(0) and h is continuous, applying [Lemma 2, P. 20] with a =
Bh(0), and k = oo, there exists some € > 0 so that h(a) < h(0) for all o € [0, €].
As a result, we have & > 0. Moreover, we can show that h(a) = Sh(0). Indeed,
applying again [Lemma 1, P. 22] with kK = &, a = Bh(()), and b = 0, we
have h(a) < Bh(0) for all & < @&. Consider the sequence {& — 1/k}. By
continuity, we have h(ad) = limy_o0 h(é — 1/k) < Bh(0). However, we also
have h(&) > Bh(0). Therefore, we have h(a) = Bh(0). Consequently, we have
|h(&)| = |8g(a)/8a] < BIh(0)] = B|g(0)/dal, as B < B. The continuity of h
ensures the existence of d;.

P. 24 It is implicitly required in the definition that for all V f(z)) # 0, we have
Vf(l‘k)/dk < 0.

P. 25
Lemma (1, P. 25). Let {ax} be a monotonically nonincreasing real sequence

that converges to a € R. Then inf{ay} = a.

Proof. 1f {a} is unbounded below, there exists some k such that aj, < a —1
for all & > k, which contradicts with ay — @. Therefore, inf{ay} is finite. From
the definition of limit and monotonicity of {a}, we have inf{a;} =a. Q.E.D.

Lemma (2, P. 25). Let {ax} be a monotone real sequence. Suppose that {ay}
has a convergent subsequence with its limit denoted as a € ®. Then a; — a.



Proof. Suppose that {a;} is monotonically nonincreasing. Denote by {ax}x
be its convergent subsequence. Then we have a; > a for all £ € K in view
of [Lemma 1, P. 25]. Moreover, since {ay} is monotonically nonincreasing, for
every k, there exists some k> k and k € K such that aj, > aj, > a. Therefore,
ap > a for all k. Since limy_, rex ar = @, for every € > 0, there exists some k
such that |ax —a| =ar —a <ap —a <eforall k > k and k € K. Then for all
k >k, we have |ay —a| =a, —a <ap —a<e Q.E.D.

Applying [Lemma 2, P. 25| with ap = f(zr), we have f(xx) converges to
f(z).
P. 25 Since {ay } i converges to 0, there exists some k such that oy, < s for all

k >k and k € K. Therefore, ay,/3 € {s, s, 3%s,...} forall k > k and k € K.
By the definition of Armijo rule, we have

f(zr) — flzw + (ax/B)dr] < —o(ar/B)V f(xr) dp forall k >k and k € K.

P. 25 By mean value theorem, for every k € K, there exists some 7 € (0,1)
such that f(zp + arpr) = f(zr) + Vf(zr + Yearpr) @rpr. As a result,

f(wg) — fzr + arpr) _ —V f(xr + Yearpr) arpk

= =V f(zr + Veorpr) Pk
O g

Since vy € (0,1) and lim,_, _ , % & = 0, the limit of =V f(x}, + yeuwpr) pr is
-V @)D
P. 26

Lemma (1, P. 26). Suppose that {ar} and {by} are two convergent real se-
quences with their limits denoted by a and b. Then we have {axby} converges
to ab.

Proof. We have |axby, — ab| = |(axby, — aby.) + (aby — ab)| < [bx||ar. — al +|al[bx, —
b|. Since |bg| < ¢ for some ¢ > 0, for every ¢, there exists some k such that
clag — a| + |al|by, — b < e. Q.E.D.

For every k, we have

=V f(xr) d _ |V f(xr) di| S infy>p |V f()dy
|d| || T supjsg|dyl

Applying [Lemma 1, P. 26] with ay = inf;>, |V f(2;)'d;| and b, = 1/sup,>, |d;],
we obtain the desired inequality.

P. 27 By first-order Taylor series expansion, we have

1
f(l‘k + adk) = f(l‘k) + /O Vf((Ek + Tadk)'adde.
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Applying change of variable in integration with 7 = ¢/, there holds
/ Vf(xk + tdk)’adk(l/a)dt = / Vf(mk + tdk)ldkdt.
0 0

P. 29 Let us denote by g;(z) the ith element of V f(z), i.e., g;(x) = 0f(z)/0x;.
As a result, Vg;(z)’ is the ith row of the matrix V2 f(x). Moreover, g;(z*) =0
for all . Suppose that x € S(z*;4). Applying first-order Taylor series expansion
of g; around z*, we have?

1
gi(x) =gi(x™) + /0 Vgilz* + a(z — 2)) (v — 2*)da

:/0 Vgilz* + a(z — 2"))'(z — 2*)da.

Then we multiply on both sides (x; — x}), where z; and = denote the ith
elements of x and z*, respectively, and sum over i. For the left hand side,
we obtain Y. (x; — 27)gi(z) = Vf(x)'(x — 2*). For the right hand side, we
have

n

Z(ml —xf) /0 Vgilz* + a(z — 2")) (z — 2*)da

i=1

noopel
:Z/o (2i = 2})Vailz" + a(e — )] (z - 2")da
:/0 2@ —)Vgle” + alz — 2" (v - 2")da
) =1

:/ (x — ") V2 flz* + a(z — %)) (z — z*)da

0
>m|x —z*?

where the last inequality is due to that a* + a(x — z*) € S(z*;9) for all a €
(0,1). Therefore, we have V f(z)'(x — x*) > m|z — z*|>. If [Vf(z)| < ¢, then
€|z — x*| > m|x — x*|?, which implies that |z — z*| < ¢/m.

Next, applying mean value theorem for f € C? around x*, for some a € (0,1),
we have

Me?

* 1 * 2 * * * M * |2
f@) = $&") = 3@ =2V + ale -2 —a%) < o —atP < 5

2By stacking over i the values g;(x) and g;(z*) + fol Vgilz* + a(z — z*)])(z — z*)da to
form corresponding vectors, we obtain first-order Taylor expansion for vector-valued function
given as

1
V(@) = V") + /0 V2 fle* + ale — 2"))(@ — =*)da

11



Note that although z* is a local minimum, it is not given that f(z*) < f(Z) for
all & € S(x*;d). Our derivation only relies on the condition V f(z*) = 0.

P. 30

Lemma (1, P. 30). Let g: X x Z — R be a continuous function, where X is a
subset of R, and Z is a compact subset of R™. Let h : X — R be defined as

h(z) = miy g(z, 2).

Then we have that h is continuous over X.

Proof. Suppose that {z;} C X is a convergent sequence such that z, — = € X.
For all k, there exists some z, € Z such that g(zy,zx) = h(zy). Since Z is a
compact set, there exists a subsequence {zx } i that is convergent, with its limit
denoted by Z. By the definition of &, we have

h(z) < g(z, 2). (2)

Moreover, for every € > 0, there exists some k such that |g(xzy, zx) — g(Z,2)| < €
for all £k > k and k € K. This inequality implies that

9(z,2) < g(zg,2x) +€e forallk >kand k € K. (3)
Combining Eqs. and , we have

h(z) < g(xk,21) +€ forallk>kand k € K. (4)

Let us assume that the function A is discontinuous at . Then there exists some
€ > 0, such that for all ke K , there exists some k > k and k € K such that
|h(x) — h(Z)| > €. In other words, there exists a subsequence {xy}7z of {z}k
such that |h(Z) — h(xg)| = |h(Z) — g(zk, 2)| > € for all k € K. Equivalently, for

every k € K, we have

hz) — g(zk, 21) > € or  g(aw, 21) — h(T) > e (5)
Combining Egs. and , we have

h(z) < g(xk,2) —€ forallk>kand k€ K. (6)

Let us denote by 2 the minimizer at 7, i.e., g(z, 2) = h(Z). By the continuity of
g, there exists some k£ > k and k € K such that

g(zk, 2) < h(z) + % forall k > k and k € K.

Together with Eq. (€]), this implies that g(zy,2) < h(xx), which is a contradic-
tion. Q.E.D.
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Let us define the function g(z,2) = 2’V f(z)z, with X = R" and Z = {z | |2| =
1}. By [Lemma 1, P. 30], we have that h(z) = min,cz g(x,2) is continu-
ous. Since h(z*) > 0, there exists some € such that h(x) > 0 for all x €
S(z*; ).

P. 30
Lemma (2, P. 30). Let h: R — R be a continuous function. We have

([ )

2

< /O (h(t))dt.

Proof. There holds

OS/J@UM—@%t:/lMU»%#—%/dmwﬁ+c?

0 0 0
By setting ¢ = fol h(t)dt, we obtain the desired inequality. Q.E.D.

Lemma (3, P. 30). Let g: R — R™ be a continuous function. We have

(A}wﬁy<éuwﬁ>ﬁézwbww

Proof. Let us denote by g;(t) the ith component of g(t). Then we have

([ o) ([ s =3 ([ awar)’

i=1

and . / o L 2d ) . . 2d
/0 o(t) g(t)dt = / > (o) ar =3 / (0:(0)) .

Applying [Lemma 2, P. 30] for each g; and summing over i, we obtain the desired
inequality. Q.E.D.

Applying first-order Taylor expansion to vector-valued function (see [P. 29]), we
have

Vf(ag) = / V2l + tag — )] (g — )b

vieo?=( [ lg<t>dt)/( / 1g<t>dt),

Clearly, we have

where



Applying [Lemma 3, P. 30], we have
1
Vi) < [ at/g(tds
0
1
:/0 (zf, — %) (V2 flz* + t(zf — x"‘)])z(m;C —z™)dt

1
S/ [?|zg — *|dt
0
=I?|z; — "%
A slight generalization is given as [Lemma 1, P. 83].

P. 30 Suppose there exists some & € S(z*;€) such that  # 2* and Vf(Z) = 0.
By mean value theorem, we have

Fa*) = F@) + (@ V[l + ala” — B D

for some « € (0,1), which implies that f(z*) > f(Z). On the other hand, we
also have
~ * 1 ~ * * ~ * ~ *
F(@) = f@) + 5@ = 2") V2" + B(@ — 2")](F - 27)
for some 8 € (0,1) so that f(z) > f(z*). This is a contradiction. As a result,
x* is the unique critical point within S(z*;é€).

Suppose now that xj does not converge to x*. Then there exists a subsequence
{21} i such that |z —2*| > € for all k € K and some € > 0. Since L is compact,
there exists a subsequence {z}}7 of {z;}x that is convergent. By assumption,
its limit, denoted by Z, belongs to L C S(z*; E) and is also a critical point.
Besides, ¥ is not z* since |z — 2*| > € for all k € K. This is a contradiction as
there is a unique critical point within S(z*;€).

P. 31

Lemma (1, P. 31). Let Ay, be a sequence of n by n symmetric matrices that con-
verges to 0. Consider the sequences {yr} and {2} defined as yp = min,|—; w' Arw
and zp = Max|y|—1 w’' Apw, respectively. There holds that y, — 0 and z, — 0.

Proof. Denote by afj the ijth element of Ax and by w; the ith element of a
vector w. Then we have

n n
< ZZ ‘afﬂ

i=1 j=1

|w' Apw| =

n n
k
> awiw;
i=1 j=1

3To see this, we note that the for all € L, we have |z — z*| < &/(1 + csI') < & where
the last inequality is due to ¢ > 0, s > 0, and I" > 0. As a result, if x € L, we have
|l —z*| <&/(1+ esI') < € which means L C S(z*;€).
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for all w with |w| = 1. Therefore, we have

n n n n
_szfﬂ <y < ZZ \afj|.
i=1j—1

i=1 j=1

Since Ay converges to 0, we have yx — 0. The convergence of {z;} can be
proven similarly. Q.E.D.

A formal definition of o(:) can be found in [NLP 3rd, P. 752]. Let us denote by
h(z,x*) the function o(|z — x*|). By mean-value theorem, we have

h(z,z*) = %(aﬁ - x*)’(sz[m* +a(z, ") (x —2z")] — sz(x*)) (x —z*),

where a(x,2*) € [0,1]. Let {xx} be a sequence such that z; — z*. We
have i

h(zg, 2*) = @wkz‘lkwk,
where Ay, = V2 f[z* +a(xy, %) (zp—2*)] - V2 f(2*) and wy, = (v, —2*) /|2 —2*).
Since f € C2, a(xy,z*) € [0,1], 71, — z*, and

|z* + a(zg, 2%)(zr — %) — 2¥| = a(zg, 27°)|zg — 27| < |ap — 27,

we have Ay converges to 0. Applying [Lemma 1, P. 31], we have wj Ajwy,
converges to 0, which means that h(xy,x*)/|z), — 2*|? converges to 0.

P. 32

Lemma (1, P. 32). Let \;, i = 1,2,...,n, be some positive real numbers so
that 0 <m < N\, < M,i=1,2,...,n, for some m and M. In addition, suppose
that some nonnegative real numbers a;, i = 1,2, ..., n, satisfy that Z?:l a; < 1.

There holds
n n a; (M —+ m)2
iAi ~— | < —.
(;a )(i—l Ai) AMm

Proof. Since 0 < m < \; < M for all i, we have (A\; —m)(M — ;) > 0, which is
A2 + Mm < \i(M + m). Dividing on both sides \;, we have \; + (Mm)/\; <
M + m. Multiplying on both sides a; and adding over i, we have

zn:ai)\i—kazn:%gM—f—m, (7)
i=1 i=1""

where the last inequality is due to that M +m > 0 and ZLI a; < 1.

Since for all real numbers u and v, we have 4uv < (u + v)?2, by setting u =
S aih and v =MmY." | a;/\;, we have

n n n n 2
a; Q;
4<;ai)\i> (Mmz_;/\> < <;ai)\i+Mm;)\i> : (8)
Combining Eqgs. (7) and (8), we get the desired inequality. Q.E.D.
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The following result is known as Kantorovich Inequality.

Lemma (2, P. 32). Let L be a positive definite symmetric n X n matriz. Then
for any vector y € R", y # 0, there holds
(y'y)? AMm

WInWL Ty ~ ML +m)P

Proof. Since L is symmetric and positive definite, there exists some orthogonal
matrix @ such that L = Q' DQ, where D is a diagonal matrix, with its diagonal
elements \;, i = 1,...,n, being the eigenvalues of L. Then we also have L™! =
Q'D7'D. Denote = Qy. Since Q is orthogonal, we have y'y = 4/ Q'Qy = z'x.
Moreover,

yLy*xDx*ZxQ)\z, v L ly=a'D" xfz—.

=1

where x; denotes the ith component of x. As a result, we have

(y'Ly)(y' L™ 1y) _ (s ziN) (Z?:l 3)%)
(y)* (X xi)2 .

By setting a; = 2?/(>_;_; ;), we obtain

(' Ly)(y'L™y) (Za )(ia)
A=

(y'y)?

Applying [Lemma 1, P. 32], we obtain

WLy 'L y) _ (M +m)?
Wy)? = 4Mm

which is equivalent to the desired inequality. Q.E.D.

P. 36 To see that DV f(xr) — 0, we note that

IV f ()| (DRV f () — [V2f(2%)] 7V f(a)

2 x\]—1
DV f(xp) = S| +[V2f(@*)] V(@)
As a result,
x x 2! x 1
DRV £ ()] < [V f ()| DV f(xx) — [V2f(a*)] VI k)‘+|[vgf(x*)] IV £ ()]

IV f (k)]
In view of Egs. (28) and (30) in [COLMM], we have DV f(x)) — 0.
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P. 36 Let us provide a detailed calculation for the value 7. Since Dgpr =
[VQf(x*)]_lpk + B, we have

(1= o)k D =(1 = o)} ([V2F ()] e+ )

=(1 = o)p}, [V2F(@)] " pr + (1 — o))

Since B converges to zero and {py} is bounded, we have (1 — o)p}. B converges
to 0. On the other hand, we have

%p;chvzf(fk)kak
1 2 N "2 /= 2 N
5 (721 e+ 6) V2@ ([V2 @] o+ )

o[V R @) [V i

BV @) [V @)] e+ 5BV @)
=S [V ] TR @) [V )] et

SV (V2 @) — V2 ) [92 1) it
SV @) [V 7 )] e 3BV

Applying [Lemma 1, P. 31] with A, = (VQf(ik) — V2f(:r*)), we can show
that

S IVA @] (VA ) — VA ) 925 o
Moreover, 3, V2 f () [V%‘(m*)]flpk — 0 and 38,V f(Zr)Br — 0. As a result,

we have v, — 0, where

e =g [V27@)] 7 (V2 f (@) — V21 @) [V2 ) et

_ 1 —1 1 _
BeV2 (@) [V2f(a)] pi + §Bl/cv2f(xk)ﬁk — (1= o)y, Br-
P. 37 We state and prove Taylor’s theorem for vector-valued functions, using
mean value theorem for scalar-valued functions.

Lemma (1, P. 37). Let g : R — R™ be a continuously differentiable function,
with its component functions denoted as g;, i = 1,...,m. For all x,& € R",
define h(z,%) = g(x) — g(Z) — [Vg(i)]/(:c — ). For every sequence {xy} such
that x, — &, we have h(xy,Z)/|xx — &| converges to 0.

Proof. Applying mean value theorem to ith component function g;, we have
9i(x) =gi(®) + Vg [# + i, &) (x — 7)] (¢ — &)
!
=0i(#) + Vu(@) (& = ) + (Voi [ + sl D)(w — )] = Vai(8)) (2 - B),

17



where a(z, Z) € [0,1]. Clearly, we have
/
hie,@) = (Vg3 + 0i(@,8) (@ = )] = Voi(d)) (@ = 3), i=1,...,m,
where h; is the component function of h. Let {xx} be a sequence such that

z — Z. Then we have T + a;(zg, Z)(zx — &) converges to T as a(zk, T) € [0, 1].
As a result, we have

\hi(zr, @) ‘ (ng‘ [Tk + o (2k, @) (2 — 7)) — Vgi(gﬁ)),(xk — j)‘

|.23k —53‘ |l‘k —i‘|
|Vl + aiton, D — 2] - Vi@l - )
|z — 7

=|Vgi[s + o, B)(ox — )] - Vail@)|,

which converges to 0 as k — oc. Q.E.D.
Note that we have §, = Si for all k. As a result,

DV f(zy) = [V2f(2*)] 'V f(xx) + [V f(@x) B (9)

By using [Lemma 1, P. 37] for the function V f, we have V f(z) = V2 f(2*) (2 —
x*) + h(zg, x*), where h(zy,z*)/|z) — 2*| converges to 0 as k — oco. Then we
have

[V2f(a*)] "'V f (@) = o — 2" + [VAf(x *)]71h(33k7x*)7
IV f(@n)Be = V2 f (") (xr — 2*) + h(wy, )| By
Using above two relations in Eq. @[), we obtain
DV f(xk) = mk—$*+[V2f(x*)]71h($k,$*)+|vgf(x*)(xk— ) +h(zg, )| B
Since xp41 — a* = 2, — a* — DV f(x)), we obtain
Tpp1 — T = —[VQf(x*)]_lh(xk,x*) — |V f (@) (@ — 2*) + h(zk, 2| B

As a result,

w1 =] < |[V27 @] 7" aar, @)+ 921 (@) | ok — 2] Bl + (s 2) 1Bl

P. 37

Lemma (2, P. 37). Suppose that { Dy} is a sequence of n by n positive definite
symmetric matrices, {gr} is a sequence of n-dimensional vectors with g, # 0
for all k, and H be a positive definite matriz. Then we have

D, — H!
o 1D = H )
k—oo |9k |

|(Dy ' — H) Dyl
| Dy k|

=0 f and only if klim =0.
—00
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Proof. We first prove the only if part. We first note the following equalities
hold:

(D' — H)Dygi, = gr — HDygr, = H(H ' gy — Dige) = H(H™" — D) gx. (10)

Then we have

(D' — H)Dygi| :|H(EF1 — Dy.)gx| < |H| |(Dr — H 1) gy
| Dr.g| | Dy.gi| - | Drgi (11)
—|H| |(Dr — H™Y)gi| gl
|9k | |Drgr|’

where the first equality is due to Eq. . Since Dy.gr, = H 'gp+(Dr.—H Y)gs,
we have
[Drge| _|H " gi + (Dx — H ') gil S |H "gr|  |(Dx — H ")gs|
|9k |9 gkl |9k
|(Dx = H V)i

|gk|

>my —

)

where m; is the smallest eigenvalue of H~!, which is positive. Since |(Dj —
HYgx|/|gx| — 0, there exists some k such that |[(Dy — H™Y)gr|/|gx| < m1/2
for all £ > k. As a result, |Dygr|/|gr| > m1/2 for all k > k, or equivalently,
lgk|/|Drgr| < 2/my. Together with Eq. (11]), we obtain

(D' — H)Dygy|
| Dy k|

(Dy —H Ygi| 2
|9k mi

§|H|| for all k > k.

Taking limit on both sides concludes this part of the proof.
As for the if part, we note that

(Dx = H™Y)gp = H™(HDxgr — gr) = H™'(H — D;;") Diga.
Using this equality similarly as the preceding part, we have

|(Dx = H~)gi|
9]

|(Dy' — H)Dygr| | Drgxl
| Dkl |9k

<|H™'|

Using the equality g = HDygy + (D,;1 — H)Dygy, we can show, similarly as
preceding part, that for some k, there holds |gk|/|Drgr| < 2/mq for all k > k,
where mq is the smallest eigenvalue of H. We can then proceed and prove the
if part similarly. Q.E.D.

P. 42

Lemma (1, P. 42). Let {Ax} be a sequence of n by n invertible matrices, whose
limit A is also invertible. Then the sequence {A; '} converges to A™'.
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Proof. Denote by dj, the determinant of A and by By, the cofactor matrix of Ag.
Then we have d, — d and B — B, where d and B denote the determinant and
the cofactor matrix of A, respectively. According to the formulas of determinant
and cofactor matrix, we have d, — d and B, — B. Since A,:l = By /dy and
A~! = B'/d, we obtain that {A; '} converges to A~L. Q.E.D.

Define as d the function such that d(z) is the determinant of matrix Vg(z).
Since g € C! and Vg(z*) is invertible, we have d € C! and d(z*) # 0. As a
result, there exists some § € (0, €) such that d(z) # 0 for all x € S(z*;¢), which
implies that [Vg(x)] ™! exists for all z € S(z*;d). [Lemma 1, P. 42] can be used
to show that [Vg(:v)]*l is continuous.

P. 42 Define h(t {Vg xg) —Vglz*—t(xp—a* }/ (g —x* Applying [Lemma
/

3, P. 30] using h in place of g, we have (fo )dt) (fo t)dt) < fo "h(t)dt.
Equivalently, we have

1 2
‘ ; {Vg(ar) — Vglz* + t(zr — x*)]}/(a:k —2*)dt

{Vy(zi) — Vgla* + t(zx — x*)]}/(a:k - 1:*)|2dt.

Then the inequality follows as [{Vg(zx)' — Vglz* + t(z) — x*)]}/(a:k —a%)| <
V(i) = Vglo* + t(wr — 2*)][|(zr — 2%)]-

P. 43

Lemma (1, P. 43). Let f : R" — R™ be a continuous function and suppose
that {x} C R™ is a convergent sequence with its limit denoted by x*. Then the
sequence {yr} C R converges to 0, where

Y = max £ (@) = f(z")].

te{z||z—a*|<|op—z*|}

Proof. Suppose otherwise. Then there exists a subsequence {y;}x such that
yr > € for some € > 0. From the definition of y, for every k¥ € K, there
exists some Ty, € {z| |z — 2*| < |z — x*|} such that |f(Zy) — f(z*)| > e. This
contradicts with the continuity of f as Zj also converges to x*, in view of that
|Z — o*| < |z — ¥ Q.E.D.

Applying [Lemma 1, P. 43] with Vg as f, and since

|Vg(xr) — Vg[z* + t(x), — 2*)]|
<|Vg(ax) — Vg(z*)

(zx — 2%)] = Vg(a™)| < 2y

for all ¢ € [0, 1], we have the sequence z; converges to 0, where z;, = fol |Vg(xk) —
Vyla* + t(zy, — z*)]|dt < 2ys.

20



P. 43 Let y be n?-dimensional vectors, and denote by y; the n dimensional
vector formed by the [(i — 1)n + 1]th to (in)th elements of y. Consider the
function

hy) = [Var 1) - Vguyn)] [Var 1) .. Vgalyn)].

Since Vg(x*) is invertible, then h(y*) is positive definite, where y = a* for
all 4. Applying [Lemma 1, P. 30] by considering z'h(y)z, we have that there
exists some § > 0 such that minj,— 2'h(y)z > 0 for all y € S(y*;0). Setting

81 = 6/y/n, we have

Z |Z; —x*|> < Z |z —x*|? < 6% for all z € S(z*;6,).
i=1 i=1

As a result, we have Vg(Z)Vg(Z) = h(g) being positive definite, where g; =
T;.

P. 47 See footnote in [COLMM P. 63] for the definition of O(-).

P. 51 We discuss some properties of the Gram-Schmidt procedure. Suppose that

&o,--.,& € N™, where i < n — 1 are some vectors and @ is a positive definite
symmetric matrix. The Gram-Schmidt procedure starts by setting
do = &o- (12)
At jth iteration, where j = 1,...,4, we compute d; as
7j—1
dj =§ + chkdka (13)
k=0
where
cjr = —&;Qdy /(4 Qdy), k=0,....5—1 (14)

Lemma (1, P.51). Let&y,...,& be some vectors in R™. Suppose that &, ..., &i—1
are linearly independent.

(a) The Gram-Schmidt procedure (12))-(14) are well-defined in the sense that
the vectors dgy, . ..,d;_1 are nonzero.

(b) The vectors dy, . ..,d;—1 are linearly independent.

(c) A wvector v saz?isﬁes v = Z;;g o for some oy, 5 =0,...,9—1, if and
only if v = Z;;E a;d; for some &;, j=0,...,i—1.

(d) A vector v satisfies v'{; =0 for all j =0,...,i—1, if and only if v'd; =0
forallj=0,...,i—1.

Proof. (a) We show that d; # 0 for j = 0,1...,% — 1 by induction. Clearly,
do = & # 0. Suppose that dy,...,d;—1 are nonzero. The formulas for c;;, k =
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0,1...,5—1, are well-defined (since dj,Qdj, # 0) so that d; is well-defined. To see
that d; is nonzero, we note that the vector Zi;é ¢jkdy is a linear combination
of the vectors &o,...,§;—1. Therefore, d; = 0 would imply that &,...,§; are
linearly dependent.

(b) Since the Gram-Schmidt procedure (12)-(14) are well-defined, we can write
d; = chzo br &k for some coefficients by;, K = 0,1,...,j, where b;; = 1. Con-
sider the 4 by 4 upper triangular matrix B defined as

boo bor -+ bo-1)

bir - bi(i-1)
B = . . : (15)

bii-1)(i-1)

which is invertible as its diagonal elements are unity. Suppose there exists
some fo,...,H;_1, not all zero, such that Z;;}) Bjd; = 0, then we must have
Z;;E B;&; = 0, where the vector [By ... Bi—1] is given by [Bo ... Bi—1] =
B~ YAy ... Bi_1]’, which is a nonzero vector. This can not be true as &, ..., &1

are linearly independent.
(c) Using the matrix B defined in Eq. , we have [ag ... @;—1]' = B ag ... a;_1].

(d) If v satisfies v'§; =0 for all j =0,...,7 — 1, then v'd; = Zi:o br; V& =0
for j = 0,...,5 — 1. Conversely, applying part (c), we have that the vectors
&o,...,&_1 can be written as linear combinations of dy,...,d;—_1 and the con-
clusion follows similarly. Q.E.D.

Lemma (2, P. 51). Consider the Gram-Schmidt procedure —. Let &g, ..., &

be some vectors in R". Suppose that &, ..., &1 are linearly independent, and
there exists some g, ...,q;—1 such that & = Z;;E a;&;. Then we have d; = 0.

Proof. Using the matrix B defined in Eq. , we have &; = Z;;B a;d;, where
[5[0 . 541’—1]/ = Bil[ao Oli—l]/- As a result, d; = Z;;é Eijdj, where Cij =
a; + ¢;5. Then we have

i—1 i—1
d\Qd; = d\Q ( > aijdj) = &;dQd; =0,
j=0 j=0

where the last equality is due to the construction rule of d;. Since @ is positive
definite, we have that d; is zero. Q.E.D.

Note that a special case of [Lemma 2, P. 51] is where & = 0, where we also have
d; = 0.

P. 52
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Lemma (1, P. 52). Let go,...,g; be some nonzero vectors such that go, ..., gi—1
are linearly independent. Then go,...,g; are linearly dependent if and only if
there exists some v, ...,a;_1, not all zero, such that g; = Z;;g 0.

Proof. The if part is obvious. To see the only if part, assume that gg,...,g; is
linearly dependent. Then there exists some §;, j = 0,...,%, not all zero, such
that Z;:o Bjg; = 0. We must have 3; # 0 as otherwise it implies that go,...,9:
are linearly dependent. We obtain the coefficients by setting a; = —5;/0i,
j=0,...,i—1. Q.E.D.

Lemma (2, P. 52). Let go, ..., g; be some nonzero vectors such that go, . .., gi—1
are linearly independent. If gig; = 0 for j = 0,...,i — 1, then go,...,g; are
linearly independent.

Proof. Assume that go, ..., g; are linearly dependent. By [Lemma 1, P. 52|, we
i—1 L
have g; = =0 @95 for some «ag,...,a;_1, not all zero. However, this implies

g9ig9; = Z;;E a;9;g9; = 0, which contradicts with g; being nonzero. Q.E.D.

Lemma (3, P. 52). Starting with go # 0, let go, ..., gi, i < n—1, be the vectors
computed by the conjugate gradient method such that they are all nonzero. Then
these vectors are linearly independent and the vectors dy, . ..,d; are nonzero.

Proof. We prove the statement by applying the conditions g; # 0 one at a time.
By construction, we have dy = —go # 0, and ¢{do = —gjgo = 0. Since g; # 0,
this implies that gg, g1 are linearly independent. According to [Lemma 1(a), P.
51], this means that d; is nonzero.

Next, we apply the condition go # 0. By [COLMM Prop. 1.18, P. 50], we
have g5d; = 0 for j = 0,1. According to [Lemma 1(d), P. 51], this implies that
g59; =0 for j = 0,1. Since we have shown that go, g1 are linearly independent,
applying [Lemma 2, P. 52], we obtain that gg, g1, g2 are linearly independent
and ds is nonzero.

We can proceed similarly to gg,...,g: @ <n— 1. Q.E.D.
Lemma (4, P. 52). Starting with go # 0, let go, ..., gi, i < n—1, be the vectors
computed by the conjugate gradient method such that they are all nonzero. Then

corresponding stepsize parameters g, ..., q; are positive.

Proof. According to [Lemma 3, P. 52|, the vectors dp,...,d; are nonzero. By
construction of the conjugate gradient method, we have

(2 —‘r()ékdk)/Qdk =0, k=0,...,1i.
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Since dj,Qd > 0, the stepsize aj being positive is equivalent to z)Qd, < 0,
k=0,...,i. Indeed, for every k,

23.Qdy, = grdi = gp(—gk + Bedi—1) = —|gkl*,

where the formula for dj, is given by [COLMM Eq. (63), P. 52]. Since g # 0,
we conclude the proof. Q.E.D.

From above discussion, it can be seen that if g # 0, we have

_lowl?
d;, Qd,

g

P. 53 This can be verified by checking the conditions stated in [COLMM
Prop. 1.18, P. 50].

P. 54 In what follows, we show that Qz, ..., Q¥ 'z, span the same subspace
as do,...,dk.

Lemma (1, P. 54). Let vg,...,v; € R" be some vectors, where i <n — 1, and
90 - - -, gi € R™ be some vectors such that g; = > ._ ak;Vk, for some coefficients
agj, j = 0,...,1. If the vectors go,...,g; are linearly independent, then the
matriz A is invertible, where

apgo Go1r - Qoq
alp ainn - Qi
A =

a0 Qi1 v Qg
Moreover, the vectors vy, . ..,v; are also linearly independent and span the same
subspace as the vectors gg, ..., g;-
Proof. Suppose that A is not invertible. Then there exists some ay,...,a;,
not all zero, such that Afag ... ;)" = 0. As a result, we have >°'_,a;g; =
[vg ... v]Alawg ... o] = 0, which contradicts with the fact that go,...,g; are

linearly independent. Therefore, A is invertible.

Suppose that there exists some Sy, . .., 3;, not all zero, such that Z;ZO Bjv; = 0.
Then we have Z;:O ngj = 0, where [BO . BZ]/ = A_l[ﬁo . ﬂz]/ 7é 0.
This contradicts with the fact that gg,...,g; are linearly independent. The

remaining part of the proof can be established by using the fact that A is
invertible. Q.E.D.

Lemma (2, P. 54). Starting with go = Qxo # 0, let go,-..,g;, be the vectors

computed by the conjugate gradient method such that they are all nonzero. Let
do, . ..,d; be the corresponding Q-conjugate vectors.
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(a) For j =0,...,i, we have

J J
9= ar;Q" o, dj =D by Q M wy, fork=0,....5  (16)
k=0 k=0

where ap; and by, k=0,...,7, are some coefficients.

(b) The upper-triangular matrices A and B are invertible, where

ago @o1 - Qo boo bor -+ boi
aipg ccoai bir -+ by
A= . .|, B= .
(077 bn
(c) The vectors Qxo,...,Q"  zg are linearly independent. Moreover, they
span the same subspace as the vectors dg, ... ,d;.

Proof. (a) We show that Eq. holds by induction. Clearly, for j = 0, we
have g9 = Qxg and dy = —Qxg. Suppose next that Eq. holds for j = /.
Then for j = ¢+ 1, we have

Gor1 = Q(xg + apdy) = Qe + Qdy = go + 0 Qdy.

Then the induction hypothesis yields

14

g1 = apeQxo + b Qg + Z(er + ab(—1)0) Q" o (17)
k=1

Similarly, we can show it holds for dyy1, as dgy1 = —ge+1 + Be+1de for some
Bes1; cf. [COLMM Eq. (63), P. 52].

(b) Since go, . . ., g; are nonzero, then by [Lemma 3, P. 52], we have that go, ..., g;
are linearly independent. Applying [Lemma 1, P. 54] by setting v; = Qi lay,
we have that A is invertible. Similarly, we have that B is invertible.

(¢) As argued in part (b), we have that go, ..., g; are linearly independent. The
linear independence of Qxy, ..., Q" lxy follows by applying [Lemma 1, P. 54]
with v; = Q9*1x. Moreover, we have that the vectors Qo, ..., Q" zy span
the same subspace as gg,..., ;. Since gg,...,g; and dy,...,d; span the same
subspace, cf. [Lemma 1(c), P. 51], we have that Qxy, ..., Q" xq span the same
subspace as dy, ..., d;. Q.E.D.

From above discussion, we can also show that the stepsize parameters ag, ..., q;_1
are nonzero; cf. [Lemma 4, P. 52]. Indeed, by the definition of gy, we have

ago = 1. From Eq. 7 we have that, for j = 1,...,4, aj; = a;_1bi_1)(j—1)-

Since A is invertible and upper triangular, we have that a;_1b;_1);j—1) # 0,

which implies that o;_1 #0, j=1...,4.
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P. 59 We provide a detailed derivation of quasi-Newton update formulas, as-
suming the related matrix inversions exist. We start with the DFP formula,
which directly computes the approximation of the inverse of the Hessian. In
particular, DFP computes the positive definite matrix Dy such that

Dy y1qr = pr, (18)

where pp = g1 — x and g = Vf(zr11) — Vf(zg). By contrast, BFGS
formula is derived by computing directly the approximation of Hessian Hy41
such that

qk = Hy1pk-
The corresponding matrix Dy in BFGS is obtained via inversion of Hy.1.

For the DFP formula, since D41 is symmetric, we consider the candidate that
takes the form

Dyy1 = Dy, + arpip), + BeDrqrqy, Di.-
Multiplying on both sides g, we obtain
Diy1qr = Drgr + arpepidr + BrDrdrdi Dige.-
We obtain the equality by setting oy and By as
1 1
:@) k:_%Dqu.

A

As a result, we obtain the DFP update equation

piPy  Drarq) Dy

Dyy1 =Dy +
* Pk 4. Drar

(19)

Repeating the computation with Hy, Hyy1 in place of Dy, Diy1, pr and g in
place of ¢ and pg, we obtain the following equation:

arq,  HipepyHe

Prae  PpHipk

Hyy1 = Hp +

We will compute the inversion of the matrix Hy41, using the Sherman-Morrison
formula, on which we provide a brief discussion.

Lemma (1, P. 59). Let A be an n by n invertible matriz and u,v € R™ be some
vectors. The matriz A+ wv' is invertible if and only if 1 +v' A= u # 0.

Proof. The following matrix identity holds:

I 0] [IT+Atu A lu I o] I Ay
v 1 0 1 —v' 1 T 0 14+vA |’

where I is the identity matrix of suitable dimension. Taking determinant on
both sides, we have that the determinant of the matrix I + A~ 'uv’ equals to
1+ v A7 . Since I + A7 'uwv’ = A7 (A + w’), the determinant of A + uv’ is
nonzero if and only if 1+ v’ A~ 1u # 0. Q.E.D.
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The following is the Sherman-Morrison formula. Its proof can be obtained by
verifying the matrix identity.

Lemma (2, P. 59). Let A be an n by n invertible matriz and u,v € R™ be some
vectors. If 1 +v' A7 u # 0, we have

Ay’ AT
A Nl=pt - 20
(A+ur') 1+v A1y (20)
Let us return to the derivation of BFGS. We have
Hyp1 = Hyi + viaray, + 51 Hiprpy Hy, (21)
where
1 1
k = ) R = — .
E Dk Pl Hipr

We will apply Eq. twice, first by treating the matrix Hy + vrqrq), as the
matrix A, and then compute the inversion of the matrix Hj +v,qrq), by treating
Hy as A. Note that we cannot treat Hy + ki Hipip) Hy as the matrix A in
Eq. (20). This is because 1 + #yp} Hy,(H, ') Hypr = 0, and therefore it is not
invertible; cf. [Lemma 1, P. 59].

Applying Eq. to with the matrix Hj + vyiqrg), in place of A, we
have

(Hi + veaeq),) ™ ke Heprp), Hi (Hy + Yrargy,) "
1+ kpl, Hy(Hi + veaiq),) ~  Hipr

Hi !y = (He +warqr) " —
(22)
Similarly, applying Eq. to (Hy + vkqrq),) ", we have

H 'veaeg, Hy '
H, + I = o W e L ey 923
(Hy + :qxq5) k T+ g H g (23)

Next, we address the fraction term in . Applying Eq. to the denomi-
nator in Eq. , we obtain

1+ kypl Hi(Hi + earq),) " Hepr
1 Hi'veaqwg Hy'
=1+ rypl He | Hy' — k%k_lk Hy.py,
1+ veq, Hy “qr

KDy Yk Ak q), Pl

=1+ kppp Hipr — HW]—’H_lqk
[R=y3

KDk
L+ veq, Hy '’

in view of the values of v, and k.
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We next simplify the term (Hy + qukq;c)_lHkpk appeared in the numerator in
Eq. , which reads

(Hy + vear i)~ Hypr,
o Hi'veawq, Hy '
— Hk 1 7k . k_lk Hkpk
1+ 'quka qk
H ' Y1q1q,.px

=Pk — —
L+ g, Hy i
—pp, — ch_—lqk
1+ g Hy L
hy

g H g

where h = (1 + vkq;Hglqk)pk — H,;lqk. Together with the preceding calcula-
tion, we can simplify the fractional term in Eq. as follows:

(Hi + vraray) ™ cuHipepl i (Hy + veqeq),) "
1+ kpp), He(Hy + veqrq;,) ~ Hipr

_ Kihih, L+ g, Hy Mg
(L+vq, Hy, 'qp)? —RrDidr
hil,

Phae(1+ ved, Hy "ar)
— — — _ li
(L 4+ veap Hy Mar)pe — Hy Man) (1 + vea Hy 'ae)pr — Hy, ai)
Phae(l+ved, Hy "ax)

Applying the preceding equation and Eq. into and by setting Dy41 =
Hk__:l and Dy, = Hk_l, we have

Dy1
’ ’ / !
Diykard,De (1 + @ Drar)pk — Diar) (1 + veq) Drar)pr — Drar)
. —
L+ v q;, Drqr Pk (1 4+ g, Drqr)

—Drgrqy, Dy, + (1 4 4, Dear)pe — Diar) (1 + v1a), Diqr)pr — Dka)/
Pk (1 + q;, Drar)

:Dk+

=Dy + Vean(l+ iqul)qu) (= Drqrai Dy + (1 + Wai Drar)*prpi—
(1 + V£ q, Drar) Dearpi — (1 4 Y@ Diai)Peqi Dk + Diqrd), Di)
(1 + @, Drar)*pipl, — (1 + @, Drar) Deqip), — (1 + 4, Drar )prq), D
Pk (1 + g, Drar)
_p, 1 OF quL/Dqu)pkpz _ Drarpj, + Pra D
Pk Plax

:Dk‘+
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In view of v, = 1/p}.qr, we have

Py | (@ Drar)pepy,  Drarpl + pra D (24)
Pk (Prar)? Pk

Equation is the BFGS update given in [NLP Ex2.2.2, P. 145].

Dyt =Dy +

To obtain [COLMM Eq. (80), P. 59], we focus on the term % -
k
Draipi+Pidy Di I’)“,J:;: 96Dk 1 forming a quadratic form as
Tk

(9: Drar)pip),  Drawpl + pedi Dk
(Phar)? Pk

PrD) Dyqrp), + prq,, Dx
:(q;chqk) i E 5 7 k ’ .
(P).ax) (¢, Drar) (Pr.ar)

(Phar)® (0. Drae)0hae) (0. Drae)(0hae) (6. Drar)?  (¢.Drar)?

/
I +(quDeg) [ 2 - Diqn P Draw
4}, Dr.ar. k vhar  4.Drar ) \ Phar  quDrax

Therefore, we obtain the BFGS formula

!
/ /
oDy Drarg,Dr Dk Dyqx Dk Dyqx
Dyi1 = Di+ - +(qx Drar) - - .
viae 4 Drae " Piae  dpDwar ) \ Phax  q,Drax

o PED), Dyqrpy, ey Dr Dyarq;. Dy Drqrq), Dk
=(q,Drar)

Together with the DFP update given in Eq. , the class of updating formula
can be written as

!
pkPe  Drara),Di pr Dra Pk Drqr
Dyy1 = Dy+—E— B2+ C(q Drar) ,

Piak G Drak Dk a @, Drar ) \ plar a 4. Diqr
(25)
where 0 < (i < 1.

Alternatively, starting with Eq. we can also group together the terms Dy, +
(¢ Drar)pip),  Drarpi+prg,

Dy, . . .
W)’ T by using the following identity

(9t Drar)prpl, = pi(@: Drar )Pk = Prai Drarpl, = (a)) Dr(axpl,),
as ¢y, Dyqy is a scalar. Together with v, = 1/(p},qr), we obtain

Dy + (9: Drar)pip),  Drarp) + Py D
(Phax)? Pk
=Dy, + 77 (akpk) Di(arpy,) — W Dr(api) — i (qrpy) Di
=Dy (I — ylarpt)) + v (axph) Dr (v(arpi) — I)
=(I = ye(axpk)") Di (I = v (arpy))

=(I — vkarpi) Di(I — Vkqipy,)-
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In view of Eq. , we obtain

/ ! / /
D= (71— (Il/cpk D 1— (II/cPk- + pfpk'
Prak Pr4k Prak

This formula is used for the derivation of L-BFGS; see [NLP Ex2.2.3, P. 145].

P. 60 It is implicitly required here that o > 0, and it has been stated in
the first paragraph in [COLMM Section 1.3.5, P. 59]. The proof also uses
this condition. Indeed, from Vf(zy)'d # Vf(xg41)'d, we have xp # g1,
which implies that ap # 0. Together with ap > 0, we have ap > 0. In
addition, pj.gr = ard,[V f(zk+1—V f(xy)]. Together with o > 0, the condition
Vf(zr)'dy <V f(xr+1) di implies that pj.gr > 0.

P. 61

Lemma (1, P. 61). Consider the quasi-Newton algorithm applied to minimiza-
tion of the positive definite quadratic function f(x) = %x’Qx, where Q) 1s positive
definite. Suppose that Dy, is positive definite, V f(xy) # 0, and the stepsize
is chosen by

flag + apzy) = main fzr + azxy). (26)

Then ay, > 0, and Dy41 given by Eq. is well-defined and positive definite.

Note that although «j selected according to Eq. satisfies the condition
Vi(xg)de < Vf(xgs1)'di used in [COLMM Prop. 1.20, P. 60], we cannot
apply [COLMM Prop. 1.20, P. 60] here to assert that Dy is positive definite.
This is because that it is implicitly required in [COLMM Prop. 1.20, P. 60]
that o > 0, and the proof of [COLMM Prop. 1.20, P. 60] also relies on this
condition; see [P. 60]. Yet, o, > 0 is something we aim to show here.

Proof. Since V f(zy) # 0, we have x # 0. Since oy is defined according to
Eq. , we have (zj + agdy)' Qdy, = 0. Expanding the term dp = —DQuxy,
we obtain
ax 2, QDLQ Dy = 23,Q DQxy,.

Therefore, we have ay > 0. This implies that ¢ = apQdy # 0. In view that
Pk = axdy, we have g p, = aidedk > 0. Therefore, Dy given by Eq.
is well-defined. The proof for Dj; being positive definite is identical to the
corresponding part in the proof of [COLMM Prop. 1.20, P. 60]. Q.E.D.

Since none of the vectors xg, ..., z,—1 is optimal, repeatedly applying [Lemma
1, P. 61], we have that starting from a positive definite matrix Dy, the stepsizes
ag,...,0,_1 are positive, and the matrices Dy,...,D,, are positive definite.
Moreover, we have pg ..., p,_1 are nonzero, as «g,. .., ,_1 are positive.

In what follows, we provide somewhat more direct arguments to show that
d;Qd; =0, 0<i<j<k k=1,....n—-1 (27)
Dg119; = pis 0<i<k k=0,...,n—1 (28)
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which follows closely those given in the proof for [COLMM Prop. 1.21, P. 61].
First, for k =0,...,n — 1, we have Dj11q; = py as shown in [COLMM P. 61].
In view that pr = apdy and Qpr = qi, we have

Dk+1Qdk :dk, k:O,...,nf 1. (29)
Therefore, for kK =1,...,n — 1, we have

d,Qdy—1 = =2, QD Qdr—1 = —x,Qdp—1 =0,

where the second to last equality is due to Eq. and the last equality is due
to that V f(x) dp—1 = 0. Moreover, the above two derivations yield

PLQPr—1 = Pik—1 = GPi—1 = ¢ Drae—1 =0, k=1,...,n—1. (30)

The above arguments have shown that Eq. holds for £ = 1 and Eq.
holds for k£ = 0. To show that Eq. holds for k = 1, we only need to show
that Dsqo = pg. This can be shown by using Eq. with £ = 1.

Then we can continue with induction, assuming that Egs. and hold
for k, where k¥ < n — 2. From induction hypothesis, we have Dy 1Qd; =
Dy11Qpi/a; = pi/a; = d;, 0 < i < k. Therefore,

er1Qdi = =23, 1QDp1Qd; = —x11Qd; = —(Tip1+ip1dip1+- - Fardy)Qd;.

By induction hypothesis, we have (c;11d;+1 + -+ + agdr)Qd; = 0. Moreover,
2i+1Qd; due to a; is computed via minimizing rule. Therefore, we show Eq.
for k + 1. Consequently, we also have

Prs1@Pi = Piosr1@i = Qpi1Pi = Qg1 Dr1: =0, 0 <i <k, (31)

where in the third equality, we used induction hypothesis Dyi1¢; = p;. Then
Dy12q; = p; can be shown by using the equalities given in Eq. , as is given
in [COLMM P. 62].

As the last step of derivation, we have D,,Qp; = p;, i = 0,...,n — 1, and the
vectors po, - ..,Pn—1 are @-conjugate, thus linearly independent. This implies
that D,Quv = v for all v € R™. Applying following lemma, we have D, =
Q"

Lemma (2, P. 61). Let A be an n by n matriz such that Av = v for allv € ™.
Then A is the identity matrix.

Proof. Since Av = v, then (I — A)v = 0 for all v. We can consider v =
e;, where e; is the vector that has i¢th component being 1 and 0 otherwise.
Then (I — A)e; = 0 shows that the ith column of A is e;. This concludes the
proof. Q.E.D.

P. 62
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Lemma (1, P. 62). Suppose that the vectors dy,...,dr € R"™ are linearly in-
dependent and the n by n matriz Q is positive definite. Then the matriz R is
positive definite, where

doQdy d1Qdy ---  d;.Qdo

| 4Qdo HiQdy -+ diQdy

d.Qdy d.Qdv -+ d;.Qdy

Proof. Consider the vector a = [ag a1 ... ;). We have

k& k ! k
a’Ra = Z Z OziOéjd;de = <Z aidi> Q ( Z Oél‘di> .
i=0 j=0 i=0 i=0

However, since do, . ..,d; € R™ are linearly independent and @ is positive defi-
nite, (Zf:o aidi)’Q(ZfZO a;d;) =0 if and only if g = a3 = --- = o, = 0 and
positive otherwise. Therefore, matrix R is positive definite. Q.E.D.

Lemma (2, P. 62). Suppose that the vectors dg, . ..,d; € R™ are linearly inde-
pendent, xog € R™ is some vector, and Q is an n by n positive definite matrix.

Then the function f(x) = %x'Qx admits a unique minimizer on the manifold
M defined as

M:{z|z:x0+a0d0+a1d1+~~+akdk, Qpy ..., O GéR}
Proof. First, we show that f attains a minimum in M. Indeed, we have

inf f(z) = inf f(2),

where C' = M N{z]| f(z) < f(xo)}. Since the set C is compact, f attains a
minimum on C', which also belongs to M.

Suppose that z* = z¢ + Zf:() ofd; attains the minimum. Then it satisfies the

first order necessary condition, which states
dstoaé + dlleoa’{ + -+ d%Qdan
dyQdoogy + d1Qdrof + - - + d}.Qd

—dy Qo
_d/l Q!L‘O

The above equation can be written in a compact form as Ra* = b, where
a* =lof -+ of) and b = [—dyQzo — d1Qzo -+ — dj,Qxo)’, and R is given
as in [Lemma 1, P. 62]. Since by [Lemma 1, P. 62], R is positive definite, thus
invertible. The necessary condition uniquely define a*. Q.E.D.
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Lemma (3, P. 62). Starting with Dy = I, let xg ...,z and dy, ..., dy be the se-
quences generated by the quasi-Newton algorithm applied to minimization of the
positive definite quadratic function f(x) = %x'Qx, where Q is positive definite.
Suppose that the stepsize «; is chosen by

f(zi + agri) = min f(z; + az;).

Assume further that xg, ...,z are not optimal.
(a) Fori=0,... k, there exists scalars ,Bl?j and b} such that
ii
Di=T+Y Y BV I(@)Vf(x;), (32)
£=0 j=0
di =) UV f(x0). (33)
£=0

(b) Fori=0,...,k, we have M; = M;, where

M; ={z|z=x0 + %V f(xo) + - +%uVf(zi), v0,...,7 €N},
M; = {z|z =z +v0do + - +Yidi, Y0,---,7 € R}.

(¢) Starting with &g = xg, let Zg..., T be the sequences generated by the
conjugate gradient methods. We have ; = x;, 1 =0,..., k.
Proof. (a) Since x, ...,z are not optimal, then Dy, ..., Dy are well-defined ac-

cording to [Lemma 1, P. 61]. We show Eqs. and together by induction.
Clearly they hold for i = 0 since Dy = I and dy = —DoV f(x0) = =V f(z0).
Suppose that they hold for ¢. Then to show Eq. holds for D;;1, we
check the terms p; and D;q; appeared in Eq. . Clearly, p; = «;d;, where
di = > p_obiV f(zy), according to induction hypothesis. Similarly, D;q; =
I+>_ Z;’:O Bi;V @)V f(x;))[Vf(2is1) = Vf(x:)]. Therefore, Dty can
be written as the form given by Eq. . Since djy1 = —Dij1 1V f(xi41). we
have Eq. holds for ¢ + 1.

(b) From part (a), we have that dyp, £ = 0,...,4, are linear combinations of
Vf(xe), € = 0,...,i. From [COLMM Prop. 1.21(a), P. 61], the vectors dy,
£ =0,...,i are linearly independent. Then by [Lemma 1, P. 54], the vectors

Vf(ze), £ =0,...,i7 are also linearly independent, and span the same space as
de, 0=0,....1.
(¢) We will show that the vectors &g ..., &) are well-defined and &; = x;, i =

0,...,k, simultaneously by induction. To this end, denote by cfo . ,(fk the Q-
conjugate vectors computed via the conjugate gradient method. In addition, we
define the manifolds M; as

Mi:{Z‘Z:i'O“F’YOCZO“"'""’Yidia Yo, -+, € RN}
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If Zg,...,4; are nonoptimal, by [Lemma 3, P. 52|, Vf(&o),..., Vf(&;) are lin-
early independent. Moreover, by [Lemma 1, P. 51], we have

M; = {z|z =20+ %V f(Z0) + -+ %V (&), Y0,-..,7% € R}.

We will show by induction that M; = M;. Then by [Lemma 2, P. 62], #;,, =
Lit+1-

Since we have &g = xg, dy = dy is nonzero, and My = Mj. As a result, we have
Z1 = x1. Moreover, d; is well-defined and is nonzero. Suppose that ; = x;,

J =0,...,1, where : < k — 1. Therefore, d; is well-defined and nonzero, and
Mi = Mi~ By [Lemma 2, P. 62], ji+1 = Ti41- QED

P. 63 Conjugate gradient method computes dy = —gx + Brdr_1, where [ =
lgx)?/|gr—1|? requires 2n + 1 multiplications.

P. 64 Considering computing Dy via Eq. (25)). Computing pyp), requires n?
multiplications, and p}.qx n multiplications. Computing first Dygy requires n?
multiplications, then computing Dyqrq, D, requires another n? multiplications.
Proceeding similarly, we can see that computing D41 requires no more than
Mn? multiplications, where M is some constant.

P. 64 In Newton’s method, once Cholesky factorization for V2 f(zy) is ob-
tained, i.e., V2 f(zy) = LyL}, computing dj via solving the equation Ly L} dy =
—V f(z1) requires n? 4+ n multiplication. To see this, we first solve L} dj, which
requires n(n + 1)/2 multiplications. Then we solve di, which also requires
n(n + 1)/2 multiplications.

P.65 We first quantify the approximation error of forward difference formula
for computing df(x)/dz", assuming f € C2. First, we note that df(z)/dx =
Vf(z)'e;, where e; is the ith column of the identity matrix. By mean value
theorem, we have

f(z+he;) = f(x) + hVf(x) e; + %hzegvzf(x + oz, x + hei)he;)ei,  (34)

where a(x,x + he;) € [0,1], which depends on = and z + he;. Then we have
that

(/W) (@ + hei) = J(@)] = 0F(2)/02" = Sho(w +ale,w + heohes),
where g(z) = 0 f(x)/0x'0x'. Let {hy} C R be a sequence such that h, — 0

as £ — oo. Then the sequence {g;} is bounded by some value M, where g,
g(x +a(z,z+ hgei)hgei).

Next, we quantify the approximation error of the central difference formula,
assuming f € C2. By mean value theorem, we also have

flx —he;)) = f(x) — hV f(z) e; + %h2e;V2f(a: — o,z — he;)he;)e;,  (35)
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where a(x,x — he;) € [0,1]. Subtracting Eq. from Eq. (35), we have
(1/2h)[f (x + he;) — f(z — he;)] — O (x) /0a’
:ih[g(:ﬂ + a(x,z + he;)he;) — g(@ — a(z,x — he;)he;)].
Since f € C2, applying mean value theorem, we have
g(z + a(z,z + he;)he;)
=g(x) + Vg (x + B(z,x + alz, z + he;)he;)a(z, z + hei)hei)/a(x, x + he;)he;,
g(;v —az,z — hei)hei)
=g(z) — Vg (x — Bz, z — a(z,x — he;)he;)a(x, x — hei)hei)/a(ft, x — he;)he;,
where (z, x4+ a(x, z+he;)he;) € [0, 1] and B(x, x — oz, x —he;)he;) € [0,1] are
the coefficients appeared in the mean value theorem. Therefore, we have
g(ac +a(z,z+ hei)hei) — g(x —a(z,x + hei)hei)
= {Vg (:E + B(z,z + ax,x + he;)he;)a(x, x + hei)hei)/a(ac, x + he;)e;+
Vg (x — B(z,x — a(x,x — he;)he; oz, v — hei)hei)/a(:r, x— hei)ei} h.

Let {h¢} C R be a sequence such that hy — 0 as £ — oco. Then the sequence
{r¢} is bounded by some value M, where

i
re =Vg (:v + Bz, x + alx,x + hee;)hee;)alx, © + hgei)hgei) a(x, z + hee;)ei+

/
Vg (x — Bz, — a(x,x — hee; ) hpe;)a(z, x — hgei)hgei) a(z,x — hee;)e;.

P. 68 Let us provide an alternative proof. We define the set X = {z||z| =
1, 2’ Pz < 0}. If X =0, then ¢ = 0 satisfies P + ¢Q > 0. Otherwise, for every
x € X, we have 2'Qx > 0 since 2’ Px > 0 for all z satisfying 2’Qxz = 0. Consider
the function f : X — R defined as f(x) = —2/ Pz /(2’Qz), which is continuous
and nonnegative. Since the set X is compact, we have max,cx f(z) is attained
and finite. Let ¢ > max,ex f(x). We have P + ¢@Q > 0. From this proof, it can
be seen that if P + ¢@ > 0 for some ¢, then P + c@ > 0 for all ¢ > ¢.

P. 68

Lemma (1, P. 68). Let {ax} and {by} be real sequences such that liminfy aj =
a € R and limsup, by, = b € N. Then {ci} and {di} are real sequences, where
cx = infp>k an and dy = sup,,>, by.

Proof. We prove the case for di. Since d — b, for some € > 0, there exists a
k such that |dy — b| < € for all k > k. Therefore, what remains to show is that

dp € R, k=1,2,...,k—1. By the definition of dj, we have di < dj. Moreover,

di, < max{by,b;_q,dj + €}. Therefore, d, e R, k=1,...,k— 1. Q.E.D.
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Lemma (2, P. 68). Let {by} be a real sequence sup{br} = b € R. Then for
every ¢ € R, we have sup{b, +c} =b+ec.

Proof. For all k, we have b, +c¢ < b+c so that b+ ¢ is an upper bound of {b;+c}.
Moreover, for every e > 0, there exists some k such that by +c¢ > b+ ¢ —e.
Therefore, sup{b, + c} = b+ c. Q.E.D.

Lemma (3, P. 68). Let {ar} and {by} be real sequences such thatlimay, = a € R
and limsup by, = b € R. Then we have

lim sup (ay + bx) = lim ay + lim sup by.
k—o00 k—o0 k— o0

Proof. We first show that limsup(ay, + by) < lim ay + limsup;,_, . bi. For every
k, we have sup,,>;(an + bp) < sup,>j an + Sup,>j bn. Taking limit on both
sides, we have lim sup(ay + bg) < limy_s o (SUP,,> 1, G +SUP,,> 4 by ). By [Lemma
1, P. 68], the sequences {sup,>; a,} and {sup,,b,} with index k are real
sequences, which are also convergent. Therefore, we have limsup(as + by) <
lim sup ay, + lim sup by, = lim ay, + lim sup b.

Conversely, for every k, we have

apn, + by, > by, + inf (ay), n>k.
>k

Taking supreme on both sides and applying [Lemma 2, P. 68] with ¢ = inf;>j, ay,
we have

bn) > b inf = b inf a,.
o +60) > up (0 o) <ot

By [Lemma 1, P. 68], the sequences {inf, > a, } and {sup,,>; b,} with index &
are real sequences, which are also convergent. Taking limits on both sides, we
have

lim sup (ag + bg) > lim (sup b, + inf an> = lim sup by + lim ay,
n>k k— o0

k—o0 k—oo \ n>k k—o0

which is the desired equality. Q.E.D.

From [Lemma 3, P. 68], we have

lim  sup (2, Pzp+ kz,Qzr) =2 Pz +1lim  sup (kz),Qzg) <0. (36)

k—00,k€K k—oc0,kEK
We now claim that Z’Qz = 0. Suppose otherwise, since z;,Qzy > 0, we
must have 7'QZ > 0. As a result, for every k € K, sup,,>,(nz;,Qr,) = oo,
which implies that limsupy_, . rex (k2 Qxr) = oo. This contradicts with

Eq. .
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From Z'QZ = 0, we have Z’PT > 0 according to the conditions stated in
[COLMM Lemma 1.25, P. 68 |. Together with limsupy,_, ., e (k7),Q71) > 0,
we have ' PT+lim supy,_, o, ye g (k2},Qzx) > 0, which contradicts with Eq. (36).

P. 69 Note that from the discussion given before [COLMM Prop. 1.26, P. 69],
we have that there exists some ¢ > 0 such that the function Lz(z,A*), as a
function of z, satisfies the conditions stated in [COLMM Prop. 1.4, P. 19].
According to [COLMM Prop. 1.4, P. 19|, there exists some v > 0 and § > 0
such that

Le(x, \*) > Le(z*, \*) + 4|z — 2*2,  for all z € S(z*;6).

Since h(z*) = 0, we have for all ¢ > ¢, L.(z, \*) > Lz(x, A\*) for all z € S(x*;J),
and L.(z*,\*) = Lz(x*, A*). This yields that

Le(x, N*) > Le(z*, \*) + vl — %2, for all z € S(z*;6) and ¢ > €.

P. 70

Lemma (1, P. 70). Suppose that U is an open set of ®". Let A(u) and B(u)
represent n by n and n by m matrices that depend continuously on u € U.
Moreover, A(u) is symmetric for all u. Let u € U satisfies that

Z’A(a)z >0 for all 2 # 0 and B(u)'z = 0. (37)

Then there exists some 6 > 0 such that S(u;6) C U and for all u € S(4;9),
there holds
2’A(u)z >0 for all 2 # 0 and B(u)'z = 0.

Proof. Since U is open, there exists some § > 0 such that S(@;0) C U. Assuming
for all 0 < § < &, the desired condition does not hold. For every k such that
1/k < 6, there exists some u; € S(u;1/k) such that for some z, we have
|zi| = 1, 2, A(ug)zi < 0, and B(uy)'z, = 0. Clearly, uj converges to @. Given
that |zx| = 1 for all k, there exists some subsequence {zj} x that is convergent,
whose limit is denoted as z. Since A(u) and B(u) depend continuous on u,
taking limit over K, we have z’A(u)z < 0, |Z] = 1, and B(@)'z = 0. This
contradicts with the condition of 1. Q.E.D.

P. 72 Consider the following optimization problem

minimize f(z, 2)
subject to hi(z,2)=0,i=1,...,m, (38)
gj(z,z) =0, j=1,...,r,

where f, h;, and g; are the functions defined in [COLMM P. 72]. We show that
the following holds.
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Lemma (1, P. 72). Suppose that g : R — R is continuous at the vector x*.
The vector x* is the local minimum of (NLP) if and only if (x*,2*), where
2; = [—gj(x*)]l/Q, j=1,...,r, is the local minimum of problem .

Proof. Denote X = {z|h(z) = 0, g(z) < 0}, X = {z|g(z) < 0}, X =
{(z,2) | h(x,2) = 0, g(z,2) = 0}, and v* = (z*,2*). For every z such that
g(x) <0, define a : X — R7, whose jth component, denoted as a;(z) is given
by a;(z) = [—g;(@)]'/?, j=1,....r.

We first show the necessity. Suppose that z* is the local minimum of (NLP).
Then there exists some € > 0 such that f(z*) < f(x) for all x € S(z*;¢) N X.
For every (z,2) € S(v*;€) N X, we have z € S(z*;¢) N X. Since f(x,2) = f(z)
for all (x, z), there holds

f(x*aZ*) = f(x*) < f(x) = .f(x7z)a for all ((t,Z) € S(v*;e) nx.

Conversely, suppose that for some € > 0, f(z*,2*) < f(x,2) for all (z,2) €
S(v*;€) N X. Since g(x) is continuous, there exists some § such that for all
z € S(z*;8) N X, we have a(z) € S(z*;e/\/ﬁ) Define ¢ = min{d, ¢/v/2}. Then
for every z € S(z*;€) N X, we have (z,a(z)) € S(v*;€) N X. There holds

flz*) = f(x*,a(:c*)) < f(x,a(z)) = f(z), forallze S(z*;¢)NX.
Q.E.D.

For an example where [Lemma 1, P. 72] does not hold due to g being discountin-
uous, consider f = z and g(z) = —1 for z # 0 and g(z) = 0 for x = 0. Then
the feasible points of problem are (0,0) and (x,+1) for  # 0. Clearly,
(0,0) is a local minimum of problem , but £ = 0 is not a local minimum of
(NLP).

P. 74 Via transforming the inequality constraints to the equality ones, the scond
order necessity condition states that

[y v']A [ﬂ >0, forall (y,v) €Y, (39)

where the (n + ) by (n 4 r) matrix A is block diagonal and defined as
VieL(z®, X", i)
2u
' 7 (40)

2uy

4To see this, we first note that S(z*;1/k) N X # () for all k. Suppose there does not exist
such a . Then for all k, there exists some z, € S(z*;1/k)N X, such that |a(zy) —2*| > /2.
Since z — z*, we must have a(zg) — 2z* as g is continuous at z*, which is a contradiction.
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and the set Y is
Y = {(y,v) | VR(z*)'y = 0, Vg;(z*)'y +225v; =0, j = 1,...,7}. (41)

We show that condition implies that y/V2, L(z*, \*, u*)y for all y € Y,
where

Y ={y|Vh(z*)y =0, Vg;(z*)'y =0, for all j € A(z*)}.

Indeed, we have 2} = 0 for all j € A(z*), and 2} # 0, pj = 0 for all j & A(z™).
For every y € Y, we define v such that v; = 0 for all j € A(z*), and v; =
—Vg;(xz*)'y/(22;) for all j & A(x*), as 25 # 0. Then (y,z) € Y, which implies
[y v']Aly’ v'] > 0. However, we also have y'V2_L(z*, \*, u*)y = [y v']Aly’ v'],
which is the desired inequality,

We next show that condition implies pj > 0 for all j € A(z*). For every
j € A(x*), we set y = 0 and v; = 0 for i # j and v; = 1. Then we have that
(y,v) € Y. Moreover, [y v'|A[y" v']" = 2. Therefore, uj > 0.

P. 74 Let (y,v) # 0 such that (y,v) € Y, where Y is defined in Eq. ({#1]). As
discussed earlier in [P. 74], v; = —Vg;(2*)'y/(22}) for all j & A(z*). If y # 0,
we have [y v']Aly’ v') > y'V2,L(x*, \*, u*)y > 0. Otherwise, if y = 0, we have
v; =0 for all j & A(x*). Since (y,v) # 0, there exists some k € A(z*) such that
v # 0. Therefore, [y' v'|Aly" v =37, 4 (1) 2u5v? > 2u508 > 0.

P. 76

Lemma (1, P. 76). Let x* > 0 be a feasible vector in (SCP). Then the following
three conditions are equivalent:

(a) For all x > 0, there holds V f(x*)'(x — 2*) > 0.

(b) We have Of(x*)/0x' =0 if x** > 0,i=1,...,n, and Of (z*)/dx" > 0 if
¥ =0,i=1,...,n.

(c) We have z* = [z* — oV f(z*)]T for all « > 0.

Proof. We first show the equivalence between (a) and (b). The sufficiency
from (a) to (b) can be seen directly from the relations Vf(z*)'(z — 2*) =
St Of(x*)/0zt(z* — x*") > 0. To show the necessity, for every i such that
x*" = 0, consider the feasible vector x such that * = 1 and z? = z*/ for all j # i.
We obtain V f(z*) (x — 2*) = df(2*)/0z" > 0. For every i such that 2** > 0, if
df(z*)/0z" # 0, we can find a feasible vector = such that Vf(z*)(z — 2*) < 0.
Such a vector can be obtained by setting 2/ = x*/ for all j # ¢ and 2* — z**
takes the opposite sign of df(z*)/0x.

Then we show the equivalence between (b) and (¢). The sufficiency from (b)
to (c) is clear. As for the necessity, since x** = max{z*! — adf(x*)/0x**,0},
then if 2* = 0, we must have df(z*)/0z* > 0. If 2** > 0, we must have
Of(z*)/0x*" = 0. This is exactly part (b). Q.E.D.
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The equivalence between parts (b) and (c) will also be proved by using [COLMM
Prop. 1.35, P. 78].

P. 79 The set I; should be interpreted as

Ilz{i|xi>00r [z' =0 and p' < 0], i=1,...,r}.

P. 80 Suppose that p=0 for i = 1,...,r. In view of [COLMM Eq. (18), P. 79],
we have z = z(«) for all @ > 0, which is a contradiction.

P. 80 From the discussion here, we have Vf(z)'p > 0 and z(a) = © — ap.
Apply [Lemma 3, P. 20] with d = —p and ~ be any scalar in (0,1), we obtain
the desired relation.

P. 82 We summarize the discussion here as some lemmas below.
Lemma (1, P. 82). Let x; > 0 be a feasible vector in (SCP).
(a) For all scalars a > 0, there holds
of (k) of (k) i
@y op Prt > o7 [z} — z}(a)] = 0. (42)

igrt i€l

(b) The strict inequality in holds for all o > 0 if and only if x is not a

critical point.

(c) The equality in holds for all a > 0 if and only if x, is a critical point.

Proof. Without loss of generality, we assume that for some integer ¢, we have
IF={¢+1,...,n}. Accordingly, we can write D as the block diagonal matrix

D
d€+1

dn

where D is positive definite.

(a) In view of the definition of pi and the fact that D is positive definite, we
have

Of(xg) ;  [0f(xk) Of (@r) ] [ 0f (wk) of (xr)]’
> | |2]

0w PFT "ozl T 0al oxl T T oxt

>0. (43)
gl
For every i € I;}, we have p' > 0. Therefore, i — zi(a) = z} — max{z} —

()zp}‘€7 0} > 0. Therefore, the second term in is also nonnegative. Therefore,
we obtain the desired inequality.
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(b) To show necessity, let us assume that zj is a critical point. In this case,
Of (z)/0z" > 0 implies that 2* = 0. Then we have I;” = I'*(x). Therefore,
for every i € I}, zf — 2% (a) = 0 for all & > 0. Moreover, df(z)/0z" = 0 for
all i ¢ I,j', as xy is a critical point. Therefore, the first term in is also 0 for
all a > 0.

To show sufficiency, suppose that xj is not a critical point and there exists
some a > 0 such that the equality in Eq. holds. Then for all i € Ilj', we
have pi > 0 and x} — max{z} — ap},0} = 0. This means that = = 0 for all
i € I} . Moreover, in view of Eq. ([43)), Zigl,j Of (z1)/0z'p, = 0 and the positive

definiteness of D implies that df(z;)/dz" = 0 for all i ¢ I,". This means that
x) is a critical point, which is a contradiction.

(c) The sufficiency part has been shown in the necessity proof of part (b). The
necessity part can be shown by using the sufficiency part of the proof for part
(b). Q.E.D.

Lemma (2, P. 82). Let xz; > 0 be a feasible vector in (SCP) and o € (0,1) be
some scalar. There exists some & > 0 such that

Flae) - Flrele)] = o{a S )y gy Aoy —xz<a>]} (44)

igrt i€l
for all a € [0, 4a].

Proof. We continue to use the notation introduced in the proof of [Lemma 1,
P. 82]. If z; is a critical point, we have z; = xp(a) for all @ > 0 since D is
also diagonal with respect to I (zx) and [COLMM Prop. 1.35, P. 78] applies.
Therefore, the left hand side of Eq. is zero for all @ > 0. Moreover, we
have I} = It (z),) and Of (x)/02" = 0 for all i € I,", as xy, is a critical point.
Therefore, the right-hand-side of Eq. is also zero for all o > 0.

Suppose that xzj is not a critical point. The relation holds for a = 0 as
both sides are zero. What remains is the case where o > 0. In view that
It(zp) C 1 ,j , we can assume, without loss of generality, that for some r > /,
we have I (z) = {r+1,...,n}. The proof arguments of part (b) in [COLMM
P. 79] also apply here as D is diagonal with respect to I (zy). In particular,
for the vector p defined in [COLMM P. 79] with zi and p} in place of 2% and
p’, respectively, there exists some oy > 0 such that zy(a) = x — ap for all
a € (0,a1). Moreover, Vf(xy)'p > 0. Therefore, applying [Lemma 3, P. 20]
with d = —p and vy = o, we have that for some @ € (0, a1),

f(@r) = fzr(@)] 200V f(zk)'D
=U{a S Oy 3 O xi(a)}} ()

ignt il
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for all @ € (0,@]. We will show that

> —8";?)17' >N a];g’“)pﬁg (46)

igl, il

which together with Eq. , implies the desired relation for a € (0,a].
To this end, consider the sets
Li={il2zi >0o0r[zk =0and p, < 0], i=1,...,0},
IL={ilzi =0and p}, >0, i=1,...,¢}.

From the definition of , it can be seen that p* = pk for i € I; and pt = 0 for
i€ 12I 5| Moreover, for i € I, we have f (x},)/dx" < 0. Therefore, for all i € I,
Of (xr)/0x'pt < 0. This yields

Z 3J;(xﬂt;k)péC :Z Of (xr)

gLt ieh icl,
of ( wk of (k)
= Z ot - Z ot p-
ieh gl
This concludes the proof. Q.E.D.

P. 83

Lemma (1, P. 83). Let f : " — R be a twice continuously differentiable on an
open set S C R™. Then for every compact and conver set C C S, there exists
some scalar L such that

IVf(z) =V f(y)| < Llz—y| foralxzyecC.

Proof. Applying first-order Taylor expansion to vector-valued function (see [P.
29]), we have

1@ = 1) = [ V2l 1 =)@ -

Clearly, we have

|ﬂ@ﬂwﬁ<lﬁmay(AEmw)

g@t) =V fly+tx —y)](x—y).

51n fact, we have Iy = I, where Iy = {z|x}€ = 0 and pz >0,i=1,...,r}. Indeed, we

where

clearly have Iy C I>. Conversely, if i € I5, then mi =0 and i € I (z), which implies that
df(x)/0z" < 0, and consequently i & I:'A Therefore, i € Io.
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Applying [Lemma 3, P. 30], we have
F@) — f@)? < / ot) g(t)dt
- / (z— )/ (V2 + tx — )]) (& — ).

Consider the function §: C x Z — R defined as g(z,z) = z’(VQf(a:))zz, where
Z ={z||#|] = 1}, and the function h : C'+— R defined as h(z) = max.cz §(z, 2).
Applying [Lemma 1, P. 30] with ¢ in place of g, we have h being continuous.
As a result, the scalar L is finite, where L? = max,ec h(z). Since C is convex
and z,y € C, we have y + t(z — y) € C for ¢ € [0,1]. This yields

1
F(@) — f@)? < / 2l — yPdt = L — g
Q.E.D.

P. 84 In view that the subsequence {x\ } x converges to , we have the monotone
subsequence {f(x)}x converging to f(z), as f is continuous. Then applying
[Lemma 2, P. 25], we have f(z) — f(Z).

P. 84 If xj, is a critical point for some k., then xj = xf for all & > k. Since 7 is
assumed to be not critical, then x; is not critical for all k. As a result, wy > 0
for all k. Since the function g : R” — R defined as g(z) = |z —[z— MV f(2)]*] is
continuous, and g(Z) > 0, then the sequence {wy, } i is bounded away from zero
and bounded above as well. Then [COLMM Egq. (31), P. 83] implies that for all
1€l 2‘ , the diagonal element of Dy, that corresponds to ¢ must be bounded below
from zero and and bounded above for all k¥ € K. [COLMM Eq. (36), P. 84] holds
by applying [COLMM Egq. (31), P. 83] with z = 2, such that 2}, = 9f(zy)/0x"
for all i ¢ I,j and Z;C =0forallie I,j. Here, we have \; = \; inf{w{'}x and
Ao = Agsup{w;® } k. In other words, the eigenvalues of { Dy} k is lower-bounded
by A1 and upper-bounded by As.

P. 84 Let K C K be the infinite set such that i ¢ I, for all k € K. Since
lim, , e = &', and Of(%)/0x" # 0, then there exists some k € K and

§ > 0 such that |0f(xy)/0x%| > 6 for all k > k and k € K. Consequently, by
[COLMM Eq. (36), P. 84], we have

S n Y

jert jert

of (1) ’
oz’

of (1) ’
oI

> 5\152 > 0.

>\

Due to [COLMM Egq. (33), P. 84], we must have limy |, e® ar 162 = 0, which
implies {a, }5 converges to 0. In view of the following lemma with a;, = oy, and
a =0, we get [COLMM Eq. (37), P. 84].
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Lemma (1, P. 84). Let {ar} be a real sequence such that ar > a for all k.
Suppose it has a convergent subsequence {ay} xk whose limit is also a. Then we
have for all k, inf, >\ a, = a, and consequently, liminf,_, ai = a.

Proof. 1t suffices to show that for all k, inf,>; a, = a. Since a; > a for all k,
inf, > an, > a. Fix some k. Since the subsequence {a;}x converges to a, then
for every € > 0, there exits some k € K and k > k such that a < a +e. As
a result, inf, >y a, < a + ¢ for all € > 0. Therefore, inf,, >4 a, < inf{a+€|e >
0} = a. Q.E.D.

P. 85 Let K C K be the set such that i € I,:r for all k € K. For all j € I,j,
we have Of(zy)/0x > 0 and xfc - xi(ak) > 0. Since z¥ converges to ' > 0
and 0f(z)/0z" > 0, there exists some integer k, 6; > 0, and d; > 0 such that
zt > 61 and Of (xy,)/O0x' > 6 for all k > k and k € K. From [COLMM Eq. (34),
P. 84], we have

: Of () o+
lim —~ [z}, — x,(ag)] =0
k—oo,ke K O i, = (o)
aJ;(xmzk) [z} — b ()] > Safxh — 2k (ag)] > 0for all k >k, k € K,
which implies 4 4
lim [z}, — 2} (ax)] = 0. (47)
k—oo,ke K

Next, we claim that there exits some k € K such that 7 () = xf — agps, for all
k >k and k € K. Suppose otherwise. Then there exists a set K C K such that
2t (ay) = 0 for all k € K. Then we have i, — z%(ay) = 0 for all k € K. Since
zi > 0y for all k > k and k € K, this contradicts with Eq. . Therefore, for
all k > k and k € K, we have i, — 2% (ax) = agpl. From [COLMM Eq. (35),
P. 84], we have pi, > Aidy > 0 for all k > k and k € K. This yields {ay}%
converges to 0. Applying [Lemma 1, P. 84], we get the desired inequality.

P. 85

Lemma (1, P. 85). Let g : R — R be a continuous function. Suppose that
{yr} CRN" is a bounded sequence. Then the sequence {zy}, defined as zi, = g(yx),
is also bounded.

Proof. Since {yi} is bounded, there exists a compact set Y such that y, € Y for
all k. Since g is continuous, the scalars z = minyecy g(y) and Z = maxyecy g(y)

are finite, and z < z; < Z. Q.E.D.

Since {zx}k is convergent, it is bounded. Therefore, applying [Lemma 1, P.
85] with |V f(-)| and xy, in places of g and yy, respectively, we have {V f(zx)}x
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is bounded. In view of the definition of Ay, see [P. 84], and the relation p; =
DV f(zx), we have

Ipi|* = 1DV £ (@) ? < 3|V £ ().

Therefore, {px} is also bounded.

To see that {zy(a)}k is uniformly bounded, we note first that |z (a)| < |zk —
api|. We then apply the following lemma with y = (z,p), ¢ = o, C = [0,1],
and g(z,p, @) = |z — o]

Lemma (2, P. 85). Let g : R" x R™ — R be a continuous function, and C C R™
be a compact set. Suppose that {yp} C R" is a bounded sequence. Then the
sequence {z}, defined as z;, = maxccc 9(yk, ¢), is also bounded.

Proof. Since the sequence {yx} is bounded, there exists some compact set Y C
R" such that y € Y for all k. Consider the functions g : C — Rand g: C —
R defined as g(c) = minyey g(y,c) and G(c) = maxy;y 9(y, ¢), respectively.
According to [Iemma 1, P. 30], both § and g are continuous in c¢. Therefore,
the scalars z = mingecc g(c) and z = maxcecﬁ(c) are finite. For all k, we have
g(c) < g(yx,c) < glc). Therefore, z < 2z, < Z for all k, which means that {z;}

is bounded. Q.E.D.
P. 86 For a > 0, if 2§ > api, we have |z} — 2% (a)| = alpi|. Otherwise for
x4 < apt, since 2 > 0, we have |z} — 2l (a)| = |2} | = 2} < apl = a|pi].

P. 86 Since the eigenvalues of {Dy} i is upper-bounded by Mg, see [P. 84], and
the relation px = DV f(xx), we have

)P <A

ight ignt

of (zx) i
ox’

<xgn Y Ml

o’
ignt

where the second inequality is due to the first inequality in [COLMM Eq. (36),
P. 84].

P. 87 Let @ € (0,1]. Suppose B € (0,1) and integer m satisfy gm~1 > &
and ™ < a. Multiplying 8 on both sides of f™~! > &, we obtain 8™ €
(Ba, ).

P. 87

Lemma (1, P. 87). Let M(x) be an m by m symmetric matriz that depends
continuously on the vector x € R™. Suppose that T € R" is some fized vector.
Then the following two statements are equivalent:

(a) There holds that 2’ M(Z)z > 0 for all z such that |z] = 1.

(b) There exists some positive scalars 6, my, and mso such that for all x €
S(z;9), my|z]? < 2’ M(z)z < malz|? for all z such that |z| = 1.
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Proof. Tt is obvious that (b) implies (a). To see that (a) implies (b), consider
the function g(z,z) = z’M(x)z and the function h(z) = min,cz g(z, z), where
Z = {z||#z| = 1}. Clearly, we have h(Z) > 0. Applying [Lemma 1, P. 30],
we have that h(x) is continuous. There exists some § > 0 such that for some
my > 0, h(z) > my for all x € S(Z;d). Similarly, we can show the relation
2’ M(z)z < ma|z|? by considering the function h(z) = max.cz g(z,2). Q.E.D.

Let us describe the sufficient conditions stated in [COLMM Prop. 1.31, P. 74] for
(SCP). Since L(x, u) = f(x)—p' z, then V, L(x*, u*) = 0, which is V f (z*)—p* =
0. Moreover, pf > 0 and pfz* = 0 for i = 1,...,n. Together with V f(z*) —
w* =0, we have V f(z*) > 0. Without loss of generality, we assume that there
exists some 7 such that A(x*) = {r + 1,...,n}. Moreover, V2 L(x*,u*) =
V2f(x*) As a result, we write the matrix V2f(x) as

[Hi@) Ha)
Vf(2) = [H;(x), Hj(x)},

where Hi(z) is r by r matrix, and Hs(z) is (n — r) by (n — r) matrix, both
depends continuously on z. Therefore, for every z # 0 such that z* = 0 for
i € A(z*), we must have z = (z,0) for some nonzero z € ®". Applying [Lemma
1, P. 87] with 2*, H(z), and Z in places of Z, M (x), and z, respectively, we see
that the [COLMM Eq. (53), P. 87] is equivalent to the corresponding condition
given in [COLMM Prop. 1.31, P. 74].

P. 88 Since f is twice continuously differentiable on S(z*;J), applying [Lemma
1, P. 83] with C = {x | |x — 2*| < 01}, where 61 € (0,9), we have for all z, T € C,
there exists some L such that |V f(x) — Vf(Z)| < Lz — Z|.

P. 88 Let us introduce some functions, which we will use throughout the dis-
cussion on the proof of [COLMM Prop. 1.37, P. 88]. Define g : " — R as

g(z) =z — [z - MVf(ac)]—s_7 with its ¢th component g;(x) given as g;(x) =
gt — 2t — m@f(x)/@xﬂf Define w : R — R as w(z) = |g(z)|. Clearly, both

w and ¢ are continuous.

For all i € A(z*), we have 2** = 0 and df(z*)/dz® > 0. Then there exists some
~1,¥2 > 0 such that for all ¢ € A(z*),

Af(x*)/0x" > 1 /m’,

|0f (z)/0x" — Of (x*)/0z"| < Of (x*)/0x" —~v1/m?, for all z € S(x*;72).
Let 3 = min{vy1,v2}, then for all i € A(z*), we have df(x*)/dz" — vy3/m® >
Of (x*)/0x" > v1/mt, and S(x*;7y3) C S(x*;72). Therefore, for all i € A(z*),
there holds

Af(x*)/0x" > y3/m’, (48)

0f(z)/0z" — Of (x*) /0| < Of(x*)/0z" — v3/m’, for all & € S(z*;73).
(49)
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For all z belonging to S(z*;v3) and satisfying = > 0, and ¢ € A(x*), we have
2t = |zt —2*| < |z—2*| < 3. In view of Eq. and (49)), we have df (z)/0xz" >
v3/mt. Therefore, ' — m'df(z)/0z" < v3 — 3 < O..

In summary, for all z belonging to S(x*;~3) and satisfying > 0, and i € A(z*),
we have [z¢ — miaf(m)/axi]+ =0 and 9f(z)/0z* > 0.

P. 88 Consider the function h : R" — R" with its ith component h;(z) =
x'—w(z). The function h is continuous, and h;(z*) = x**. Therefore, h;(z*) > 0
for all i ¢ A(z*). Due to continuity of h, there exists some 74 > 0 such
that h;(z) > 0 [equivalently, z* > w(z)] for all x € S(z*;v4) and i & A(z*).
From the preceding discussion, we see that for all « belonging to S(x*;v3) and
satisfying > 0, and i € A(z*), we have [2' — 171"8f’(:v)/8:virr = 0, then we
have 2! = o' — [z° — miaf(x)/axif < w(zx) for all z € S(z*;v3) and = > 0.
Define 65 = min{vs,v4}. Then for all x € S(z*;d3) and satisfying > 0, we
have 2¢ < w(z) and 9f(z)/0x" > 0 for all i € A(z*), and z° > w(x) for all
i ¢ Ax).

Define I (z) as the set It (x) = {i|0
above discussion shows that A(z*) =
satisfying > 0.

§~ < w(x), df(z)/0z" > 0}. Then the
It(z ) for all x belong to S(z*;d2) and
P. 88 Since z*' > 0 for all i ¢ A(z*), Let € = min;ga(,+)2*"/3 and define
b3 = min{da, min;g 4(,+) ©**/3}. Then for all € S(x*;d3) and satisfying = > 0
and i ¢ A(z*), we have 2! > 2*' — 63 > 22*1/3 > €.

P. 89 Define D(az) as positive definite matrix such that it is diagonal with
respect to the set I (x) and satisfies

Mw(2)] 22 < 2/ D(x)z < Ao[w(x)]%|2]?, for all z € R™, (50)

where A\; and A\ are some positive scalars, and ¢; and ¢, are some nonnegative
integers. In addition, denote the ith diagonal element of D(z) as d*(z), and it
satisfies

A < d%(z) forallieIt(x).

In addition, we define p : R" — R as p(x) = D(x)V f(x), with its ith compo-
nent denoted as p‘(z). We also introduce the function o : " + [@, 1]. Finally,
we introduce the function & : R — R™ defined as #(z) = [z — a(z)p(x)]T, with
its ith element denoted as #%(x).

Next, we argue that for some 5 € (0,d3], we have ' — a(x)p’(z) < 0 for all
x € S(a*;75) with © > 0, and 7 € A(z*), which implies that

i'(x) =0 for all z € S(z*;v5) with x > 0, and i € A(z*). (51)

We note first that in view of the discussion in [P. 88] and V5 < 3, we have
Of(x)/0x" > 0foralli € A(z*). Asaresult, 2'—a(z)p'(z) < z'—aX 8f( )/0z".
Using the same arguments as those in [P. 88] with @\; in place of m?, we can
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show that there exists some ~y5 such that for all x € S(x*;v5) and x > 0, there
holds z% — a(x)p’(x) < 0 for all i € A(z*).

In view of Eq. (50), we have

Yo @ <A Y

igA(z*) igA(z*)

2
for all x € S(x*;03), x > 0, (52)

of (z)
Oz’

where A\ = max|,_,«|<g; >0 A2[w(x)]%; cf. Eq. (50). Since 0f(z*)/0x" = 0 for
all i ¢ A(z*), then there exists some s € (0, d5) such that the right hand side
of the above expression is strictly less than €2/4, where recall that z° > € for
all i ¢ A(z*) for all z € S(z*;03); cf [P. 88]. As a result, for all i ¢ A(z*),
2t — a(z)pi(xr) > € — €/2 > 0. Equivalently,

#'(z) >0 forall x € S(2*;v6) with z > 0, and i ¢ A(x*). (53)
Combining Eqs. and (53), we have that

A(z*) = A(2(z)) for all z € S(x*;76) with z > 0. (54)

Finally, there exists some 7 € (0, 7] such that the right hand side of Eq.
is no more than §3/8 for all x with |z — 2*| < 47 and > 0. Define §; =
min{~y7,d3/(2v/2)}. Then |#(z) — 2*| < |z — z*| + |#(z) — x|. Clearly, for all
x such that |z — 2*| < §4 and z > 0, we have 2'(z) = 0 for all i € A(z*).
Therefore, for all z € S(z*;d4) with > 0, there holds

#(2) 2= Y |@'@) —a P Y 2 P
i¢A(x*) i€ A(x*)
< Y @) P rle -2
igA(x*)
< Y P@P+lz -2 =83/4,
i€ A(x*)

where the last inequality is due to that a(xz) < 1. Therefore, for all x € S(z*;d4)
with > 0, there holds

|2(z) — 2" < |2(z) —z|+ |z — 2% < 53/24—53/(2\@) < 3.

Together with Eq. , we have established that for all € S(x*;04) with
x>0,
A(z*) = A(2(z)),

Z(x) — z*| < ds.

P. 89 For all x € S(z*;04) with x > 0, let us define the function p as p =
(z —&(z))/a(z), with its ith component denoted as p(z). In other words, p(z)
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is the effective gradient that satisfies Z(z) = © — a(z)p(x). In particular, from
the discussion in [P. 89], we have that

o [Peigae,
P(®) {xi/a(m) i€ A(z").

Since A(z*) = I't(x), so D(x) is diagonal with respect to A(z*). As a result,
we have R

Vf(@)px) = Vf(2)' D)V f(x),
where D(z) is identical to D(z), except that for every i € A(z*), its ith diagonal
element, denoted as d¥(z), is given as d? ()3, where 8 = p'(z) /p'(x) > 0. As a
result, D(:r) is still positive definite, and for x that is not critical, we have

Vf(x)'p(z) > 0.

Suppose that for some k, we have zj € S(x*; (§4) with x > 0, then there holds
pi(zg) > 0 for all i € A(x*), and for all £ > k + 1, we have p*(zx) = 0 for all
i€ A(z)
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