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Chapter 1

P. 2 Suppose that h(x) is nonlinear. For a given x, there may not exist a vector
d such that h(x+ αd) = 0 for all α > 0 that are sufficiently small.

P. 2 Let us denote by S the set {x |h(x) = 0}. First, we have,

lim
ck→∞

f(x) +
1

2
ck|h(x)|2 =

{
f(x) if x ∈ S,

∞ otherwise.

If S = ∅, we have infx∈S f(x) = ∞, and

lim
ck→∞

f(x) +
1

2
ck|h(x)|2 = ∞

for all x ∈ ℜn so that its infimum is also ∞. Otherwise, if S is nonempty,
then

inf
x∈ℜn

lim
ck→∞

f(x) +
1

2
ck|h(x)|2 = inf

x∈S
lim

ck→∞
f(x) +

1

2
ck|h(x)|2 = inf

x∈S
f(x).

P. 8 Let us denote by akij the ijth element of matrix Ak. From the definition of

matrix norm |Ak|, it can be seen that |Ak| ≥ |akij |. Therefore, limk→∞ |Ak| = 0

implies that limk→∞ akij = 0.

P.8

Lemma (1, P. 8). Let {rk} be a sequence on the real line. There exists a
subsequence {rk}K that is monotone.

Proof. Consider the index set defined as K = {k | rn ≥ rk for all n ≥ k}. If
the set K is infinite, by setting K = K, we obtain a sequence {rk}K that is
monotonically nondecreasing.

Suppose that the set K is finite. Let k1 be some index that does not belong
to K and k1 > maxK. Then there exists some k2 > k1 such that rk1 > rk2 .
Since k2 > k1, then k2 ̸∈ K. Therefore, there exists some k3 > k2 such that
rk2

> rk3
. Continue in this way, we construct the set K = {k1, k2, . . . } and the

corresponding subsequence is monotonically decreasing. Q.E.D.
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The following result is known as the Bolzano-Weierstrass theorem.

Lemma (2, P. 8). Let {rk} be a bounded sequence on the real line. There exists
a subsequence {rk}K that is convergent.

Proof. According to [Lemma 1, P.8], {rk} has a monotone subsequence. We
assume first that {rk}K is a nondecreasing subsequence. Then one can see that
its limit is supk∈K{rk}. The case where {rk} has a nonincreasing subsequence
can be show similarly. Q.E.D.

Lemma (3, P. 8). Let {sk} ⊂ ℜn be a bounded sequence. There exists a subse-
quence {sk}K that is convergent.

Proof. Let us denote by sik the ith component of sk. Since {sk} is bounded, the
sequences {sik}, i = 1, 2, . . . , n, are all bounded. Then there exists a subsequence
{s1k}K1 that is bounded according to [Lemma 2, P.8]. Consider now the sequence
{s2k}K1 . Similarly, [Lemma 2, P.8] implies that there exists some K2 ⊂ K1 such
that {s2k}K2

is convergent. Repeating this n steps, and we get some set Kn such
that {snk}Kn

is convergent. Moreover, since any subsequence of a convergent
sequence is convergent, we have {sik}Kn

, i = 1, . . . , n− 1, are convergent. As a
result, {sk}Kn is convergent. Q.E.D.

P. 8 Suppose that {rk} is unbounded below. Its limit superior can be either
finite or −∞. To see this, consider rk = −k when k is even and rk = 1/k when
k is odd. In this case, we have lim supk→∞ = 0.

P. 9 Let us denote by S the set ∩∞
k=0Sk. To see that S is nonempty, consider

a sequence {sk} where sk ∈ Sk, as Sk is nonempty for all k. Since the sets
Sk ⊂ ℜn are compact, we may use certain canonical way to construct {sk} so
that axiom of countable choice is not needed.1 Then using the construction in
the proof of [Lemma 3, P. 8], we obtain a subsequence {sk}K that is convergent.
Denote by s̄ the limit of {sk}K . Since Sk, k = 0, 1, . . . , are closed, then s̄ ∈ Sk

for all k. Therefore, s̄ ∈ S.

1Suppose that X belongs to ℜn and is compact. We show that there is a canonical way to
select a vector x ∈ X. Since the function f0(x) = |x| is continuous on x and X is compact, we
have that infx∈X |x| is finite. Let {xk} be a sequence such that f0(xk) converges to infx∈X |x|.
Such a sequence exists due to the definition of infimum. Since the sequence is also bounded,
there exists a subsequence {xk}K that is convergent. The limit of {xk}K , denoted by x∗,
belongs to X due to X being compact. Given that f0 is continuous and limk∈K f0(xk) =
infx∈X |x|, we have f0(x∗) = infx∈X |x|. As a result, the set X0 = argminx∈X |x| is nonempty
and contains at least x∗. Moreover, it is closed since every sequence that belongs to X0 has
its limit in X0 (due to X being compact and f0 being continuous) and is also bounded. Next,
consider the function f1(x) = x1 where x1 denotes the first element of x. Using entirely
identical arguments with f1 in place of f and X0 in place of X, we obtain a compact set X1.

After proceeding similarly, we construct the sequence of sets X1, X2, . . . , Xn. We surely
have Xn as a singleton. To see this, we note that by construction, Xn−1 contains vectors x
with their first n − 1 elements being equal. Then the vector with the minimum last element
must be unique. We can use the unique element in Xn as our canonical choice.
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To see that S is closed, let {sk} be some convergent sequence in S. Then
{sk} ⊂ Sk for all k. Let s̄ be the limit of {sk}. Since Sk, k = 0, 1, . . . , are
closed, then s̄ ∈ Sk for all k. Therefore, s̄ ∈ S.

P. 9 We say a function f : S1 7→ S2 is continuous at x ∈ S1 if f(xk) → f(x)
whenever {xk} ⊂ S and sk → x; see [NLP 3rd, P. 754].

P. 9 For a function f : X 7→ ℜ, where X ⊂ ℜn is an open set, its partial
derivatives of order 0 is simply the function itself. As a result, if f is continuous
over X, we write f ∈ C0 over X.

P. 10 For the definitions of ∇2
xxf(x, y), ∇2

xyf(x, y), ∇2
yyf(x, y), see [NLP P.

767]. If f : X 7→ ℜ is a real-valued function of (x, y), where x = (x1, . . . , xn) ∈
ℜn, y = (y1, . . . , yr) ∈ ℜr, and X ⊂ ℜn+r is an open set, then the nota-
tions ∇xf(x, y), ∇yf(x, y), and the correct notations ∇2

xxf(x, y), ∇2
xyf(x, y),

∇2
yyf(x, y) introduced here remain valid. Similarly, if f : X 7→ ℜm where

X ⊂ ℜn+r is an open set, the notation ∇xf(x, y) and ∇yf(x, y) introduced
here remain valid.

P. 11 It is implied implicitly in Implicit Function Theorem 1 that for all x ∈
S(x̄; ϵ),

(
x, ϕ(x)

)
∈ S.

P. 12 We prove Implicit Function Theorem 2 by using Implicit Function The-
orem 1. We make use of the following lemma.

Lemma (1, P. 12). Let X ⊂ ℜn be a compact set and Y ⊂ ℜn be an open set
such that X ⊂ Y . There exists some ϵ > 0 such that S(X; ϵ) ⊂ Y .

Proof. When Y = ℜn, the conclusion holds trivially. Otherwise, denote by Z
the complement of Y in ℜn, which is nonempty and closed. Consider the scalar
δ defined as

δ = inf
x∈X,z∈Z

|x− z|.

We will show that δ > 0 by contradiction. Suppose δ = 0, then there exists
some sequence {xk} ⊂ X and {zk} ⊂ Z such that |xk − zk| → 0. Since the
set X is compact, there exists a convergent subsequence {xk}K . Denote by x∗

the limit of {xk}K and we have x∗ ∈ X. Moreover, x∗ is also the limit of the
subsequence of {zk}K since |zk − x∗| ≤ |zk − xk| + |xk − x∗|. As Z is a closed
set, this implies that x∗ ∈ Z. This leads to a contradiction as x∗ ∈ X ⊂ Y and
Z is the complement of Y . Therefore, we have δ > 0.

Define ϵ = δ/2. We will show that S(X; ϵ) ⊂ Y . If y ∈ S(X; ϵ), then there
exists some x ∈ X such that |x − y| < ϵ < δ, which means that y ̸∈ Z by the
definition of δ. Q.E.D.

Denote by x̄ some arbitrary point in X. Applying Implicit Function Theorem
1, there exists some ϵx̄ > 0 and δx̄ > 0, and a function ϕx̄ : S(x̄; ϵx̄) 7→ S(ȳ; δx̄)
such that h[x, ϕx̄(x)] = 0 for all x ∈ S(x̄; ϵx̄) and ϕx̄(x̄) = ȳ. Since h(x, ȳ) = 0
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for all x ∈ X̄, we have that ϕx̄(x) = ȳ for all x ∈ S(x̄; ϵx̄)∩X by the uniqueness
of the function ϕx̄(x). Moreover, if p ≥ 1, we have for all x ∈ S(x̄; ϵx̄)

∇ϕx̄(x) = −∇xh[x, ϕx̄(x)]
[
∇yh[x, ϕx̄(x)]

]−1
.

Next, we note that the set ∪x̄∈XS(x̄; ϵx̄) is an open set and X ⊂ ∪x̄∈XS(x̄; ϵx̄).

Given that X is compact, there exists some vectors xi, i = 1, 2, . . . ,m, such
that X ⊂ ∪m

i=1S(x̄i; ϵx̄i
). Let x̄ ∈ ∪m

i=1S(x̄i; ϵx̄i
). We will show that for the

values ϕx̄i
(x̄) agree for all i in the set Ix̄ = {i | x̄ ∈ S(x̄i; ϵx̄i

)}. Suppose that
i∗ ∈ argmaxi∈Ix̄ δx̄i so that S(ȳ; δx̄i) ⊂ S(ȳ; δx̄i∗ ) for all i ∈ Ix̄. In other
words, the values of ϕx̄i(x̄), i = 1, 2, . . . ,m, are all within S(ȳ; δx̄i∗ ). Applying
the uniqueness property of ϕx̄i∗ , we have that ϕx̄i

(x̄) agree for all i and we can
define a function ϕ that maps ∪m

i=1S(x̄i; ϵx̄i
) to ∪m

i=1S(ȳ; δx̄i
) by setting its value

at x̄ equal to ϕx̄i
(x̄) for any i ∈ Ix̄. Applying [Lemma 1, P. 12], there exists

some ϵ > 0 such that S(X; ϵ) ⊂ ∪m
i=1S(x̄i; ϵx̄i

). By setting δ = maxi=1,...,m δi,
we complete the proof.

P. 13 Consider the sequence q(β+1/k)k. We will show that it converges linearly
with convergence rate β by verification. Let q̄ > 0 and β̄ ∈ (β, 1). Then there
exists some k̃ such that β + 1/k̃ < β̄. Moreover, there exists some k̄ ≥ k̃ such
that (β + 1/k̃)k̄/β̄k̄ ≤ q̄/q. As a result, for all k ≥ k̄, we have

q(β + 1/k)k ≤ q(β + 1/k̃)k = q(β + 1/k̃)k−k̄[(β + 1/k̃)k̄/β̄k̄]β̄k̄

≤q(β + 1/k̃)k−k̄[q̄/q]β̄k̄ ≤ q̄β̄k.

The verification for the sequence converging at most at ratio β is straightfor-
ward.

The convergence speed of the sequence qβk+(1/k) can be verified by making use
of the following result.

Lemma (1, P. 13). Let a > 0 be some scalar and consider the function f :
(0,∞) 7→ ℜ defined as f(x) = a1/x. There holds limx→∞ f(x) = 1. Moreover,
if a < 1, we have f(x) < 1 for all x, and if a > 1, we have f(x) > 1.

Proof. Note that a(1/x) =
(
e(ln a)

)(1/x)
= e(ln a)/x. Then the conclusion follows.

Q.E.D.

In addition, for the function f : (0,∞) 7→ ℜ defined as f(x) = 0x, we have
f(x) = 0 for all x ∈ (0,∞).

P. 15 In what follows, we either fill in some details or provide alternative argu-
ments for the proofs.

(a) Let q > 0, β̄ ∈ (β, 1), and β̃ ∈ (β, β̄). Since lim supk→∞ e
1/k
k ≤ β, there

exists some k̃ such that supk≥k̃ e
1/k
k ≤ β̃, which means that ek ≤ β̃k for all k ≥ k̃.

Since β̃ ≤ β̄, there exists some k̄ ≥ k̃ such that (β̃/β̄)k̄ ≤ q. As a result, for all
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k ≥ k̄, β̃k = β̃k−k̄(β̃/β̄)k̄β̄k̄ ≤ qβk−k̄β̄k̄ ≤ qβ̄k. This shows that the sequence ek
converges at least linearly with ratio β. Conversely, since for every β̄ ∈ (β, 1),

there exists some k̄ such that ek ≤ β̄k for all k ≥ k̄, or equivalently e
1/k
k ≤ β̄.

In other words, we have supk≥k̄ e
1/k
k ≤ β̄. Using the fact that supk≥k̄ e

1/k
k is

decreasing with k̄, we have lim supk→∞ e
1/k
k ≤ β̄. Since the inequality holds for

all β̄ ∈ (β, 1), we have lim supk→∞ e
1/k
k ≤ inf(β, 1) = β.

(b) The proof presented in [COLMM] uses the fact that limk→∞ q1/k = 1; see
[Lemma 1, P. 13]. Next, we provide an alternative proof. Suppose that for some
k̃, we have ek ≤ qβk for all k ≥ k̃. Let q̄ > 0 and β̄ ∈ (β, 1). There exists some
k̄ ≥ k̃ such that (β/β̄)k̄ ≤ q̄/q. Using the derivation as in part (a), we have
qβk ≤ q̄β̄k for all k ≥ k̄.

(c) The proof presented in [COLMM] uses the fact that limk→∞ β̄
1/k
2 = 1;

see [Lemma 1, P. 13]. Alternatively, let q̄ > 0, and β̄2 ∈ (β2, 1). Consider
β̃2 ∈ (β2, β̄2). There exists some k̃ such that ek+1/ek ≤ β̃2 for all k ≥ k̃. As a

result, we have ek ≤ ek̃β̃
k−k̃ = qβ̃k for all k ≥ k̃, where q = ek̃/β̃

k̃. Using part
(b), we have that ek converges faster than q̄β̄k

2 .

P. 16 (a) Consider q > 0, β ∈ (0, 1), and p̄ ∈ (1, p). Let β̄ ∈ (0, β). Since

limk→∞ e
1/p̄k

k = 0, there exists some k̃ such that e
1/p̄k

k ≤ β̄ for all k ≥ k̃, or

equivalently ek ≤ β̄p̄k

for all k ≥ k̃. Since β̃ < β, then there exists some

k̄ ≥ k̃ such that (β̃/β)p̄
k

< q for all k ≥ k̄. Then we have ek ≤ β̄p̄k

=

(β̄/β)p̄
k

βp̄k ≤ qβp̄k

for all k ≥ k̄. Conversely, fix some p̄. Since for every

β ∈ (0, 1), there exists some k̄ such that ek ≤ βp̄k

for all k ≥ k̄. Equivalently,

we have e
1/p̄k

k ≤ β for all k ≥ k̄. Since β can be arbitrarily small and e
1/p̄k

k ≥ 0,

we have limk→∞ e
1/p̄k

k = 0.

For the statement regarding the convergence at most superlinearly with order
p > 1, the proof is similar, except that in the only if part, fixing p̄, we also need

to show that there exists some k̄ such that e
1/p̄k

k ≤ 1 for all k ≥ k̄. Indeed,
since ek → 0, there exists some k̄ such that ek ≤ 1 for all k ≥ k̄. Then we have

e
1/p̄k

k ≤ 11/p̄
k

= 1 for all k ≥ k̄.

(b) Suppose there exists some k̄ such that ek ≤ qβpk

for all k ≥ k̄. For every

p̄ ∈ (1, p), we have e
1/p̄k

k ≤ q1/p̄
k

β(p/p̄)k for all k ≥ k̄. Taking limit superior on

both sides, we have lim supk→∞ e
1/p̄k

k ≤ limk→∞ q1/p̄
k

β(p/p̄)k = 0. In view of the

fact that e
1/p̄k

k ≥ 0 for all k, this implies that limk→∞ = e
1/p̄k

k = 0. Applying
part (a) we get the desired result. Similarly we prove the result concerning the
convergence at most superlinearly with order p.

(c) We prove the part concerning the convergence at least superlinearly with
order p. Since lim supk→∞(ek+1/e

p
k) < ∞, there exists some k̃ and c > 0

such that for all k ≥ k̄, we have ek+1 ≤ cepk for all k ≥ k̃. This implies that
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ek̄+m ≤ c(
∑m−1

i=0 pi)ep
m

k̄
for all k̄ ≥ k̃ and m ≥ 1. Therefore, we obtain the

inequality

e
1/p̄k̄+m

k̄+m
≤ c(

∑m−1
i=0 pi)/p̄k̄+m

e
pm/p̄k̄+m

k̄
. (1)

Focusing on the exponent of c, we have(
m−1∑
i=0

pi

)/
p̄k̄+m =

pm − 1

(p− 1)p̄k̄+m
=

1

(p− 1)p̄k̄

(
(p/p̄)m − 1/p̄m

)
.

There holds that

c(
∑m−1

i=0 pi)/p̄k̄+m

e
pm/p̄k̄+m

k̄

=
(
c1/(p−1)

)(1/p̄k̄
)
(p/p̄)m(

c1/(p−1)
)(−1/p̄k̄+m

)
e

(
1/p̄k̄

)
(p/p̄)m

k̄

=
(
c1/(p−1)ek̄

)(1/p̄k̄
)
(p/p̄)m(

c1/(p−1)
)(−1/p̄k̄+m

)
.

Since ek → 0, we can choose k̄ sufficiently large such that c1/(p−1)ek̄ < 1. In
view of p̄ < p, we have that

lim
m→∞

(
c1/(p−1)ek̄

)(1/p̄k̄
)
(p/p̄)m

= 0, lim
m→∞

(
c1/(p−1)

)(−1/p̄k̄+m
)
= 1.

Therefore, taking the limit superior with respect to m on both sides of Eq. (1),

we have lim supk→∞ e
1/p̄k

k ≤ 0. Also we have e
1/p̄k

k ≥ 0 for all k, therefore we

obtain e
1/p̄k

k → 0. Applying part (a) completes the proof. Similarly we prove
the result concerning the convergence at most superlinearly with order p.

P. 17 In particular, we have a11 > 0.

P. 17 Let A be a positive definite matrix. It can be written as A = LL′, where L
is a unique lower triangular matrix whose diagonal elements are positive.

P. 18 To see uniqueness, by induction we have L1 is unique. Suppose that Ai−1

can be uniquely written as Ai−1 = Li−1L
′
i−1. Suppose that

A =

[
L̃i−1 0
l′i λii

]
.

Then we have L̃i−1L̃
′
i−1 = Ai−1, L̃i−1li = αi, and l′ili + λ2

ii = aii. By induction

hypothesis, we have L̃i−1 = Li−1. Moreover, the vector li is uniquely determined
by the equations L̃i−1li = αi. The uniqueness of λii follows as it is required to
be positive.

P. 18 The computation Li−1li = αi requires i(i − 1)/2 multiplications. For a
matrix of dimension n, the total multiplication involved is

1

2

n∑
i=2

(i2 − i).

6



Using the equation
∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6, we have that the total mul-

tiplication is approximately n3/6.

P. 20 The proposition here should be interpreted as follows.

Lemma (1, P. 20). Let f : ℜn 7→ ℜ be a continuous function. If either

(a) for every sequence {xk} satisfying |xk| → ∞, we have f(xk) → ∞, or

(b) more generally, for some α ∈ ℜ, the set {x | f(x) ≤ α} is nonempty and
compact,

then there exists a global minimum for (UP).

Proof. Denote a = infx∈ℜn f(x). Clearly we have a ∈ [−∞,∞), and there exists
some sequence xk such that f(xk) → a.

Suppose condition (a) hold. We show that the sequence {xk} is bounded by
contradiction. If {xk} is unbounded, then there exists some subsequence {xk}K
such that |xk| → ∞ as k ∈ K and k → ∞. This implies that limk∈K,k→∞ f(xk) =
∞, which is a contradiction. Therefore, the sequence {xk} is bounded. By
[Lemma 3, P. 8], there exists a subsequence {xk}K that is convergent. Denote
by x∗ its limit. Then we have limk→∞ f(xk) = limk∈K,k→∞ f(xk) = f(x∗) > ∞.
Moreover, f(x∗) = a, thus attaining the global minimum.

Next, we show that condition (a) implies condition (b). As is shown, we have
a > ∞. Let α > a and consider the set X = {x | f(x) ≤ α}. It is nonempty
since x∗ ∈ X. Moreover, it is closed since f is continuous. Suppose that X is
unbounded. Then there exists some {xk} such that |xk| → ∞. However, this
implies that f(xk) → ∞ as per condition (a). Therefore, X must be bounded,
thus compact.

Lastly, suppose condition (b) hold. Since the set X = {x | f(x) ≤ α} is
nonempty, we have a ≤ α. If a = α, then every element in the set X at-
tains the minimum. Otherwise, there exists some k̄ such that xk ∈ X for all
k ≥ k̄. Since X is compact, there exists a subsequence {xk}k≥k̄,k∈K that is
convergent. Its limit, denoted by x∗, attains the global minimum. Q.E.D.

Note that there exists some functions that satisfy condition (b) but not (a). For
example, consider f : ℜ 7→ ℜ defined as

f(x) =


−x− 1 if x < 0,

x− 1 if 0 ≤ x < 3,
6
x otherwise.

Here condition (b) is satisfied while condition (a) is not. Also, without f being
continuous, condition (b) alone is not sufficient to ensure the existence of global
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minimum. To see this, consider the function f : ℜ 7→ ℜ defined as

f(x) =


− lnx if x < 0,

0 if x = 0,

lnx otherwise.

P. 20

Lemma (2, P. 20). Let h : [0, κ) 7→ ℜ be a continuous function, where κ is a
positive real number or ∞. Suppose that for some real numbers a ∈ ℜ, we have
h(0) < a. Then there exists some ᾱ ∈ (0, κ) such that h(α) < a for all [0, ᾱ].

Proof. Suppose there is no such ᾱ. Then for all 1/k > 0, there exists some
αk ∈ (0, 1/k] such that h(αk) ≥ a. Then we have limk→∞ h(αk) ≥ a, which
contradicts with the continuity of h at 0. Q.E.D.

Lemma (3, P. 20). Let γ ∈ (0, 1) and ∇f(x)′d < 0, where f ∈ C1 over ℜn.
There exists an interval (0, ᾱ] such that every α ∈ (0, ᾱ] satisfies

f(x)− f(x+ αd) ≥ −γα∇f(x)′d.

Proof. Define g(α) = f(x + αd). Note that ∂g(α)/∂α = ∇f(x + αd)′d. Define
h(α) = ∂g(α)/∂α for α ≥ 0, which is continuous. Clearly we have h(0) < 0,
and, as a result, h(0) < γh(0). By [Lemma 2, P. 20] with a = γh(0) and κ = ∞,
there exists some ᾱ such that h(α̃) < γh(0) for all α̃ ∈ (0, ᾱ], or equivalently,
∂g(α̃)/∂α < γ∂g(0)/∂α. Consequently, for every α̃ ∈ (0, ᾱ], there holds

g(α̃) = g(0) +

∫ α̃

0

∂g(t)

∂α
dt < g(0) + γ

∂g(0)

∂α
α̃,

which is equivalent to the desired inequality. Q.E.D.

Applying [Lemma 3, P. 20], we have that for given scalars s, β, and σ with
s > 0, β ∈ (0, 1), and σ ∈ (0, 1

2 ), Armijo rule is always well defined. Indeed,
by setting γ = σ, we see that the inequality used in Armijo rule is satisfied for
sufficiently large m.

P. 21 In Goldstein rule, we must have αk > 0, as otherwise it would imply
f(xk+1) > f(xk).

P 22

Lemma (1, P. 22). Let h : [0, κ) 7→ ℜ be a continuous function, where κ is a
positive real number or ∞. Suppose that for some real numbers a, b ∈ ℜ such
that a < b, we have h(0) < a and h(α) ̸∈ [a, b] for all α ∈ [0, κ). There holds
that supα∈[0,κ) h(α) ≤ a.
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Proof. Define c as c = supX, where

X = {α̃ | 0 ≤ α̃ < κ, and h(α) < a for all α ∈ [0, α̃]}.

In view of [Lemma 2, P. 20], the set X is nonempty and contains some α > 0.
If c is κ, we have supα∈[0,κ) h(α) ≤ a. Otherwise, assume c < κ. As a result,
we have (c + 1/k) ̸∈ X and c + 1/k < κ for all sufficiently large k. Therefore,
there exits some ck ∈ [0, c+ 1/k] such that h(ck) ≥ a. Since h(α) ̸∈ [a, b] for all
α ∈ [0, κ), we have that h(ck) ≥ b for all k. Moreover, in view of the definition
of c, we have ck ≥ c. We can show that the function h is not continuous at
c by considering the sequences {c − 1/k} and {ck}, which is a contradiciton.
Therefore, we have c = κ. Q.E.D.

Define h(α) = ∂g(α)/∂α, a = β̂h(0), b = 0. Suppose A is empty. By applying

[Lemma 1, P. 22] with κ = ∞, we have h(α) < β̂h(0) for all α ≥ 0. Then for
every α̃ > 0, we have

g(α̃) = g(0) +

∫ α̃

0

h(α)dα < g(0) + β̂h(0)α̃,

which goes to −∞ as α̃ → ∞. Since g is bounded below, so A is not empty.
Moreover, A is closed and bounded below. Therefore, we have α̂ ∈ A.

Since h(0) < β̂h(0) and h is continuous, applying [Lemma 2, P. 20] with a =

β̂h(0), and κ = ∞, there exists some ϵ > 0 so that h(α) < β̂h(0) for all α ∈ [0, ϵ].

As a result, we have α̂ > 0. Moreover, we can show that h(α̂) = β̂h(0). Indeed,

applying again [Lemma 1, P. 22] with κ = α̂, a = β̂h(0), and b = 0, we

have h(α) < β̂h(0) for all α ≤ α̂. Consider the sequence {α̂ − 1/k}. By

continuity, we have h(α̂) = limk→∞ h(α̂ − 1/k) ≤ β̂h(0). However, we also

have h(α̂) ≥ β̂h(0). Therefore, we have h(α̂) = β̂h(0). Consequently, we have

|h(α̂)| = |∂g(α̂)/∂α| < β|h(0)| = β|∂g(0)/∂α|, as β̂ < β. The continuity of h
ensures the existence of δ1.

P. 24 It is implicitly required in the definition that for all ∇f(xk) ̸= 0, we have
∇f(xk)

′dk < 0.

P. 25

Lemma (1, P. 25). Let {ak} be a monotonically nonincreasing real sequence
that converges to ā ∈ ℜ. Then inf{ak} = ā.

Proof. If {ak} is unbounded below, there exists some k̄ such that ak < ā − 1
for all k ≥ k̄, which contradicts with ak → ā. Therefore, inf{ak} is finite. From
the definition of limit and monotonicity of {ak}, we have inf{ak} = ā. Q.E.D.

Lemma (2, P. 25). Let {ak} be a monotone real sequence. Suppose that {ak}
has a convergent subsequence with its limit denoted as ā ∈ ℜ. Then ak → ā.
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Proof. Suppose that {ak} is monotonically nonincreasing. Denote by {ak}K
be its convergent subsequence. Then we have ak ≥ ā for all k ∈ K in view
of [Lemma 1, P. 25]. Moreover, since {ak} is monotonically nonincreasing, for
every k, there exists some k̃ > k and k̃ ∈ K such that ak ≥ ak̃ ≥ ā. Therefore,
ak ≥ ā for all k. Since limk→∞,k∈K ak = ā, for every ϵ > 0, there exists some k̄
such that |ak − a| = ak − a ≤ ak̄ − a ≤ ϵ for all k ≥ k̄ and k ∈ K. Then for all
k ≥ k̄, we have |ak − a| = ak − a ≤ ak̄ − a ≤ ϵ. Q.E.D.

Applying [Lemma 2, P. 25] with ak = f(xk), we have f(xk) converges to
f(x̄).

P. 25 Since {αk}K converges to 0, there exists some k̄ such that αk ≤ βs for all
k ≥ k̄ and k ∈ K. Therefore, αk/β ∈ {s, βs, β2s, . . . } for all k ≥ k̄ and k ∈ K.
By the definition of Armijo rule, we have

f(xk)− f [xk + (αk/β)dk] < −σ(αk/β)∇f(xk)
′dk for all k ≥ k̄ and k ∈ K.

P. 25 By mean value theorem, for every k ∈ K, there exists some γk ∈ (0, 1)
such that f(xk + ᾱkpk) = f(xk) +∇f(xk + γkᾱkpk)

′ᾱkpk. As a result,

f(xk)− f(xk + ᾱkpk)

ᾱk
=

−∇f(xk + γkᾱkpk)
′ᾱkpk

ᾱk
= −∇f(xk + γkᾱkpk)

′pk.

Since γk ∈ (0, 1) and limk→∞,k∈K ᾱk = 0, the limit of −∇f(xk + γkᾱkpk)
′pk is

−∇f(x̄)′p̄.

P. 26

Lemma (1, P. 26). Suppose that {ak} and {bk} are two convergent real se-
quences with their limits denoted by a and b. Then we have {akbk} converges
to ab.

Proof. We have |akbk − ab| = |(akbk − abk)+ (abk − ab)| ≤ |bk||ak − a|+ |a||bk −
b|. Since |bk| ≤ c for some c > 0, for every ϵ, there exists some k̄ such that
c|ak − a|+ |a||bk − b| ≤ ϵ. Q.E.D.

For every k, we have

−∇f(xk)
′dk

|dk|
=

|∇f(xk)
′dk|

|dk|
≥ infi≥k |∇f(xi)

′di|
supj≥k |dj |

.

Applying [Lemma 1, P. 26] with ak = infi≥k |∇f(xi)
′di| and bk = 1/ supj≥k |dj |,

we obtain the desired inequality.

P. 27 By first-order Taylor series expansion, we have

f(xk + αdk) = f(xk) +

∫ 1

0

∇f(xk + ταdk)
′αdkdτ.
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Applying change of variable in integration with τ = t/α, there holds∫ α

0

∇f(xk + tdk)
′αdk(1/α)dt =

∫ α

0

∇f(xk + tdk)
′dkdt.

P. 29 Let us denote by gi(x) the ith element of ∇f(x), i.e., gi(x) = ∂f(x)/∂xi.
As a result, ∇gi(x)

′ is the ith row of the matrix ∇2f(x). Moreover, gi(x
∗) = 0

for all i. Suppose that x ∈ S(x∗; δ). Applying first-order Taylor series expansion
of gi around x∗, we have2

gi(x) =gi(x
∗) +

∫ 1

0

∇gi[x
∗ + α(x− x∗)]′(x− x∗)dα

=

∫ 1

0

∇gi[x
∗ + α(x− x∗)]′(x− x∗)dα.

Then we multiply on both sides (xi − x∗
i ), where xi and x∗

i denote the ith
elements of x and x∗, respectively, and sum over i. For the left hand side,
we obtain

∑n
i=1(xi − x∗

i )gi(x) = ∇f(x)′(x − x∗). For the right hand side, we
have

n∑
i=1

(xi − x∗
i )

∫ 1

0

∇gi[x
∗ + α(x− x∗)]′(x− x∗)dα

=

n∑
i=1

∫ 1

0

(xi − x∗
i )∇gi[x

∗ + α(x− x∗)]′(x− x∗)dα

=

∫ 1

0

n∑
i=1

(xi − x∗
i )∇gi[x

∗ + α(x− x∗)]′(x− x∗)dα

=

∫ 1

0

(x− x∗)′∇2f [x∗ + α(x− x∗)](x− x∗)dα

≥m|x− x∗|2

where the last inequality is due to that x∗ + α(x − x∗) ∈ S(x∗; δ) for all α ∈
(0, 1). Therefore, we have ∇f(x)′(x − x∗) ≥ m|x − x∗|2. If |∇f(x)| < ϵ, then
ϵ|x− x∗| ≥ m|x− x∗|2, which implies that |x− x∗| ≤ ϵ/m.

Next, applying mean value theorem for f ∈ C2 around x∗, for some α ∈ (0, 1),
we have

f(x)− f(x∗) =
1

2
(x− x∗)∇2f [x∗ + α(x− x∗)](x− x∗) ≤ M

2
|x− x∗|2 ≤ Mϵ2

2m
.

2By stacking over i the values gi(x) and gi(x
∗) +

∫ 1
0 ∇gi[x

∗ + α(x − x∗)]′(x − x∗)dα to
form corresponding vectors, we obtain first-order Taylor expansion for vector-valued function
given as

∇f(x) = ∇f(x∗) +

∫ 1

0
∇2f [x∗ + α(x− x∗)](x− x∗)dα.
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Note that although x∗ is a local minimum, it is not given that f(x∗) ≤ f(x̂) for
all x̂ ∈ S(x∗; δ). Our derivation only relies on the condition ∇f(x∗) = 0.

P. 30

Lemma (1, P. 30). Let g : X × Z 7→ ℜ be a continuous function, where X is a
subset of ℜn, and Z is a compact subset of ℜm. Let h : X 7→ ℜ be defined as

h(x) = min
z∈Z

g(x, z).

Then we have that h is continuous over X.

Proof. Suppose that {xk} ⊂ X is a convergent sequence such that xk → x̄ ∈ X.
For all k, there exists some zk ∈ Z such that g(xk, zk) = h(xk). Since Z is a
compact set, there exists a subsequence {zk}K that is convergent, with its limit
denoted by z̄. By the definition of h, we have

h(x̄) ≤ g(x̄, z̄). (2)

Moreover, for every ϵ > 0, there exists some k̄ such that |g(xk, zk)− g(x̄, z̄)| < ϵ
for all k ≥ k̄ and k ∈ K. This inequality implies that

g(x̄, z̄) < g(xk, zk) + ϵ for all k ≥ k̄ and k ∈ K. (3)

Combining Eqs. (2) and (3), we have

h(x̄) < g(xk, zk) + ϵ for all k ≥ k̄ and k ∈ K. (4)

Let us assume that the function h is discontinuous at x̄. Then there exists some
ϵ > 0, such that for all k̂ ∈ K, there exists some k ≥ k̂ and k ∈ K such that
|h(xk)− h(x̄)| ≥ ϵ. In other words, there exists a subsequence {xk}K of {xk}K
such that |h(x̄)−h(xk)| = |h(x̄)− g(xk, zk)| ≥ ϵ for all k ∈ K. Equivalently, for
every k ∈ K, we have

h(x̄)− g(xk, zk) ≥ ϵ or g(xk, zk)− h(x̄) ≥ ϵ. (5)

Combining Eqs. (4) and (5), we have

h(x̄) ≤ g(xk, zk)− ϵ for all k ≥ k̄ and k ∈ K. (6)

Let us denote by ẑ the minimizer at x̄, i.e., g(x̄, ẑ) = h(x̄). By the continuity of
g, there exists some k̃ ≥ k̄ and k̃ ∈ K such that

g(xk, ẑ) ≤ h(x̄) +
ϵ

2
for all k ≥ k̃ and k ∈ K.

Together with Eq. (6), this implies that g(xk, ẑ) < h(xk), which is a contradic-
tion. Q.E.D.
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Let us define the function g(x, z) = z′∇2f(x)z, with X = ℜn and Z = {z | |z| =
1}. By [Lemma 1, P. 30], we have that h(x) = minz∈Z g(x, z) is continu-
ous. Since h(x∗) > 0, there exists some ϵ̄ such that h(x) > 0 for all x ∈
S(x∗; ϵ̄).

P. 30

Lemma (2, P. 30). Let h : ℜ 7→ ℜ be a continuous function. We have(∫ 1

0

h(t)dt

)2

≤
∫ 1

0

(
h(t)

)2
dt.

Proof. There holds

0 ≤
∫ 1

0

(
h(t)− c

)2
dt =

∫ 1

0

(
h(t)

)2
dt− 2c

∫ 1

0

h(t)dt+ c2.

By setting c =
∫ 1

0
h(t)dt, we obtain the desired inequality. Q.E.D.

Lemma (3, P. 30). Let g : ℜ 7→ ℜn be a continuous function. We have(∫ 1

0

g(t)dt

)′(∫ 1

0

g(t)dt

)
≤
∫ 1

0

g(t)′g(t)dt.

Proof. Let us denote by gi(t) the ith component of g(t). Then we have(∫ 1

0

g(t)dt

)′(∫ 1

0

g(t)dt

)
=

n∑
i=1

(∫ 1

0

gi(t)dt

)2

,

and ∫ 1

0

g(t)′g(t)dt =

∫ 1

0

n∑
i=1

(
gi(t)

)2
dt =

n∑
i=1

∫ 1

0

(
gi(t)

)2
dt.

Applying [Lemma 2, P. 30] for each gi and summing over i, we obtain the desired
inequality. Q.E.D.

Applying first-order Taylor expansion to vector-valued function (see [P. 29]), we
have

∇f(xk̄) =

∫ 1

0

∇2f [x∗ + t(xk̄ − x∗)](xk̄ − x∗)dt.

Clearly, we have

|∇f(xk̄)|2 =

(∫ 1

0

g(t)dt

)′(∫ 1

0

g(t)dt

)
,

where
g(t) = ∇2f [x∗ + t(xk̄ − x∗)](xk̄ − x∗).
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Applying [Lemma 3, P. 30], we have

|∇f(xk̄)|2 ≤
∫ 1

0

g(t)′g(t)dt

=

∫ 1

0

(xk̄ − x∗)′
(
∇2f [x∗ + t(xk̄ − x∗)]

)2
(xk̄ − x∗)dt

≤
∫ 1

0

Γ2|xk̄ − x∗|2dt

=Γ2|xk̄ − x∗|2.

A slight generalization is given as [Lemma 1, P. 83].

P. 30 Suppose there exists some x̃ ∈ S(x∗; ϵ̄) such that x̃ ̸= x∗ and ∇f(x̃) = 0.
By mean value theorem, we have

f(x∗) = f(x̃) +
1

2
(x∗ − x̃)′∇2f [x̃+ α(x∗ − x̃)](x∗ − x̃)

for some α ∈ (0, 1), which implies that f(x∗) > f(x̃). On the other hand, we
also have

f(x̃) = f(x∗) +
1

2
(x̃− x∗)′∇2f [x∗ + β(x̃− x∗)](x̃− x∗)

for some β ∈ (0, 1) so that f(x̃) > f(x∗). This is a contradiction. As a result,
x∗ is the unique critical point within S(x∗; ϵ̄).

Suppose now that xk does not converge to x∗. Then there exists a subsequence
{xk}K such that |xk−x∗| > ϵ for all k ∈ K and some ϵ > 0. Since L is compact,
there exists a subsequence {xk}K of {xk}K that is convergent. By assumption,
its limit, denoted by x̃, belongs to L ⊂ S(x∗; ϵ̄),3 and is also a critical point.
Besides, x̃ is not x∗ since |xk − x∗| > ϵ for all k ∈ K. This is a contradiction as
there is a unique critical point within S(x∗; ϵ̄).

P. 31

Lemma (1, P. 31). Let Ak be a sequence of n by n symmetric matrices that con-
verges to 0. Consider the sequences {yk} and {zk} defined as yk = min|w|=1 w

′Akw
and zk = max|w|=1 w

′Akw, respectively. There holds that yk → 0 and zk → 0.

Proof. Denote by akij the ijth element of Ak and by wi the ith element of a
vector w. Then we have

|w′Akw| =

∣∣∣∣∣
n∑

i=1

n∑
j=1

akijwiwj

∣∣∣∣∣ ≤
n∑

i=1

n∑
j=1

|akij |

3To see this, we note that the for all x ∈ L, we have |x − x∗| < ϵ̄/(1 + csΓ) < ϵ̄, where
the last inequality is due to c > 0, s > 0, and Γ > 0. As a result, if x ∈ L, we have
|x− x∗| ≤ ϵ̄/(1 + csΓ) < ϵ̄, which means L ⊂ S(x∗; ϵ̄).
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for all w with |w| = 1. Therefore, we have

−
n∑

i=1

n∑
j=1

|akij | ≤ yk ≤
n∑

i=1

n∑
j=1

|akij |.

Since Ak converges to 0, we have yk → 0. The convergence of {zk} can be
proven similarly. Q.E.D.

A formal definition of o(·) can be found in [NLP 3rd, P. 752]. Let us denote by
h(x, x∗) the function o(|x− x∗|). By mean-value theorem, we have

h(x, x∗) =
1

2
(x− x∗)′

(
∇2f [x∗ + α(x, x∗)(x− x∗)]−∇2f(x∗)

)
(x− x∗),

where α(x, x∗) ∈ [0, 1]. Let {xk} be a sequence such that xk → x∗. We
have

h(xk, x
∗) =

|xk − x∗|2

2
w′

kAkwk,

where Ak = ∇2f [x∗+α(xk, x
∗)(xk−x∗)]−∇2f(x∗) and wk = (xk−x∗)/|xk−x∗|.

Since f ∈ C2, α(xk, x
∗) ∈ [0, 1], xk → x∗, and

|x∗ + α(xk, x
∗)(xk − x∗)− x∗| = α(xk, x

∗)|xk − x∗| ≤ |xk − x∗|,

we have Ak converges to 0. Applying [Lemma 1, P. 31], we have w′
kAkwk

converges to 0, which means that h(xk, x
∗)/|xk − x∗|2 converges to 0.

P. 32

Lemma (1, P. 32). Let λi, i = 1, 2, . . . , n, be some positive real numbers so
that 0 < m ≤ λi ≤ M , i = 1, 2, . . . , n, for some m and M . In addition, suppose
that some nonnegative real numbers ai, i = 1, 2, . . . , n, satisfy that

∑n
i=1 ai ≤ 1.

There holds (
n∑

i=1

aiλi

)(
n∑

i=1

ai
λi

)
≤ (M +m)2

4Mm
.

Proof. Since 0 < m ≤ λi ≤ M for all i, we have (λi −m)(M − λi) ≥ 0, which is
λ2
i +Mm ≤ λi(M +m). Dividing on both sides λi, we have λi + (Mm)/λi ≤

M +m. Multiplying on both sides ai and adding over i, we have

n∑
i=1

aiλi +Mm

n∑
i=1

ai
λi

≤ M +m, (7)

where the last inequality is due to that M +m > 0 and
∑n

i=1 ai ≤ 1.

Since for all real numbers u and v, we have 4uv ≤ (u + v)2, by setting u =∑n
i=1 aiλi and v = Mm

∑n
i=1 ai/λi, we have

4

(
n∑

i=1

aiλi

)(
Mm

n∑
i=1

ai
λi

)
≤

(
n∑

i=1

aiλi +Mm

n∑
i=1

ai
λi

)2

. (8)

Combining Eqs. (7) and (8), we get the desired inequality. Q.E.D.
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The following result is known as Kantorovich Inequality.

Lemma (2, P. 32). Let L be a positive definite symmetric n× n matrix. Then
for any vector y ∈ ℜn, y ̸= 0, there holds

(y′y)2

(y′Ly)(y′L−1y)
≥ 4Mm

(M +m)2
.

Proof. Since L is symmetric and positive definite, there exists some orthogonal
matrix Q such that L = Q′DQ, where D is a diagonal matrix, with its diagonal
elements λi, i = 1, . . . , n, being the eigenvalues of L. Then we also have L−1 =
Q′D−1D. Denote x = Qy. Since Q is orthogonal, we have y′y = y′Q′Qy = x′x.
Moreover,

y′Ly = x′Dx =

n∑
i=1

x2
iλi, y′L−1y = x′D−1x =

n∑
i=1

x2
i

λi
.

where xi denotes the ith component of x. As a result, we have

(y′Ly)(y′L−1y)

(y′y)2
=

(∑n
i=1 x

2
iλi

)(∑n
i=1

x2
i

λi

)
(∑n

i=1 xi

)2 .

By setting ai = x2
i /
(∑n

i=1 xi

)
, we obtain

(y′Ly)(y′L−1y)

(y′y)2
=

(
n∑

i=1

aiλi

)(
n∑

i=1

ai
λi

)
.

Applying [Lemma 1, P. 32], we obtain

(y′Ly)(y′L−1y)

(y′y)2
≤ (M +m)2

4Mm
,

which is equivalent to the desired inequality. Q.E.D.

P. 36 To see that Dk∇f(xk) → 0, we note that

Dk∇f(xk) =
|∇f(xk)|

(
Dk∇f(xk)−

[
∇2f(x∗)

]−1∇f(xk)
)

|∇f(xk)|
+
[
∇2f(x∗)

]−1∇f(xk).

As a result,

|Dk∇f(xk)| ≤
|∇f(xk)|

∣∣Dk∇f(xk)−
[
∇2f(x∗)

]−1∇f(xk)
∣∣

|∇f(xk)|
+
∣∣[∇2f(x∗)

]−1∣∣|∇f(xk)|.

In view of Eqs. (28) and (30) in [COLMM], we have Dk∇f(xk) → 0.
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P. 36 Let us provide a detailed calculation for the value γk. Since Dkpk =[
∇2f(x∗)

]−1
pk + βk, we have

(1− σ)p′kDkpk =(1− σ)p′k

([
∇2f(x∗)

]−1
pk + βk

)
=(1− σ)p′k

[
∇2f(x∗)

]−1
pk + (1− σ)p′kβk.

Since βk converges to zero and {pk} is bounded, we have (1− σ)p′kβk converges
to 0. On the other hand, we have

1

2
p′kDk∇2f(x̄k)Dkpk

=
1

2

([
∇2f(x∗)

]−1
pk + βk

)′
∇2f(x̄k)

([
∇2f(x∗)

]−1
pk + βk

)
=
1

2
p′k
[
∇2f(x∗)

]−1∇2f(x̄k)
[
∇2f(x∗)

]−1
pk+

β′
k∇2f(x̄k)

[
∇2f(x∗)

]−1
pk +

1

2
β′
k∇2f(x̄k)βk

=
1

2
p′k
[
∇2f(x∗)

]−1∇2f(x∗)
[
∇2f(x∗)

]−1
pk+

1

2
p′k
[
∇2f(x∗)

]−1(∇2f(x̄k)−∇2f(x∗)
)[
∇2f(x∗)

]−1
pk+

β′
k∇2f(x̄k)

[
∇2f(x∗)

]−1
pk +

1

2
β′
k∇2f(x̄k)βk.

Applying [Lemma 1, P. 31] with Ak =
(
∇2f(x̄k) − ∇2f(x∗)

)
, we can show

that
1

2
p′k
[
∇2f(x∗)

]−1(∇2f(x̄k)−∇2f(x∗)
)[
∇2f(x∗)

]−1
pk → 0.

Moreover, β′
k∇2f(x̄k)

[
∇2f(x∗)

]−1
pk → 0 and 1

2β
′
k∇2f(x̄k)βk → 0. As a result,

we have γk → 0, where

γk =
1

2
p′k
[
∇2f(x∗)

]−1(∇2f(x̄k)−∇2f(x∗)
)[
∇2f(x∗)

]−1
pk+

β′
k∇2f(x̄k)

[
∇2f(x∗)

]−1
pk +

1

2
β′
k∇2f(x̄k)βk − (1− σ)p′kβk.

P. 37 We state and prove Taylor’s theorem for vector-valued functions, using
mean value theorem for scalar-valued functions.

Lemma (1, P. 37). Let g : ℜn 7→ ℜm be a continuously differentiable function,
with its component functions denoted as gi, i = 1, . . . ,m. For all x, x̃ ∈ ℜn,
define h(x, x̃) = g(x) − g(x̃) −

[
∇g(x̃)

]′
(x − x̃). For every sequence {xk} such

that xk → x̃, we have h(xk, x̃)/|xk − x̃| converges to 0.

Proof. Applying mean value theorem to ith component function gi, we have

gi(x) =gi(x̃) +∇gi
[
x̃+ αi(x, x̃)(x− x̃)

]′
(x− x̃)

=gi(x̃) +∇gi(x̃)
′(x− x̃) +

(
∇gi

[
x̃+ αi(x, x̃)(x− x̃)

]
−∇gi(x̃)

)′
(x− x̃),
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where α(x, x̃) ∈ [0, 1]. Clearly, we have

hi(x, x̃) =
(
∇gi

[
x̃+ αi(x, x̃)(x− x̃)

]
−∇gi(x̃)

)′
(x− x̃), i = 1, . . . ,m,

where hi is the component function of h. Let {xk} be a sequence such that
xk → x̃. Then we have x̃+ αi(xk, x̃)(xk − x̃) converges to x̃ as α(xk, x̃) ∈ [0, 1].
As a result, we have

|hi(xk, x̃)|
|xk − x̃|

=

∣∣∣(∇gi
[
x̃k + αi(xk, x̃)(xk − x̃)

]
−∇gi(x̃)

)′
(xk − x̃)

∣∣∣
|xk − x̃|

≤

∣∣∣∇gi
[
x̃k + αi(xk, x̃)(xk − x̃)

]
−∇gi(x̃)

∣∣∣|(xk − x̃)|

|xk − x̃|

=
∣∣∣∇gi

[
x̃k + αi(xk, x̃)(xk − x̃)

]
−∇gi(x̃)

∣∣∣,
which converges to 0 as k → ∞. Q.E.D.

Note that we have δk = βk for all k. As a result,

Dk∇f(xk) =
[
∇2f(x∗)

]−1∇f(xk) + |∇f(xk)|βk. (9)

By using [Lemma 1, P. 37] for the function∇f , we have∇f(xk) = ∇2f(x∗)(xk−
x∗) + h(xk, x

∗), where h(xk, x
∗)/|xk − x∗| converges to 0 as k → ∞. Then we

have [
∇2f(x∗)

]−1∇f(xk) = xk − x∗ +
[
∇2f(x∗)

]−1
h(xk, x

∗),

|∇f(xk)|βk =
∣∣∇2f(x∗)(xk − x∗) + h(xk, x

∗)
∣∣βk.

Using above two relations in Eq. (9), we obtain

Dk∇f(xk) = xk−x∗+
[
∇2f(x∗)

]−1
h(xk, x

∗)+
∣∣∇2f(x∗)(xk−x∗)+h(xk, x

∗)
∣∣βk.

Since xk+1 − x∗ = xk − x∗ −Dk∇f(xk), we obtain

xk+1 − x∗ = −
[
∇2f(x∗)

]−1
h(xk, x

∗)−
∣∣∇2f(x∗)(xk − x∗) + h(xk, x

∗)
∣∣βk.

As a result,

|xk+1−x∗| ≤
∣∣∣[∇2f(x∗)

]−1
∣∣∣|h(xk, x

∗)|+
∣∣∇2f(x∗)

∣∣|xk−x∗||βk|+ |h(xk, x
∗)||βk|.

P. 37

Lemma (2, P. 37). Suppose that {Dk} is a sequence of n by n positive definite
symmetric matrices, {gk} is a sequence of n-dimensional vectors with gk ̸= 0
for all k, and H be a positive definite matrix. Then we have

lim
k→∞

|(Dk −H−1)gk|
|gk|

= 0 if and only if lim
k→∞

|(D−1
k −H)Dkgk|
|Dkgk|

= 0.

18



Proof. We first prove the only if part. We first note the following equalities
hold:

(D−1
k −H)Dkgk = gk −HDkgk = H(H−1gk −Dkgk) = H(H−1 −Dk)gk. (10)

Then we have

|(D−1
k −H)Dkgk|
|Dkgk|

=
|H(H−1 −Dk)gk|

|Dkgk|
≤ |H| |(Dk −H−1)gk|

|Dkgk|

=|H| |(Dk −H−1)gk|
|gk|

|gk|
|Dkgk|

,

(11)

where the first equality is due to Eq. (10). Since Dkgk = H−1gk+(Dk−H−1)gk,
we have

|Dkgk|
|gk|

=
|H−1gk + (Dk −H−1)gk|

|gk|
≥ |H−1gk|

|gk|
− |(Dk −H−1)gk|

|gk|

≥m1 −
|(Dk −H−1)gk|

|gk|
,

where m1 is the smallest eigenvalue of H−1, which is positive. Since |(Dk −
H−1)gk|/|gk| → 0, there exists some k̄ such that |(Dk −H−1)gk|/|gk| ≤ m1/2
for all k ≥ k̄. As a result, |Dkgk|/|gk| ≥ m1/2 for all k ≥ k̄, or equivalently,
|gk|/|Dkgk| ≤ 2/m1. Together with Eq. (11), we obtain

|(D−1
k −H)Dkgk|
|Dkgk|

≤ |H| |(Dk −H−1)gk|
|gk|

2

m1
for all k ≥ k̄.

Taking limit on both sides concludes this part of the proof.

As for the if part, we note that

(Dk −H−1)gk = H−1(HDkgk − gk) = H−1(H −D−1
k )Dkgk.

Using this equality similarly as the preceding part, we have

|(Dk −H−1)gk|
|gk|

≤ |H−1|
|(D−1

k −H)Dkgk|
|Dkgk|

|Dkgk|
|gk|

.

Using the equality gk = HDkgk + (D−1
k − H)Dkgk, we can show, similarly as

preceding part, that for some k̄, there holds |gk|/|Dkgk| ≤ 2/m2 for all k ≥ k̄,
where m2 is the smallest eigenvalue of H. We can then proceed and prove the
if part similarly. Q.E.D.

P. 42

Lemma (1, P. 42). Let {Ak} be a sequence of n by n invertible matrices, whose
limit A is also invertible. Then the sequence {A−1

k } converges to A−1.
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Proof. Denote by dk the determinant of Ak and by Bk the cofactor matrix of Ak.
Then we have dk → d and Bk → B, where d and B denote the determinant and
the cofactor matrix of A, respectively. According to the formulas of determinant
and cofactor matrix, we have dk → d and Bk → B. Since A−1

k = B′
k/dk and

A−1 = B′/d, we obtain that {A−1
k } converges to A−1. Q.E.D.

Define as d the function such that d(x) is the determinant of matrix ∇g(x).
Since g ∈ C1 and ∇g(x∗) is invertible, we have d ∈ C1 and d(x∗) ̸= 0. As a
result, there exists some δ ∈ (0, ϵ) such that d(x) ̸= 0 for all x ∈ S(x∗; δ), which
implies that [∇g(x)]−1 exists for all x ∈ S(x∗; δ). [Lemma 1, P. 42] can be used
to show that [∇g(x)]−1 is continuous.

P. 42 Define h(t) =
{
∇g(xk)

′−∇g[x∗−t(xk−x∗)]
}′
(xk−x∗). Applying [Lemma

3, P. 30] using h in place of g, we have
( ∫ 1

0
h(t)dt

)′( ∫ 1

0
h(t)dt

)
≤
∫ 1

0
h(t)′h(t)dt.

Equivalently, we have∣∣∣∣ ∫ 1

0

{
∇g(xk)

′ −∇g[x∗ + t(xk − x∗)]
}′
(xk − x∗)dt

∣∣∣∣2
≤
∫ 1

0

∣∣{∇g(xk)
′ −∇g[x∗ + t(xk − x∗)]

}′
(xk − x∗)

∣∣2dt.
Then the inequality follows as

∣∣{∇g(xk)
′ − ∇g[x∗ + t(xk − x∗)]

}′
(xk − x∗)

∣∣ ≤∣∣∇g(xk)−∇g[x∗ + t(xk − x∗)]
∣∣|(xk − x∗)|.

P. 43

Lemma (1, P. 43). Let f : ℜn 7→ ℜm be a continuous function and suppose
that {xk} ⊂ ℜn is a convergent sequence with its limit denoted by x∗. Then the
sequence {yk} ⊂ ℜ converges to 0, where

yk = max
x̃∈{x | |x−x∗|≤|xk−x∗|}

|f(x̃)− f(x∗)|.

Proof. Suppose otherwise. Then there exists a subsequence {yk}K such that
yk > ϵ for some ϵ > 0. From the definition of yk, for every k ∈ K, there
exists some x̃k ∈ {x | |x − x∗| ≤ |xk − x∗|} such that |f(x̃k) − f(x∗)| ≥ ϵ. This
contradicts with the continuity of f as x̃k also converges to x∗, in view of that
|x̃k − x∗| ≤ |xk − x∗|. Q.E.D.

Applying [Lemma 1, P. 43] with ∇g as f , and since∣∣∇g(xk)−∇g[x∗ + t(xk − x∗)]
∣∣

≤
∣∣∇g(xk)−∇g(x∗)

∣∣+ ∣∣∇g[x∗ + t(xk − x∗)]−∇g(x∗)
∣∣ ≤ 2yk

for all t ∈ [0, 1], we have the sequence zk converges to 0, where zk =
∫ 1

0

∣∣∇g(xk)−
∇g[x∗ + t(xk − x∗)]

∣∣dt ≤ 2yk.
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P. 43 Let y be n2-dimensional vectors, and denote by yi the n dimensional
vector formed by the [(i − 1)n + 1]th to (in)th elements of y. Consider the
function

h(y) =
[
∇g1(y1) . . . ∇gn(yn)

]′[∇g1(y1) . . . ∇gn(yn)
]
.

Since ∇g(x∗) is invertible, then h(y∗) is positive definite, where y∗i = x∗ for
all i. Applying [Lemma 1, P. 30] by considering z′h(y)z, we have that there
exists some δ̃ > 0 such that min|z|=1 z

′h(y)z > 0 for all y ∈ S(y∗; δ̃). Setting

δ1 = δ̃/
√
n, we have

n∑
i=1

|x̃i − x∗|2 ≤
n∑

i=1

|x− x∗|2 ≤ δ̃2 for all x ∈ S(x∗; δ1).

As a result, we have ∇g(x̃)∇g(x̃)′ = h(ỹ) being positive definite, where ỹi =
x̃i.

P. 47 See footnote in [COLMM P. 63] for the definition of O(·).

P. 51We discuss some properties of the Gram-Schmidt procedure. Suppose that
ξ0, . . . , ξi ∈ ℜn, where i ≤ n − 1 are some vectors and Q is a positive definite
symmetric matrix. The Gram-Schmidt procedure starts by setting

d0 = ξ0. (12)

At jth iteration, where j = 1, . . . , i, we compute dj as

dj = ξj +

j−1∑
k=0

cjkdk, (13)

where
cjk = −ξ′jQdk/(d

′
kQdk), k = 0, . . . , j − 1. (14)

Lemma (1, P. 51). Let ξ0, . . . , ξi be some vectors in ℜn. Suppose that ξ0, . . . , ξi−1

are linearly independent.

(a) The Gram-Schmidt procedure (12)-(14) are well-defined in the sense that
the vectors d0, . . . , di−1 are nonzero.

(b) The vectors d0, . . . , di−1 are linearly independent.

(c) A vector v satisfies v =
∑i−1

j=0 αjξj for some αj, j = 0, . . . , i − 1, if and

only if v =
∑i−1

j=0 ᾱjdj for some ᾱj, j = 0, . . . , i− 1.

(d) A vector v satisfies v′ξj = 0 for all j = 0, . . . , i− 1, if and only if v′dj = 0
for all j = 0, . . . , i− 1.

Proof. (a) We show that dj ̸= 0 for j = 0, 1 . . . , i − 1 by induction. Clearly,
d0 = ξ0 ̸= 0. Suppose that d0, . . . , dj−1 are nonzero. The formulas for cjk, k =
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0, 1 . . . , j−1, are well-defined (since d′kQdk ̸= 0) so that dj is well-defined. To see

that dj is nonzero, we note that the vector
∑j−1

k=0 cjkdk is a linear combination
of the vectors ξ0, . . . , ξj−1. Therefore, dj = 0 would imply that ξ0, . . . , ξj are
linearly dependent.

(b) Since the Gram-Schmidt procedure (12)-(14) are well-defined, we can write

dj =
∑j

k=0 bkjξk for some coefficients bkj , k = 0, 1, . . . , j, where bjj = 1. Con-
sider the i by i upper triangular matrix B defined as

B =


b00 b01 · · · b0(i−1)

b11 · · · b1(i−1)

. . .
...

b(i−1)(i−1)

 , (15)

which is invertible as its diagonal elements are unity. Suppose there exists
some β0, . . . , βi−1, not all zero, such that

∑i−1
j=0 βjdj = 0, then we must have∑i−1

j=0 β̄jξj = 0, where the vector [β̄0 . . . β̄i−1] is given by [β̄0 . . . β̄i−1]
′ =

B−1[β0 . . . βi−1]
′, which is a nonzero vector. This can not be true as ξ0, . . . , ξi−1

are linearly independent.

(c) Using the matrixB defined in Eq. (15), we have [ᾱ0 . . . ᾱi−1]
′ = B−1[α0 . . . αi−1]

′.

(d) If v satisfies v′ξj = 0 for all j = 0, . . . , i − 1, then v′dj =
∑j

k=0 bkjv
′ξk = 0

for j = 0, . . . , i − 1. Conversely, applying part (c), we have that the vectors
ξ0, . . . , ξi−1 can be written as linear combinations of d0, . . . , di−1 and the con-
clusion follows similarly. Q.E.D.

Lemma (2, P. 51). Consider the Gram-Schmidt procedure (12)-(14). Let ξ0, . . . , ξi
be some vectors in ℜn. Suppose that ξ0, . . . , ξi−1 are linearly independent, and
there exists some α0, . . . , αi−1 such that ξi =

∑i−1
j=0 αjξj. Then we have di = 0.

Proof. Using the matrix B defined in Eq. (15), we have ξi =
∑i−1

j=0 ᾱjdj , where

[ᾱ0 . . . ᾱi−1]
′ = B−1[α0 . . . αi−1]

′. As a result, di =
∑i−1

j=0 c̄ijdj , where c̄ij =
ᾱj + cij . Then we have

d′iQdi = d′iQ

(
i−1∑
j=0

c̄ijdj

)
=

i−1∑
j=0

c̄ijd
′
iQdj = 0,

where the last equality is due to the construction rule of di. Since Q is positive
definite, we have that di is zero. Q.E.D.

Note that a special case of [Lemma 2, P. 51] is where ξi = 0, where we also have
di = 0.

P. 52
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Lemma (1, P. 52). Let g0, . . . , gi be some nonzero vectors such that g0, . . . , gi−1

are linearly independent. Then g0, . . . , gi are linearly dependent if and only if
there exists some α0, . . . , αi−1, not all zero, such that gi =

∑i−1
j=0 αjgj.

Proof. The if part is obvious. To see the only if part, assume that g0, . . . , gi is
linearly dependent. Then there exists some βj , j = 0, . . . , i, not all zero, such

that
∑i

j=0 βjgj = 0. We must have βi ̸= 0 as otherwise it implies that g0, . . . , gi
are linearly dependent. We obtain the coefficients by setting αj = −βj/βi,
j = 0, . . . , i− 1. Q.E.D.

Lemma (2, P. 52). Let g0, . . . , gi be some nonzero vectors such that g0, . . . , gi−1

are linearly independent. If g′igj = 0 for j = 0, . . . , i − 1, then g0, . . . , gi are
linearly independent.

Proof. Assume that g0, . . . , gi are linearly dependent. By [Lemma 1, P. 52], we

have gi =
∑i−1

j=0 αjgj for some α0, . . . , αi−1, not all zero. However, this implies

g′igi =
∑i−1

j=0 αjg
′
igj = 0, which contradicts with gi being nonzero. Q.E.D.

Lemma (3, P. 52). Starting with g0 ̸= 0, let g0, . . . , gi, i ≤ n− 1, be the vectors
computed by the conjugate gradient method such that they are all nonzero. Then
these vectors are linearly independent and the vectors d0, . . . , di are nonzero.

Proof. We prove the statement by applying the conditions gj ̸= 0 one at a time.
By construction, we have d0 = −g0 ̸= 0, and g′1d0 = −g′1g0 = 0. Since g1 ̸= 0,
this implies that g0, g1 are linearly independent. According to [Lemma 1(a), P.
51], this means that d1 is nonzero.

Next, we apply the condition g2 ̸= 0. By [COLMM Prop. 1.18, P. 50], we
have g′2dj = 0 for j = 0, 1. According to [Lemma 1(d), P. 51], this implies that
g′2gj = 0 for j = 0, 1. Since we have shown that g0, g1 are linearly independent,
applying [Lemma 2, P. 52], we obtain that g0, g1, g2 are linearly independent
and d2 is nonzero.

We can proceed similarly to g0, . . . , gi, i ≤ n− 1. Q.E.D.

Lemma (4, P. 52). Starting with g0 ̸= 0, let g0, . . . , gi, i ≤ n− 1, be the vectors
computed by the conjugate gradient method such that they are all nonzero. Then
corresponding stepsize parameters α0, . . . , αi are positive.

Proof. According to [Lemma 3, P. 52], the vectors d0, . . . , di are nonzero. By
construction of the conjugate gradient method, we have

(xk + αkdk)
′Qdk = 0, k = 0, . . . , i.
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Since d′kQdk > 0, the stepsize αk being positive is equivalent to x′
kQdk < 0,

k = 0, . . . , i. Indeed, for every k,

x′
kQdk = g′kdk = g′k(−gk + βkdk−1) = −|gk|2,

where the formula for dk is given by [COLMM Eq. (63), P. 52]. Since gk ̸= 0,
we conclude the proof. Q.E.D.

From above discussion, it can be seen that if gk ̸= 0, we have

αk =
|gk|2

d′kQdk
.

P. 53 This can be verified by checking the conditions stated in [COLMM
Prop. 1.18, P. 50].

P. 54 In what follows, we show that Qx0, . . . , Q
k+1x0 span the same subspace

as d0, . . . , dk.

Lemma (1, P. 54). Let v0, . . . , vi ∈ ℜn be some vectors, where i ≤ n − 1, and

g0, . . . , gi ∈ ℜn be some vectors such that gj =
∑i

k=0 akjvk, for some coefficients
akj, j = 0, . . . , i. If the vectors g0, . . . , gi are linearly independent, then the
matrix A is invertible, where

A =


a00 a01 · · · a0i
a10 a11 · · · a1i
...

...
. . .

...
ai0 ai1 · · · aii

 .

Moreover, the vectors v0, . . . , vi are also linearly independent and span the same
subspace as the vectors g0, . . . , gi.

Proof. Suppose that A is not invertible. Then there exists some α0, . . . , αi,
not all zero, such that A[α0 . . . αi]

′ = 0. As a result, we have
∑i

j=0 αjgj =
[v0 . . . vi]A[α0 . . . αi]

′ = 0, which contradicts with the fact that g0, . . . , gi are
linearly independent. Therefore, A is invertible.

Suppose that there exists some β0, . . . , βi, not all zero, such that
∑i

j=0 βjvj = 0.

Then we have
∑i

j=0 β̄jgj = 0, where [β̄0 . . . β̄i]
′ = A−1[β0 . . . βi]

′ ̸= 0.
This contradicts with the fact that g0, . . . , gi are linearly independent. The
remaining part of the proof can be established by using the fact that A is
invertible. Q.E.D.

Lemma (2, P. 54). Starting with g0 = Qx0 ̸= 0, let g0, . . . , gi, be the vectors
computed by the conjugate gradient method such that they are all nonzero. Let
d0, . . . , di be the corresponding Q-conjugate vectors.
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(a) For j = 0, . . . , i, we have

gj =

j∑
k=0

akjQ
k+1x0, dj =

j∑
k=0

bkjQ
k+1x0, for k = 0, . . . , j (16)

where akj and bkj, k = 0, . . . , j, are some coefficients.

(b) The upper-triangular matrices A and B are invertible, where

A =


a00 a01 · · · a0i

a11 · · · a1i
. . .

...
aii

 , B =


b00 b01 · · · b0i

b11 · · · b1i
. . .

...
bii

 .

(c) The vectors Qx0, . . . , Q
i+1x0 are linearly independent. Moreover, they

span the same subspace as the vectors d0, . . . , di.

Proof. (a) We show that Eq. (16) holds by induction. Clearly, for j = 0, we
have g0 = Qx0 and d0 = −Qx0. Suppose next that Eq. (16) holds for j = ℓ.
Then for j = ℓ+ 1, we have

gℓ+1 = Q(xℓ + αℓdℓ) = Qxℓ + αℓQdℓ = gℓ + αℓQdℓ.

Then the induction hypothesis yields

gℓ+1 = a0ℓQx0 + αℓbℓℓQ
ℓ+2x0 +

ℓ∑
k=1

(akℓ + αℓb(k−1)ℓ)Q
k+1x0 (17)

Similarly, we can show it holds for dℓ+1, as dℓ+1 = −gℓ+1 + βℓ+1dℓ for some
βℓ+1; cf. [COLMM Eq. (63), P. 52].

(b) Since g0, . . . , gi are nonzero, then by [Lemma 3, P. 52], we have that g0, . . . , gi
are linearly independent. Applying [Lemma 1, P. 54] by setting vj = Qj+1x0,
we have that A is invertible. Similarly, we have that B is invertible.

(c) As argued in part (b), we have that g0, . . . , gi are linearly independent. The
linear independence of Qx0, . . . , Q

i+1x0 follows by applying [Lemma 1, P. 54]
with vj = Qj+1x0. Moreover, we have that the vectors Qx0, . . . , Q

i+1x0 span
the same subspace as g0, . . . , gi. Since g0, . . . , gi and d0, . . . , di span the same
subspace, cf. [Lemma 1(c), P. 51], we have that Qx0, . . . , Q

i+1x0 span the same
subspace as d0, . . . , di. Q.E.D.

From above discussion, we can also show that the stepsize parameters α0, . . . , αi−1

are nonzero; cf. [Lemma 4, P. 52]. Indeed, by the definition of g0, we have
a00 = 1. From Eq. (17), we have that, for j = 1, . . . , i, ajj = αj−1b(j−1)(j−1).
Since A is invertible and upper triangular, we have that αj−1b(j−1)(j−1) ̸= 0,
which implies that αj−1 ̸= 0, j = 1 . . . , i.

25



P. 59 We provide a detailed derivation of quasi-Newton update formulas, as-
suming the related matrix inversions exist. We start with the DFP formula,
which directly computes the approximation of the inverse of the Hessian. In
particular, DFP computes the positive definite matrix Dk+1 such that

Dk+1qk = pk, (18)

where pk = xk+1 − xk and qk = ∇f(xk+1) − ∇f(xk). By contrast, BFGS
formula is derived by computing directly the approximation of Hessian Hk+1

such that
qk = Hk+1pk.

The corresponding matrixDk+1 in BFGS is obtained via inversion ofHk+1.

For the DFP formula, since Dk+1 is symmetric, we consider the candidate that
takes the form

Dk+1 = Dk + αkpkp
′
k + βkDkqkq

′
kDk.

Multiplying on both sides qk, we obtain

Dk+1qk = Dkqk + αkpkp
′
kqk + βkDkqkq

′
kDkqk.

We obtain the equality (18) by setting αk and βk as

αk =
1

p′kqk
, βk = − 1

q′kDkqk
.

As a result, we obtain the DFP update equation

Dk+1 = Dk +
pkp

′
k

p′kqk
− Dkqkq

′
kDk

q′kDkqk
. (19)

Repeating the computation with Hk, Hk+1 in place of Dk, Dk+1, pk and qk in
place of qk and pk, we obtain the following equation:

Hk+1 = Hk +
qkq

′
k

p′kqk
− Hkpkp

′
kHk

p′kHkpk
.

We will compute the inversion of the matrix Hk+1, using the Sherman-Morrison
formula, on which we provide a brief discussion.

Lemma (1, P. 59). Let A be an n by n invertible matrix and u, v ∈ ℜn be some
vectors. The matrix A+ uv′ is invertible if and only if 1 + v′A−1u ̸= 0.

Proof. The following matrix identity holds:[
I 0
v′ 1

] [
I +A−1uv′ A−1u

0 1

] [
I 0

−v′ 1

]
=

[
I A−1u
0 1 + v′A−1u

]
,

where I is the identity matrix of suitable dimension. Taking determinant on
both sides, we have that the determinant of the matrix I + A−1uv′ equals to
1 + v′A−1u. Since I + A−1uv′ = A−1(A + uv′), the determinant of A + uv′ is
nonzero if and only if 1 + v′A−1u ̸= 0. Q.E.D.
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The following is the Sherman-Morrison formula. Its proof can be obtained by
verifying the matrix identity.

Lemma (2, P. 59). Let A be an n by n invertible matrix and u, v ∈ ℜn be some
vectors. If 1 + v′A−1u ̸= 0, we have

(A+ uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u
. (20)

Let us return to the derivation of BFGS. We have

Hk+1 = Hk + γkqkq
′
k + κkHkpkp

′
kHk, (21)

where

γk =
1

p′kqk
, κk = − 1

p′kHkpk
.

We will apply Eq. (20) twice, first by treating the matrix Hk + γkqkq
′
k as the

matrix A, and then compute the inversion of the matrix Hk+γkqkq
′
k by treating

Hk as A. Note that we cannot treat Hk + κkHkpkp
′
kHk as the matrix A in

Eq. (20). This is because 1 + κkp
′
kHk(H

−1
k )Hkpk = 0, and therefore it is not

invertible; cf. [Lemma 1, P. 59].

Applying Eq. (20) to (21) with the matrix Hk + γkqkq
′
k in place of A, we

have

H−1
k+1 = (Hk + γkqkq

′
k)

−1 − (Hk + γkqkq
′
k)

−1κkHkpkp
′
kHk(Hk + γkqkq

′
k)

−1

1 + κkp′kHk(Hk + γkqkq′k)
−1Hkpk

.

(22)
Similarly, applying Eq. (20) to (Hk + γkqkq

′
k)

−1, we have

(Hk + γkqkq
′
k)

−1 = H−1
k −

H−1
k γkqkq

′
kH

−1
k

1 + γkq′kH
−1
k qk

. (23)

Next, we address the fraction term in (22). Applying Eq. (23) to the denomi-
nator in Eq. (22), we obtain

1 + κkp
′
kHk(Hk + γkqkq

′
k)

−1Hkpk

=1 + κkp
′
kHk

(
H−1

k −
H−1

k γkqkq
′
kH

−1
k

1 + γkq′kH
−1
k qk

)
Hkpk

=1 + κkp
′
kHkpk − κkp

′
kγkqkq

′
kpk

1 + γkq′kH
−1
k qk

=− κkp
′
kqk

1 + γkq′kH
−1
k qk

,

in view of the values of γk and κk.
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We next simplify the term (Hk + γkqkq
′
k)

−1Hkpk appeared in the numerator in
Eq. (22), which reads

(Hk + γkqkq
′
k)

−1Hkpk

=

(
H−1

k −
H−1

k γkqkq
′
kH

−1
k

1 + γkq′kH
−1
k qk

)
Hkpk

=pk −
H−1

k γkqkq
′
kpk

1 + γkq′kH
−1
k qk

=pk −
H−1

k qk

1 + γkq′kH
−1
k qk

=
hk

1 + γkq′kH
−1
k qk

,

where hk = (1 + γkq
′
kH

−1
k qk)pk −H−1

k qk. Together with the preceding calcula-
tion, we can simplify the fractional term in Eq. (22) as follows:

(Hk + γkqkq
′
k)

−1κkHkpkp
′
kHk(Hk + γkqkq

′
k)

−1

1 + κkp′kHk(Hk + γkqkq′k)
−1Hkpk

=
κkhkh

′
k

(1 + γkq′kH
−1
k qk)2

1 + γkq
′
kH

−1
k qk

−κkp′kqk

=− hkh
′
k

p′kqk(1 + γkq′kH
−1
k qk)

=−
(
(1 + γkq

′
kH

−1
k qk)pk −H−1

k qk
)(
(1 + γkq

′
kH

−1
k qk)pk −H−1

k qk
)′

p′kqk(1 + γkq′kH
−1
k qk)

.

Applying the preceding equation and Eq. (23) into (22) and by setting Dk+1 =
H−1

k+1 and Dk = H−1
k , we have

Dk+1

=Dk − Dkγkqkq
′
kDk

1 + γkq′kDkqk
+

(
(1 + γkq

′
kDkqk)pk −Dkqk

)(
(1 + γkq

′
kDkqk)pk −Dkqk

)′
p′kqk(1 + γkq′kDkqk)

=Dk +
−Dkqkq

′
kDk +

(
(1 + γkq

′
kDkqk)pk −Dkqk

)(
(1 + γkq

′
kDkqk)pk −Dkqk

)′
p′kqk(1 + γkq′kDkqk)

=Dk +
1

p′kqk(1 + γkq′kDkqk)

(
−Dkqkq

′
kDk + (1 + γkq

′
kDkqk)

2pkp
′
k−

(1 + γkq
′
kDkqk)Dkqkp

′
k − (1 + γkq

′
kDkqk)pkq

′
kDk +Dkqkq

′
kDk

)
=Dk +

(1 + γkq
′
kDkqk)

2pkp
′
k − (1 + γkq

′
kDkqk)Dkqkp

′
k − (1 + γkq

′
kDkqk)pkq

′
kDk

p′kqk(1 + γkq′kDkqk)

=Dk +
(1 + γkq

′
kDkqk)pkp

′
k

p′kqk
− Dkqkp

′
k + pkq

′
kDk

p′kqk
.
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In view of γk = 1/p′kqk, we have

Dk+1 = Dk +
pkp

′
k

p′kqk
+

(q′kDkqk)pkp
′
k

(p′kqk)
2

− Dkqkp
′
k + pkq

′
kDk

p′kqk
(24)

Equation (24) is the BFGS update given in [NLP Ex2.2.2, P. 145].

To obtain [COLMM Eq. (80), P. 59], we focus on the term
(q′kDkqk)pkp

′
k

(p′
kqk)

2 −
Dkqkp

′
k+pkq

′
kDk

p′
kqk

by forming a quadratic form as

(q′kDkqk)pkp
′
k

(p′kqk)
2

− Dkqkp
′
k + pkq

′
kDk

p′kqk

=(q′kDkqk)

(
pkp

′
k

(p′kqk)
2
− Dkqkp

′
k + pkq

′
kDk

(q′kDkqk)(p′kqk)

)

=(q′kDkqk)

(
pkp

′
k

(p′kqk)
2
− Dkqkp

′
k

(q′kDkqk)(p′kqk)
− pkq

′
kDk

(q′kDkqk)(p′kqk)
+

Dkqkq
′
kDk

(q′kDkqk)2
− Dkqkq

′
kDk

(q′kDkqk)2

)

=− Dkqkq
′
kDk

q′kDkqk
+ (q′kDkqk)

(
pk
p′kqk

− Dkqk
q′kDkqk

)(
pk
p′kqk

− Dkqk
q′kDkqk

)′

.

Therefore, we obtain the BFGS formula

Dk+1 = Dk+
pkp

′
k

p′kqk
−Dkqkq

′
kDk

q′kDkqk
+(q′kDkqk)

(
pk
p′kqk

− Dkqk
q′kDkqk

)(
pk
p′kqk

− Dkqk
q′kDkqk

)′

.

Together with the DFP update given in Eq. (19), the class of updating formula
can be written as

Dk+1 = Dk+
pkp

′
k

p′kqk
−Dkqkq

′
kDk

q′kDkqk
+ζk(q

′
kDkqk)

(
pk
p′kqk

− Dkqk
q′kDkqk

)(
pk
p′kqk

− Dkqk
q′kDkqk

)′

,

(25)
where 0 ≤ ζk ≤ 1.

Alternatively, starting with Eq. (24) we can also group together the terms Dk+
(q′kDkqk)pkp

′
k

(p′
kqk)

2 − Dkqkp
′
k+pkq

′
kDk

p′
kqk

by using the following identity

(q′kDkqk)pkp
′
k = pk(q

′
kDkqk)p

′
k = pkq

′
kDkqkp

′
k = (qkp

′
k)

′Dk(qkp
′
k),

as q′kDkqk is a scalar. Together with γk = 1/(p′kqk), we obtain

Dk +
(q′kDkqk)pkp

′
k

(p′kqk)
2

− Dkqkp
′
k + pkq

′
kDk

p′kqk

=Dk + γ2
k(qkp

′
k)

′Dk(qkp
′
k)− γkDk(qkp

′
k)− γk(qkp

′
k)

′Dk

=Dk

(
I − γk(qkp

′
k)
)
+ γk(qkp

′
k)

′Dk

(
γ(qkp

′
k)− I

)
=
(
I − γk(qkp

′
k)

′)Dk

(
I − γ(qkp

′
k)
)

=(I − γkqkp
′
k)

′Dk(I − γkqkp
′
k).
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In view of Eq. (24), we obtain

Dk+1 =

(
I − qkp

′
k

p′kqk

)′

Dk

(
I − qkp

′
k

p′kqk

)
+

pkp
′
k

p′kqk
.

This formula is used for the derivation of L-BFGS; see [NLP Ex2.2.3, P. 145].

P. 60 It is implicitly required here that αk ≥ 0, and it has been stated in
the first paragraph in [COLMM Section 1.3.5, P. 59]. The proof also uses
this condition. Indeed, from ∇f(xk)

′d ̸= ∇f(xk+1)
′d, we have xk ̸= xk+1,

which implies that αk ̸= 0. Together with αk ≥ 0, we have αk > 0. In
addition, p′kqk = αkd

′
k[∇f(xk+1−∇f(xk)]. Together with αk > 0, the condition

∇f(xk)
′dk < ∇f(xk+1)

′dk implies that p′kqk > 0.

P. 61

Lemma (1, P. 61). Consider the quasi-Newton algorithm applied to minimiza-
tion of the positive definite quadratic function f(x) = 1

2x
′Qx, where Q is positive

definite. Suppose that Dk is positive definite, ∇f(xk) ̸= 0, and the stepsize αk

is chosen by
f(xk + αkxk) = min

α
f(xk + αxk). (26)

Then αk > 0, and Dk+1 given by Eq. (25) is well-defined and positive definite.

Note that although αk selected according to Eq. (26) satisfies the condition
∇f(xk)

′dk < ∇f(xk+1)
′dk used in [COLMM Prop. 1.20, P. 60], we cannot

apply [COLMM Prop. 1.20, P. 60] here to assert that Dk+1 is positive definite.
This is because that it is implicitly required in [COLMM Prop. 1.20, P. 60]
that αk ≥ 0, and the proof of [COLMM Prop. 1.20, P. 60] also relies on this
condition; see [P. 60]. Yet, αk ≥ 0 is something we aim to show here.

Proof. Since ∇f(xk) ̸= 0, we have xk ̸= 0. Since αk is defined according to
Eq. (26), we have (xk + αkdk)

′Qdk = 0. Expanding the term dk = −DkQxk,
we obtain

αkx
′
kQDkQDkxk = x′

kQDkQxk.

Therefore, we have αk > 0. This implies that qk = αkQdk ̸= 0. In view that
pk = αkdk, we have q′kpk = α2

kdkQdk > 0. Therefore, Dk+1 given by Eq. (25)
is well-defined. The proof for Dk+1 being positive definite is identical to the
corresponding part in the proof of [COLMM Prop. 1.20, P. 60]. Q.E.D.

Since none of the vectors x0, . . . , xn−1 is optimal, repeatedly applying [Lemma
1, P. 61], we have that starting from a positive definite matrix D0, the stepsizes
α0, . . . , αn−1 are positive, and the matrices D1, . . . , Dn are positive definite.
Moreover, we have p0 . . . , pn−1 are nonzero, as α0, . . . , αn−1 are positive.

In what follows, we provide somewhat more direct arguments to show that

d′iQdj = 0, 0 ≤ i < j ≤ k, k = 1, . . . , n− 1 (27)

Dk+1qi = pi, 0 ≤ i ≤ k, k = 0, . . . , n− 1 (28)
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which follows closely those given in the proof for [COLMM Prop. 1.21, P. 61].
First, for k = 0, . . . , n− 1, we have Dk+1qk = pk as shown in [COLMM P. 61].
In view that pk = αkdk and Qpk = qk, we have

Dk+1Qdk = dk, k = 0, . . . , n− 1. (29)

Therefore, for k = 1, . . . , n− 1, we have

d′kQdk−1 = −xkQDkQdk−1 = −xkQdk−1 = 0,

where the second to last equality is due to Eq. (29) and the last equality is due
to that ∇f(xk)

′dk−1 = 0. Moreover, the above two derivations yield

p′kQpk−1 = p′kqk−1 = q′kpk−1 = q′kDkqk−1 = 0, k = 1, . . . , n− 1. (30)

The above arguments have shown that Eq. (27) holds for k = 1 and Eq. (28)
holds for k = 0. To show that Eq. (28) holds for k = 1, we only need to show
that D2q0 = p0. This can be shown by using Eq. (30) with k = 1.

Then we can continue with induction, assuming that Eqs. (27) and (28) hold
for k, where k ≤ n − 2. From induction hypothesis, we have Dk+1Qdi =
Dk+1Qpi/αi = pi/αi = di, 0 ≤ i ≤ k. Therefore,

d′k+1Qdi = −x′
k+1QDk+1Qdi = −xk+1Qdi = −(xi+1+αi+1di+1+· · ·+αkdk)Qdi.

By induction hypothesis, we have (αi+1di+1 + · · · + αkdk)Qdi = 0. Moreover,
xi+1Qdi due to αi is computed via minimizing rule. Therefore, we show Eq. (27)
for k + 1. Consequently, we also have

p′k+1Qpi = p′k+1qi = q′k+1pi = q′k+1Dk+1qi = 0, 0 ≤ i ≤ k, (31)

where in the third equality, we used induction hypothesis Dk+1qi = pi. Then
Dk+2qi = pi can be shown by using the equalities given in Eq. (31), as is given
in [COLMM P. 62].

As the last step of derivation, we have DnQpi = pi, i = 0, . . . , n − 1, and the
vectors p0, . . . , pn−1 are Q-conjugate, thus linearly independent. This implies
that DnQv = v for all v ∈ ℜn. Applying following lemma, we have Dn =
Q−1.

Lemma (2, P. 61). Let A be an n by n matrix such that Av = v for all v ∈ ℜn.
Then A is the identity matrix.

Proof. Since Av = v, then (I − A)v = 0 for all v. We can consider v =
ei, where ei is the vector that has ith component being 1 and 0 otherwise.
Then (I − A)ei = 0 shows that the ith column of A is ei. This concludes the
proof. Q.E.D.

P. 62
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Lemma (1, P. 62). Suppose that the vectors d0, . . . , dk ∈ ℜn are linearly in-
dependent and the n by n matrix Q is positive definite. Then the matrix R is
positive definite, where

R =


d′0Qd0 d′1Qd0 · · · d′kQd0
d′1Qd0 d′1Qd1 · · · d′kQd1

...
...

. . .
...

d′kQd0 d′kQd1 · · · d′kQdk

 .

Proof. Consider the vector a = [α0 α1 . . . αi]
′. We have

a′Ra =

k∑
i=0

k∑
j=0

αiαjd
′
iQdj =

(
k∑

i=0

αidi

)′

Q

(
k∑

i=0

αidi

)
.

However, since d0, . . . , dk ∈ ℜn are linearly independent and Q is positive defi-
nite, (

∑k
i=0 αidi)

′Q(
∑k

i=0 αidi) = 0 if and only if α0 = α1 = · · · = αk = 0 and
positive otherwise. Therefore, matrix R is positive definite. Q.E.D.

Lemma (2, P. 62). Suppose that the vectors d0, . . . , dk ∈ ℜn are linearly inde-
pendent, x0 ∈ ℜn is some vector, and Q is an n by n positive definite matrix.
Then the function f(x) = 1

2x
′Qx admits a unique minimizer on the manifold

M defined as

M = {z | z = x0 + α0d0 + α1d1 + · · ·+ αkdk, α0, . . . , αk ∈ ℜ}.

Proof. First, we show that f attains a minimum in M . Indeed, we have

inf
z∈M

f(z) = inf
z∈C

f(z),

where C = M ∩ {z | f(z) ≤ f(x0)}. Since the set C is compact, f attains a
minimum on C, which also belongs to M .

Suppose that z∗ = x0 +
∑k

i=0 α
∗
i di attains the minimum. Then it satisfies the

first order necessary condition, which states

d′0Qd0α
∗
0 + d′1Qd0α

∗
1 + · · ·+ d′kQd0α

∗
k = −d′0Qx0

d′1Qd0α
∗
0 + d′1Qd1α

∗
1 + · · ·+ d′kQd1α

∗
k = −d′1Qx0

...

d′kQd0α
∗
0 + d′kQd1α

∗
1 + · · ·+ d′kQdkα

∗
k = −d′kQx0.

The above equation can be written in a compact form as Ra∗ = b, where
a∗ = [α∗

0 · · · α∗
k]

′ and b = [−d′0Qx0 − d′1Qx0 · · · − d′kQx0]
′, and R is given

as in [Lemma 1, P. 62]. Since by [Lemma 1, P. 62], R is positive definite, thus
invertible. The necessary condition uniquely define a∗. Q.E.D.
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Lemma (3, P. 62). Starting with D0 = I, let x0 . . . , xk and d0, . . . , dk be the se-
quences generated by the quasi-Newton algorithm applied to minimization of the
positive definite quadratic function f(x) = 1

2x
′Qx, where Q is positive definite.

Suppose that the stepsize αi is chosen by

f(xi + αkxi) = min
α

f(xi + αxi).

Assume further that x0, . . . , xk are not optimal.

(a) For i = 0, . . . , k, there exists scalars βi
ℓj and biℓ such that

Di = I +

i∑
ℓ=0

i∑
j=0

βi
ℓj∇f(xℓ)∇f(xj)

′, (32)

di =

i∑
ℓ=0

biℓ∇f(xℓ). (33)

(b) For i = 0, . . . , k, we have Mi = M̃i, where

Mi = {z | z = x0 + γ0∇f(x0) + · · ·+ γi∇f(xi), γ0, . . . , γi ∈ ℜ},
M̃i = {z | z = x0 + γ0d0 + · · ·+ γidi, γ0, . . . , γi ∈ ℜ}.

(c) Starting with x̂0 = x0, let x̂0 . . . , x̂k be the sequences generated by the
conjugate gradient methods. We have x̂i = xi, i = 0, . . . , k.

Proof. (a) Since x0, . . . , xk are not optimal, then D1, . . . , Dk are well-defined ac-
cording to [Lemma 1, P. 61]. We show Eqs. (32) and (33) together by induction.
Clearly they hold for i = 0 since D0 = I and d0 = −D0∇f(x0) = −∇f(x0).
Suppose that they hold for i. Then to show Eq. (32) holds for Di+1, we
check the terms pi and Diqi appeared in Eq. (25). Clearly, pi = αidi, where

di =
∑i

ℓ=0 b
i
ℓ∇f(xℓ), according to induction hypothesis. Similarly, Diqi =

(I +
∑i

ℓ=0

∑i
j=0 β

i
ℓj∇f(xℓ)∇f(xj)

′)[∇f(xi+1) −∇f(xi)]. Therefore, Di+1 can
be written as the form given by Eq. (32). Since di+1 = −Di+1∇f(xi+1). we
have Eq. (33) holds for i+ 1.

(b) From part (a), we have that dℓ, ℓ = 0, . . . , i, are linear combinations of
∇f(xℓ), ℓ = 0, . . . , i. From [COLMM Prop. 1.21(a), P. 61], the vectors dℓ,
ℓ = 0, . . . , i are linearly independent. Then by [Lemma 1, P. 54], the vectors
∇f(xℓ), ℓ = 0, . . . , i are also linearly independent, and span the same space as
dℓ, ℓ = 0, . . . , i.

(c) We will show that the vectors x̂0 . . . , x̂k are well-defined and x̂i = xi, i =

0, . . . , k, simultaneously by induction. To this end, denote by d̂0 . . . , d̂k the Q-
conjugate vectors computed via the conjugate gradient method. In addition, we
define the manifolds M̂i as

M̂i = {z | z = x̂0 + γ0d̂0 + · · ·+ γid̂i, γ0, . . . , γi ∈ ℜ}.
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If x̂0, . . . , x̂i are nonoptimal, by [Lemma 3, P. 52], ∇f(x̂0), . . . ,∇f(x̂i) are lin-
early independent. Moreover, by [Lemma 1, P. 51], we have

M̂i = {z | z = x̂0 + γ0∇f(x̂0) + · · ·+ γi∇f(x̂i), γ0, . . . , γi ∈ ℜ}.

We will show by induction that M̂i = Mi. Then by [Lemma 2, P. 62], x̂i+1 =
xi+1.

Since we have x̂0 = x0, d̂0 = d0 is nonzero, and M̂0 = M0. As a result, we have
x̂1 = x1. Moreover, d̂1 is well-defined and is nonzero. Suppose that x̂j = xj ,

j = 0, . . . , i, where i ≤ k − 1. Therefore, d̂i is well-defined and nonzero, and
M̂i = Mi. By [Lemma 2, P. 62], x̂i+1 = xi+1. Q.E.D.

P. 63 Conjugate gradient method computes dk = −gk + βkdk−1, where βk =
|gk|2/|gk−1|2 requires 2n+ 1 multiplications.

P. 64 Considering computing Dk+1 via Eq. (25). Computing pkp
′
k requires n2

multiplications, and p′kqk n multiplications. Computing first Dkqk requires n2

multiplications, then computing Dkqkq
′
kDk requires another n2 multiplications.

Proceeding similarly, we can see that computing Dk+1 requires no more than
Mn2 multiplications, where M is some constant.

P. 64 In Newton’s method, once Cholesky factorization for ∇2f(xk) is ob-
tained, i.e., ∇2f(xk) = LkL

′
k, computing dk via solving the equation LkL

′
kdk =

−∇f(xk) requires n
2 + n multiplication. To see this, we first solve L′

kdk, which
requires n(n + 1)/2 multiplications. Then we solve dk, which also requires
n(n+ 1)/2 multiplications.

P.65 We first quantify the approximation error of forward difference formula
for computing ∂f(x)/∂xi, assuming f ∈ C2. First, we note that ∂f(x)/∂xi =
∇f(x)′ei, where ei is the ith column of the identity matrix. By mean value
theorem, we have

f(x+ hei) = f(x) + h∇f(x)′ei +
1

2
h2e′i∇2f

(
x+ α(x, x+ hei)hei

)
ei, (34)

where α(x, x + hei) ∈ [0, 1], which depends on x and x + hei. Then we have
that

(1/h)[f(x+ hei)− f(x)]− ∂f(x)/∂xi =
1

2
hg
(
x+ α(x, x+ hei)hei

)
,

where g(x) = ∂2f(x)/∂xi∂xi. Let {hℓ} ⊂ ℜ be a sequence such that hℓ → 0
as ℓ → ∞. Then the sequence {qℓ} is bounded by some value M , where qℓ =
g
(
x+ α(x, x+ hℓei)hℓei

)
.

Next, we quantify the approximation error of the central difference formula,
assuming f ∈ C3. By mean value theorem, we also have

f(x− hei) = f(x)− h∇f(x)′ei +
1

2
h2e′i∇2f

(
x− α(x, x− hei)hei

)
ei, (35)
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where α(x, x−hei) ∈ [0, 1]. Subtracting Eq. (34) from Eq. (35), we have

(1/2h)[f(x+ hei)− f(x− hei)]− ∂f(x)/∂xi

=
1

4
h
[
g
(
x+ α(x, x+ hei)hei

)
− g
(
x− α(x, x− hei)hei

)]
.

Since f ∈ C3, applying mean value theorem, we have

g
(
x+ α(x, x+ hei)hei

)
=g(x) +∇g

(
x+ β(x, x+ α(x, x+ hei)hei)α(x, x+ hei)hei

)′
α(x, x+ hei)hei,

g
(
x− α(x, x− hei)hei

)
=g(x)−∇g

(
x− β(x, x− α(x, x− hei)hei)α(x, x− hei)hei

)′
α(x, x− hei)hei,

where β(x, x+α(x, x+hei)hei) ∈ [0, 1] and β(x, x−α(x, x−hei)hei) ∈ [0, 1] are
the coefficients appeared in the mean value theorem. Therefore, we have

g
(
x+ α(x, x+ hei)hei

)
− g
(
x− α(x, x+ hei)hei

)
=
[
∇g
(
x+ β(x, x+ α(x, x+ hei)hei)α(x, x+ hei)hei

)′
α(x, x+ hei)ei+

∇g
(
x− β(x, x− α(x, x− hei)hei)α(x, x− hei)hei

)′
α(x, x− hei)ei

]
h.

Let {hℓ} ⊂ ℜ be a sequence such that hℓ → 0 as ℓ → ∞. Then the sequence
{rℓ} is bounded by some value M , where

rℓ =∇g
(
x+ β(x, x+ α(x, x+ hℓei)hℓei)α(x, x+ hℓei)hℓei

)′
α(x, x+ hℓei)ei+

∇g
(
x− β(x, x− α(x, x− hℓei)hℓei)α(x, x− hℓei)hℓei

)′
α(x, x− hℓei)ei.

P. 68 Let us provide an alternative proof. We define the set X = {x | |x| =
1, x′Px ≤ 0}. If X = ∅, then c = 0 satisfies P + cQ > 0. Otherwise, for every
x ∈ X, we have x′Qx > 0 since x′Px > 0 for all x satisfying x′Qx = 0. Consider
the function f : X 7→ ℜ defined as f(x) = −x′Px/(x′Qx), which is continuous
and nonnegative. Since the set X is compact, we have maxx∈X f(x) is attained
and finite. Let c > maxx∈X f(x). We have P + cQ > 0. From this proof, it can
be seen that if P + c̄Q > 0 for some c̄, then P + cQ > 0 for all c ≥ c̄.

P. 68

Lemma (1, P. 68). Let {ak} and {bk} be real sequences such that lim infk ak =
a ∈ ℜ and lim supk bk = b ∈ ℜ. Then {ck} and {dk} are real sequences, where
ck = infn≥k an and dk = supn≥k bn.

Proof. We prove the case for dk. Since dk → b, for some ϵ > 0, there exists a
k̄ such that |dk − b| < ϵ for all k ≥ k̄. Therefore, what remains to show is that
dk ∈ ℜ, k = 1, 2, . . . , k̄− 1. By the definition of dk, we have dk̄ ≤ dk. Moreover,
dk ≤ max{bk, bk̄−1, dk̄ + ϵ}. Therefore, dk ∈ ℜ, k = 1, . . . , k̄ − 1. Q.E.D.
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Lemma (2, P. 68). Let {bk} be a real sequence sup{bk} = b ∈ ℜ. Then for
every c ∈ ℜ, we have sup{bk + c} = b+ c.

Proof. For all k, we have bk+c ≤ b+c so that b+c is an upper bound of {bk+c}.
Moreover, for every ϵ > 0, there exists some k such that bk + c > b + c − ϵ.
Therefore, sup{bk + c} = b+ c. Q.E.D.

Lemma (3, P. 68). Let {ak} and {bk} be real sequences such that lim ak = a ∈ ℜ
and lim sup bk = b ∈ ℜ. Then we have

lim sup
k→∞

(ak + bk) = lim
k→∞

ak + lim sup
k→∞

bk.

Proof. We first show that lim sup(ak + bk) ≤ lim ak + lim supk→∞ bk. For every
k, we have supn≥k(an + bn) ≤ supn≥k an + supn≥k bn. Taking limit on both
sides, we have lim sup(ak + bk) ≤ limk→∞(supn≥k an + supn≥k bn). By [Lemma
1, P. 68], the sequences {supn≥k an} and {supn≥k bn} with index k are real
sequences, which are also convergent. Therefore, we have lim sup(ak + bk) ≤
lim sup ak + lim sup bk = lim ak + lim sup bk.

Conversely, for every k, we have

an + bn ≥ bn + inf
ℓ≥k

(aℓ), n ≥ k.

Taking supreme on both sides and applying [Lemma 2, P. 68] with c = infℓ≥k aℓ,
we have

sup
n≥k

(an + bn) ≥ sup
n≥k

(
bn + inf

ℓ≥k
aℓ

)
= sup

n≥k
bn + inf

n≥k
an.

By [Lemma 1, P. 68], the sequences {infn≥k an} and {supn≥k bn} with index k
are real sequences, which are also convergent. Taking limits on both sides, we
have

lim sup
k→∞

(ak + bk) ≥ lim
k→∞

(
sup
n≥k

bn + inf
n≥k

an

)
= lim sup

k→∞
bk + lim

k→∞
ak,

which is the desired equality. Q.E.D.

From [Lemma 3, P. 68], we have

lim sup
k→∞,k∈K

(x′
kPxk + kx′

kQxk) = x̄′Px̄+ lim sup
k→∞,k∈K

(kx′
kQxk) ≤ 0. (36)

We now claim that x̄′Qx̄ = 0. Suppose otherwise, since x′
kQxk ≥ 0, we

must have x̄′Qx̄ > 0. As a result, for every k ∈ K, supn≥k(nx
′
nQxn) = ∞,

which implies that lim supk→∞,k∈K(kx′
kQxk) = ∞. This contradicts with

Eq. (36).
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From x̄′Qx̄ = 0, we have x̄′Px̄ > 0 according to the conditions stated in
[COLMM Lemma 1.25, P. 68 ]. Together with lim supk→∞,k∈K(kx′

kQxk) ≥ 0,
we have x̄′Px̄+lim supk→∞,k∈K(kx′

kQxk) > 0, which contradicts with Eq. (36).

P. 69 Note that from the discussion given before [COLMM Prop. 1.26, P. 69],
we have that there exists some c̄ > 0 such that the function Lc̄(x, λ

∗), as a
function of x, satisfies the conditions stated in [COLMM Prop. 1.4, P. 19].
According to [COLMM Prop. 1.4, P. 19], there exists some γ > 0 and δ > 0
such that

Lc̄(x, λ
∗) ≥ Lc̄(x

∗, λ∗) + γ|x− x∗|2, for all x ∈ S(x∗; δ).

Since h(x∗) = 0, we have for all c ≥ c̄, Lc(x, λ
∗) ≥ Lc̄(x, λ

∗) for all x ∈ S(x∗; δ),
and Lc(x

∗, λ∗) = Lc̄(x
∗, λ∗). This yields that

Lc(x, λ
∗) ≥ Lc(x

∗, λ∗) + γ|x− x∗|2, for all x ∈ S(x∗; δ) and c ≥ c̄.

P. 70

Lemma (1, P. 70). Suppose that U is an open set of ℜr. Let A(u) and B(u)
represent n by n and n by m matrices that depend continuously on u ∈ U .
Moreover, A(u) is symmetric for all u. Let ū ∈ U satisfies that

z′A(ū)z > 0 for all z ̸= 0 and B(ū)′z = 0. (37)

Then there exists some δ > 0 such that S(ū; δ) ⊂ U and for all u ∈ S(ū; δ),
there holds

z′A(u)z > 0 for all z ̸= 0 and B(u)′z = 0.

Proof. Since U is open, there exists some δ̄ > 0 such that S(ū; δ̄) ⊂ U . Assuming
for all 0 < δ < δ̄, the desired condition does not hold. For every k such that
1/k < δ̄, there exists some uk ∈ S(ū; 1/k) such that for some zk, we have
|zk| = 1, z′kA(uk)zk ≤ 0, and B(uk)

′zk = 0. Clearly, uk converges to ū. Given
that |zk| = 1 for all k, there exists some subsequence {zk}K that is convergent,
whose limit is denoted as z̄. Since A(u) and B(u) depend continuous on u,
taking limit over K, we have z̄′A(ū)z̄ ≤ 0, |z̄| = 1, and B(ū)′z̄ = 0. This
contradicts with the condition (37) of ū. Q.E.D.

P. 72 Consider the following optimization problem

minimize f̄(x, z)

subject to h̄i(x, z) = 0, i = 1, . . . ,m,

ḡj(x, z) = 0, j = 1, . . . , r,

(38)

where f̄ , h̄i, and ḡj are the functions defined in [COLMM P. 72]. We show that
the following holds.
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Lemma (1, P. 72). Suppose that g : ℜn 7→ ℜr is continuous at the vector x∗.
The vector x∗ is the local minimum of (NLP) if and only if (x∗, z∗), where
z∗j = [−gj(x

∗)]1/2, j = 1, . . . , r, is the local minimum of problem (38).

Proof. Denote X = {x |h(x) = 0, g(x) ≤ 0}, X̂ = {x | g(x) ≤ 0}, X =
{(x, z) | h̄(x, z) = 0, ḡ(x, z) = 0}, and v∗ = (x∗, z∗). For every x such that
g(x) ≤ 0, define a : X̂ 7→ ℜr, whose jth component, denoted as aj(x) is given
by aj(x) = [−gj(x)]

1/2, j = 1, . . . , r.

We first show the necessity. Suppose that x∗ is the local minimum of (NLP).
Then there exists some ϵ > 0 such that f(x∗) ≤ f(x) for all x ∈ S(x∗; ϵ) ∩X.
For every (x, z) ∈ S(v∗; ϵ) ∩X, we have x ∈ S(x∗; ϵ) ∩X. Since f̄(x, z) = f(x)
for all (x, z), there holds

f̄(x∗, z∗) = f(x∗) ≤ f(x) = f̄(x, z), for all (x, z) ∈ S(v∗; ϵ) ∩X.

Conversely, suppose that for some ϵ > 0, f̄(x∗, z∗) ≤ f̄(x, z) for all (x, z) ∈
S(v∗; ϵ) ∩ X. Since g(x) is continuous, there exists some δ such that for all
x ∈ S(x∗; δ)∩ X̂, we have a(x) ∈ S(z∗; ϵ/

√
2).4 Define ϵ̂ = min{δ, ϵ/

√
2}. Then

for every x ∈ S(x∗; ϵ̂) ∩X, we have
(
x, a(x)

)
∈ S(v∗; ϵ) ∩X. There holds

f(x∗) = f̄
(
x∗, a(x∗)

)
≤ f̄

(
x, a(x)

)
= f(x), for all x ∈ S(x∗; ϵ̂) ∩X.

Q.E.D.

For an example where [Lemma 1, P. 72] does not hold due to g being discountin-
uous, consider f = x and g(x) = −1 for x ̸= 0 and g(x) = 0 for x = 0. Then
the feasible points of problem (38) are (0, 0) and (x,±1) for x ̸= 0. Clearly,
(0, 0) is a local minimum of problem (38), but x = 0 is not a local minimum of
(NLP).

P. 74 Via transforming the inequality constraints to the equality ones, the scond
order necessity condition states that

[y′ v′]A

[
y
v

]
≥ 0, for all (y, v) ∈ Y , (39)

where the (n+ r) by (n+ r) matrix A is block diagonal and defined as

A =


∇2

xxL(x
∗, λ∗, µ∗)

2µ∗
1

. . .

2µ∗
r

 , (40)

4To see this, we first note that S(x∗; 1/k) ∩ X̂ ̸= ∅ for all k. Suppose there does not exist

such a δ. Then for all k, there exists some xk ∈ S(x∗; 1/k)∩X̂, such that |a(xk)−z∗| ≥ ϵ/
√
2.

Since xk → x∗, we must have a(xk) → z∗ as g is continuous at x∗, which is a contradiction.
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and the set Y is

Y = {(y, v) |∇h(x∗)′y = 0, ∇gj(x
∗)′y + 2z∗j vj = 0, j = 1, . . . , r}. (41)

We show that condition (39) implies that y′∇2
xxL(x

∗, λ∗, µ∗)y for all y ∈ Y ,
where

Y = {y | ∇h(x∗)′y = 0, ∇gj(x
∗)′y = 0, for all j ∈ A(x∗)}.

Indeed, we have z∗j = 0 for all j ∈ A(x∗), and z∗j ̸= 0, µ∗
j = 0 for all j ̸∈ A(x∗).

For every y ∈ Y , we define v such that vj = 0 for all j ∈ A(x∗), and vj =
−∇gj(x

∗)′y/(2z∗j ) for all j ̸∈ A(x∗), as z∗j ̸= 0. Then (y, z) ∈ Y , which implies

[y′ v′]A[y′ v′]′ ≥ 0. However, we also have y′∇2
xxL(x

∗, λ∗, µ∗)y = [y′ v′]A[y′ v′]′,
which is the desired inequality,

We next show that condition (39) implies µ∗
j ≥ 0 for all j ∈ A(x∗). For every

j ∈ A(x∗), we set y = 0 and vi = 0 for i ̸= j and vj = 1. Then we have that
(y, v) ∈ Y . Moreover, [y′ v′]A[y′ v′]′ = 2µ∗

j . Therefore, µ
∗
j ≥ 0.

P. 74 Let (y, v) ̸= 0 such that (y, v) ∈ Y , where Y is defined in Eq. (41). As
discussed earlier in [P. 74], vj = −∇gj(x

∗)′y/(2z∗j ) for all j ̸∈ A(x∗). If y ̸= 0,

we have [y′ v′]A[y′ v′]′ ≥ y′∇2
xxL(x

∗, λ∗, µ∗)y > 0. Otherwise, if y = 0, we have
vj = 0 for all j ̸∈ A(x∗). Since (y, v) ̸= 0, there exists some k ∈ A(x∗) such that
vk ̸= 0. Therefore, [y′ v′]A[y′ v′]′ =

∑
j∈A(x∗) 2µ

∗
jv

2
j ≥ 2µ∗

kv
2
k > 0.

P. 76

Lemma (1, P. 76). Let x∗ ≥ 0 be a feasible vector in (SCP). Then the following
three conditions are equivalent:

(a) For all x ≥ 0, there holds ∇f(x∗)′(x− x∗) ≥ 0.

(b) We have ∂f(x∗)/∂xi = 0 if x∗i > 0, i = 1, . . . , n, and ∂f(x∗)/∂xi ≥ 0 if
x∗i = 0, i = 1, . . . , n.

(c) We have x∗ = [x∗ − α∇f(x∗)]+ for all α ≥ 0.

Proof. We first show the equivalence between (a) and (b). The sufficiency
from (a) to (b) can be seen directly from the relations ∇f(x∗)′(x − x∗) =∑n

i=1 ∂f(x
∗)/∂xi(xi − x∗i) ≥ 0. To show the necessity, for every i such that

x∗i = 0, consider the feasible vector x such that xi = 1 and xj = x∗j for all j ̸= i.
We obtain ∇f(x∗)′(x− x∗) = ∂f(x∗)/∂xi ≥ 0. For every i such that x∗i > 0, if
∂f(x∗)/∂xi ̸= 0, we can find a feasible vector x such that ∇f(x∗)′(x− x∗) < 0.
Such a vector can be obtained by setting xj = x∗j for all j ̸= i and xi − x∗i

takes the opposite sign of ∂f(x∗)/∂xi.

Then we show the equivalence between (b) and (c). The sufficiency from (b)
to (c) is clear. As for the necessity, since x∗i = max{x∗i − α∂f(x∗)/∂x∗i, 0},
then if x∗i = 0, we must have ∂f(x∗)/∂x∗i ≥ 0. If x∗i > 0, we must have
∂f(x∗)/∂x∗i = 0. This is exactly part (b). Q.E.D.
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The equivalence between parts (b) and (c) will also be proved by using [COLMM
Prop. 1.35, P. 78].

P. 79 The set I1 should be interpreted as

I1 =
{
i |xi > 0 or [xi = 0 and pi < 0], i = 1, . . . , r

}
.

P. 80 Suppose that p=0 for i = 1, . . . , r. In view of [COLMM Eq. (18), P. 79],
we have x = x(α) for all α ≥ 0, which is a contradiction.

P. 80 From the discussion here, we have ∇f(x)′p̄ > 0 and x(α) = x − αp̄.
Apply [Lemma 3, P. 20] with d = −p̄ and γ be any scalar in (0, 1), we obtain
the desired relation.

P. 82 We summarize the discussion here as some lemmas below.

Lemma (1, P. 82). Let xk ≥ 0 be a feasible vector in (SCP).

(a) For all scalars α ≥ 0, there holds

α
∑
i̸∈I+

k

∂f(xk)

∂xi
pik +

∑
i∈I+

k

∂f(xk)

∂xi
[xi

k − xi
k(α)] ≥ 0. (42)

(b) The strict inequality in (42) holds for all α > 0 if and only if xk is not a
critical point.

(c) The equality in (42) holds for all α > 0 if and only if xk is a critical point.

Proof. Without loss of generality, we assume that for some integer ℓ, we have
I+k = {ℓ+ 1, . . . , n}. Accordingly, we can write D as the block diagonal matrix

D =


D̂

dℓ+1

. . .

dn

 ,

where D̂ is positive definite.

(a) In view of the definition of pik and the fact that D̂ is positive definite, we
have∑

i̸∈I+
k

∂f(xk)

∂xi
pik =

[
∂f(xk)

∂x1
k

. . .
∂f(xk)

∂xℓ
k

]
D̂

[
∂f(xk)

∂x1
k

. . .
∂f(xk)

∂xℓ
k

]′
≥ 0. (43)

For every i ∈ I+k , we have pi > 0. Therefore, xi
k − xi

k(α) = xi
k − max{xi

k −
αpik, 0} ≥ 0. Therefore, the second term in (42) is also nonnegative. Therefore,
we obtain the desired inequality.
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(b) To show necessity, let us assume that xk is a critical point. In this case,
∂f(xk)/∂x

i > 0 implies that xi = 0. Then we have I+k = I+(xk). Therefore,
for every i ∈ I+k , xi

k − xi
k(α) = 0 for all α > 0. Moreover, ∂f(xk)/∂x

i = 0 for
all i ̸∈ I+k , as xk is a critical point. Therefore, the first term in (42) is also 0 for
all α > 0.

To show sufficiency, suppose that xk is not a critical point and there exists
some α > 0 such that the equality in Eq. (42) holds. Then for all i ∈ I+k , we
have pik > 0 and xi

k − max{xi
k − αpik, 0} = 0. This means that xi

k = 0 for all
i ∈ I+k . Moreover, in view of Eq. (43),

∑
i̸∈I+

k
∂f(xk)/∂x

ipik = 0 and the positive

definiteness of D̂ implies that ∂f(xk)/∂x
i = 0 for all i ̸∈ I+k . This means that

xk is a critical point, which is a contradiction.

(c) The sufficiency part has been shown in the necessity proof of part (b). The
necessity part can be shown by using the sufficiency part of the proof for part
(b). Q.E.D.

Lemma (2, P. 82). Let xk ≥ 0 be a feasible vector in (SCP) and σ ∈ (0, 1) be
some scalar. There exists some ᾱ > 0 such that

f(xk)− f
[
xk(α)

]
≥ σ

{
α
∑
i̸∈I+

k

∂f(xk)

∂xi
pik +

∑
i∈I+

k

∂f(xk)

∂xi
[xi

k − xi
k(α)]

}
(44)

for all α ∈ [0, ᾱ].

Proof. We continue to use the notation introduced in the proof of [Lemma 1,
P. 82]. If xk is a critical point, we have xk = xk(α) for all α ≥ 0 since D is
also diagonal with respect to I+(xk) and [COLMM Prop. 1.35, P. 78] applies.
Therefore, the left hand side of Eq. (44) is zero for all α ≥ 0. Moreover, we
have I+k = I+(xk) and ∂f(xk)/∂x

i = 0 for all i ̸∈ I+k , as xk is a critical point.
Therefore, the right-hand-side of Eq. (44) is also zero for all α ≥ 0.

Suppose that xk is not a critical point. The relation (44) holds for α = 0 as
both sides are zero. What remains is the case where α > 0. In view that
I+(xk) ⊂ I+k , we can assume, without loss of generality, that for some r ≥ ℓ,
we have I+(xk) = {r+1, . . . , n}. The proof arguments of part (b) in [COLMM
P. 79] also apply here as D is diagonal with respect to I+(xk). In particular,
for the vector p̄ defined in [COLMM P. 79] with xi

k and pik in place of xi and
pi, respectively, there exists some α1 > 0 such that xk(α) = xk − αp̄ for all
α ∈ (0, α1). Moreover, ∇f(xk)

′p̄ > 0. Therefore, applying [Lemma 3, P. 20]
with d = −p̄ and γ = σ, we have that for some ᾱ ∈ (0, α1),

f(xk)− f
[
xk(α)

]
≥σα∇f(xk)

′p̄

=σ

{
α
∑
i̸∈I+

k

∂f(xk)

∂xi
p̄i +

∑
i∈I+

k

∂f(xk)

∂xi
[xi

k − xi
k(α)]

}
(45)
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for all α ∈ (0, ᾱ]. We will show that∑
i̸∈I+

k

∂f(xk)

∂xi
p̄i ≥

∑
i̸∈I+

k

∂f(xk)

∂xi
pik, (46)

which together with Eq. (45), implies the desired relation (44) for α ∈ (0, ᾱ].

To this end, consider the sets

Î1 = {i |xi
k > 0 or [xi

k = 0 and pik < 0], i = 1, . . . , ℓ},
Î2 = {i |xi

k = 0 and pik ≥ 0, i = 1, . . . , ℓ}.

From the definition of p̄, it can be seen that p̄i = pik for i ∈ Î1 and p̄i = 0 for

i ∈ Î2.
5 Moreover, for i ∈ Î2, we have ∂f(xk)/∂x

i ≤ 0. Therefore, for all i ∈ Î2,
∂f(xk)/∂x

ipik ≤ 0. This yields∑
i̸∈I+

k

∂f(xk)

∂xi
pik =

∑
i∈Î1

∂f(xk)

∂xi
pik +

∑
i∈Î2

∂f(xk)

∂xi
pik

≤
∑
i∈Î1

∂f(xk)

∂xi
p̄i =

∑
i̸∈I+

k

∂f(xk)

∂xi
p̄i.

This concludes the proof. Q.E.D.

P. 83

Lemma (1, P. 83). Let f : ℜn 7→ ℜ be a twice continuously differentiable on an
open set S ⊂ ℜn. Then for every compact and convex set C ⊂ S, there exists
some scalar L such that

|∇f(x)−∇f(y)| ≤ L|x− y| for all x, y ∈ C.

Proof. Applying first-order Taylor expansion to vector-valued function (see [P.
29]), we have

f(x)− f(y) =

∫ 1

0

∇2f
[
y + t(x− y)

]
(x− y)dt.

Clearly, we have

|f(x)− f(y)|2 =

(∫ 1

0

g(t)dt

)′(∫ 1

0

g(t)dt

)
,

where
g(t) = ∇2f

[
y + t(x− y)

]
(x− y).

5In fact, we have Î2 = I2, where I2 = {i |xi
k = 0 and pik ≥ 0, i = 1, . . . , r}. Indeed, we

clearly have Î2 ⊂ I2. Conversely, if i ∈ I2, then xi
k = 0 and i ̸∈ I+(xk), which implies that

∂f(x)/∂xi ≤ 0, and consequently i ̸∈ I+k . Therefore, i ∈ Î2.
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Applying [Lemma 3, P. 30], we have

|f(x)− f(y)|2 ≤
∫ 1

0

g(t)′g(t)dt

=

∫ 1

0

(x− y)′
(
∇2f [y + t(x− y)]

)2
(x− y)dt.

Consider the function g̃ : C × Z → ℜ defined as g̃(x, z) = z′
(
∇2f(x)

)2
z, where

Z = {z | |z| = 1}, and the function h : C 7→ ℜ defined as h(x) = maxz∈Z g̃(x, z).
Applying [Lemma 1, P. 30] with g̃ in place of g, we have h being continuous.
As a result, the scalar L is finite, where L2 = maxx∈C h(x). Since C is convex
and x, y ∈ C, we have y + t(x− y) ∈ C for t ∈ [0, 1]. This yields

|f(x)− f(y)|2 ≤
∫ 1

0

L2|x− y|2dt = L2|x− y|2.

Q.E.D.

P. 84 In view that the subsequence {xk}K converges to x̄, we have the monotone
subsequence {f(xk)}K converging to f(x̄), as f is continuous. Then applying
[Lemma 2, P. 25], we have f(xk) → f(x̄).

P. 84 If xk̄ is a critical point for some k̄, then xk = xk̄ for all k ≥ k̄. Since x̄ is
assumed to be not critical, then xk is not critical for all k. As a result, wk > 0
for all k. Since the function g : ℜn → ℜ defined as g(x) =

∣∣x−[x−M∇f(x)]+
∣∣ is

continuous, and g(x̄) > 0, then the sequence {wk}K is bounded away from zero
and bounded above as well. Then [COLMM Eq. (31), P. 83] implies that for all
i ∈ I+k , the diagonal element of Dk that corresponds to i must be bounded below
from zero and and bounded above for all k ∈ K. [COLMM Eq. (36), P. 84] holds
by applying [COLMM Eq. (31), P. 83] with z = zk such that zik = ∂f(xk)/∂x

i

for all i ̸∈ I+k and zik = 0 for all i ∈ I+k . Here, we have λ̄1 = λ1 inf{wq1
k }K and

λ̄2 = λ2 sup{wq2
k }K . In other words, the eigenvalues of {Dk}K is lower-bounded

by λ̄1 and upper-bounded by λ̄2.

P. 84 Let K ⊂ K be the infinite set such that i ̸∈ I+k for all k ∈ K. Since
limk→∞,k∈K xi

k = x̄i, and ∂f(x̄)/∂xi ̸= 0, then there exists some k̄ ∈ K and

δ > 0 such that |∂f(xk)/∂x
i| ≥ δ for all k ≥ k̄ and k ∈ K. Consequently, by

[COLMM Eq. (36), P. 84], we have

∑
j ̸∈I+

k

pjk
∂f(xk)

∂xj
≥ λ̄1

∑
j ̸∈I+

k

∣∣∣∣∣∂f(xk)

∂xj

∣∣∣∣∣
2

≥ λ̄1

∣∣∣∣∣∂f(xk)

∂xi

∣∣∣∣∣
2

≥ λ̄1δ
2 > 0.

Due to [COLMM Eq. (33), P. 84], we must have limk→∞,k∈K αkλ̄1δ
2 = 0, which

implies {αk}K converges to 0. In view of the following lemma with ak = αk and
a = 0, we get [COLMM Eq. (37), P. 84].
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Lemma (1, P. 84). Let {ak} be a real sequence such that ak ≥ a for all k.
Suppose it has a convergent subsequence {ak}K whose limit is also a. Then we
have for all k, infn≥k an = a, and consequently, lim infk→∞ ak = a.

Proof. It suffices to show that for all k, infn≥k an = a. Since ak ≥ a for all k,
infn≥k an ≥ a. Fix some k. Since the subsequence {ai}K converges to a, then
for every ϵ > 0, there exits some k̄ ∈ K and k̄ > k such that ak̄ < a + ϵ. As
a result, infn≥k an < a + ϵ for all ϵ > 0. Therefore, infn≥k an ≤ inf{a + ϵ | ϵ >
0} = a. Q.E.D.

P. 85 Let K ⊂ K be the set such that i ∈ I+k for all k ∈ K. For all j ∈ I+k ,

we have ∂f(xk)/∂x
j > 0 and xj

k − xj
k(αk) ≥ 0. Since xi

k converges to x̄i > 0
and ∂f(x̄)/∂xi > 0, there exists some integer k̄, δ1 > 0, and δ2 > 0 such that
xi
k > δ1 and ∂f(xk)/∂x

i > δ2 for all k ≥ k̄ and k ∈ K. From [COLMM Eq. (34),
P. 84], we have

lim
k→∞,k∈K

∂f(xk)

∂xi
[xi

k − xi
k(αk)] = 0

∂f(xk)

∂xi
[xi

k − xi
k(αk)] ≥ δ2[x

i
k − xi

k(αk)] ≥ 0 for all k ≥ k̄, k ∈ K,

which implies
lim

k→∞,k∈K
[xi

k − xi
k(αk)] = 0. (47)

Next, we claim that there exits some k̃ ∈ K such that xi
k(αk) = xi

k−αkp
i
k for all

k ≥ k̃ and k ∈ K. Suppose otherwise. Then there exists a set K̃ ⊂ K such that
xi
k(αk) = 0 for all k ∈ K̃. Then we have xi

k − xi
k(αk) = 0 for all k ∈ K̃. Since

xi
k > δ1 for all k ≥ k̄ and k ∈ K, this contradicts with Eq. (47). Therefore, for

all k ≥ k̃ and k ∈ K, we have xi
k − xi

k(αk) = αkp
i
k. From [COLMM Eq. (35),

P. 84], we have pik > λ̄1δ2 > 0 for all k ≥ k̄ and k ∈ K. This yields {αk}K
converges to 0. Applying [Lemma 1, P. 84], we get the desired inequality.

P. 85

Lemma (1, P. 85). Let g : ℜr 7→ ℜ be a continuous function. Suppose that
{yk} ⊂ ℜr is a bounded sequence. Then the sequence {zk}, defined as zk = g(yk),
is also bounded.

Proof. Since {yk} is bounded, there exists a compact set Y such that yk ∈ Y for
all k. Since g is continuous, the scalars z = miny∈Y g(y) and z = maxy∈Y g(y)
are finite, and z ≤ zk ≤ z. Q.E.D.

Since {xk}K is convergent, it is bounded. Therefore, applying [Lemma 1, P.
85] with |∇f(·)| and xk in places of g and yk, respectively, we have {∇f(xk)}K

44



is bounded. In view of the definition of λ̄2, see [P. 84], and the relation pk =
Dk∇f(xk), we have

|pk|2 = |Dk∇f(xk)|2 ≤ λ̄2
2|∇f(xk)|2.

Therefore, {pk} is also bounded.

To see that {xk(α)}K is uniformly bounded, we note first that |xk(α)| ≤ |xk −
αpk|. We then apply the following lemma with y = (x, p), c = α, C = [0, 1],
and g(x, p, α) = |x− αp|.

Lemma (2, P. 85). Let g : ℜr×ℜm 7→ ℜ be a continuous function, and C ⊂ ℜm

be a compact set. Suppose that {yk} ⊂ ℜr is a bounded sequence. Then the
sequence {zk}, defined as zk = maxc∈C g(yk, c), is also bounded.

Proof. Since the sequence {yk} is bounded, there exists some compact set Y ⊂
ℜr such that yk ∈ Y for all k. Consider the functions g : C 7→ ℜ and g : C 7→
ℜ defined as g(c) = miny∈Y g(y, c) and g(c) = maxy∈Y g(y, c), respectively.
According to [Lemma 1, P. 30], both g and g are continuous in c. Therefore,
the scalars z = minc∈C g(c) and z = maxc∈C g(c) are finite. For all k, we have
g(c) ≤ g(yk, c) ≤ g(c). Therefore, z ≤ zk ≤ z for all k, which means that {zk}
is bounded. Q.E.D.

P. 86 For α ≥ 0, if xi
k ≥ αpik, we have |xi

k − xi
k(α)| = α|pik|. Otherwise for

xi
k < αpik, since x

i
k ≥ 0, we have |xi

k−xi
k(α)| = |xi

k| = xi
k < αpik = α|pik|.

P. 86 Since the eigenvalues of {Dk}K is upper-bounded by λ̄2, see [P. 84], and
the relation pk = Dk∇f(xk), we have

∑
i̸∈I+

k

(pik)
2 ≤ λ̄2

2

∑
i̸∈I+

k

∣∣∣∣∣∂f(xk)

∂xi

∣∣∣∣∣
2

≤ λ̄2
2λ̄1

∑
i̸∈I+

k

∂f(xk)

∂xi
pik,

where the second inequality is due to the first inequality in [COLMM Eq. (36),
P. 84].

P. 87 Let ᾱ ∈ (0, 1]. Suppose β ∈ (0, 1) and integer m satisfy βm−1 > ᾱ
and βm ≤ ᾱ. Multiplying β on both sides of βm−1 > ᾱ, we obtain βm ∈
(βᾱ, ᾱ].

P. 87

Lemma (1, P. 87). Let M(x) be an m by m symmetric matrix that depends
continuously on the vector x ∈ ℜn. Suppose that x̄ ∈ ℜn is some fixed vector.
Then the following two statements are equivalent:

(a) There holds that z′M(x̄)z > 0 for all z such that |z| = 1.

(b) There exists some positive scalars δ, m1, and m2 such that for all x ∈
S(x̄; δ), m1|z|2 ≤ z′M(x)z ≤ m2|z|2 for all z such that |z| = 1.
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Proof. It is obvious that (b) implies (a). To see that (a) implies (b), consider
the function g(x, z) = z′M(x)z and the function h(x) = minz∈Z g(x, z), where
Z = {z | |z| = 1}. Clearly, we have h(x̄) > 0. Applying [Lemma 1, P. 30],
we have that h(x) is continuous. There exists some δ > 0 such that for some
m1 > 0, h(x) ≥ m1 for all x ∈ S(x̄; δ). Similarly, we can show the relation
z′M(x)z ≤ m2|z|2 by considering the function h̄(x) = maxz∈Z g(x, z). Q.E.D.

Let us describe the sufficient conditions stated in [COLMM Prop. 1.31, P. 74] for
(SCP). Since L(x, µ) = f(x)−µ′x, then∇xL(x

∗, µ∗) = 0, which is∇f(x∗)−µ∗ =
0. Moreover, µ∗

i ≥ 0 and µ∗
i x

∗i = 0 for i = 1, . . . , n. Together with ∇f(x∗) −
µ∗ = 0, we have ∇f(x∗) ≥ 0. Without loss of generality, we assume that there
exists some r such that A(x∗) = {r + 1, . . . , n}. Moreover, ∇2

xxL(x
∗, µ∗) =

∇2f(x∗) As a result, we write the matrix ∇2f(x) as

∇2f(x) =

[
H1(x) H2(x)
H2(x)

′ H3(x)

]
,

where H1(x) is r by r matrix, and H3(x) is (n − r) by (n − r) matrix, both
depends continuously on x. Therefore, for every z ̸= 0 such that zi = 0 for
i ∈ A(x∗), we must have z = (z̄, 0) for some nonzero z̄ ∈ ℜr. Applying [Lemma
1, P. 87] with x∗, H(x), and z̄ in places of x̄, M(x), and z, respectively, we see
that the [COLMM Eq. (53), P. 87] is equivalent to the corresponding condition
given in [COLMM Prop. 1.31, P. 74].

P. 88 Since f is twice continuously differentiable on S(x∗; δ), applying [Lemma
1, P. 83] with C = {x | |x−x∗| ≤ δ1}, where δ1 ∈ (0, δ), we have for all x, x̄ ∈ C,
there exists some L such that |∇f(x)−∇f(x̄)| ≤ L|x− x̄|.

P. 88 Let us introduce some functions, which we will use throughout the dis-
cussion on the proof of [COLMM Prop. 1.37, P. 88]. Define g : ℜn 7→ ℜn as

g(x) = x −
[
x − M∇f(x)

]+
, with its ith component gi(x) given as gi(x) =

xi −
[
xi −mi∂f(x)/∂xi

]+
. Define w : ℜn 7→ ℜ as w(x) = |g(x)|. Clearly, both

w and g are continuous.

For all i ∈ A(x∗), we have x∗i = 0 and ∂f(x∗)/∂xi > 0. Then there exists some
γ1, γ2 > 0 such that for all i ∈ A(x∗),

∂f(x∗)/∂xi > γ1/m
i,

|∂f(x)/∂xi − ∂f(x∗)/∂xi| < ∂f(x∗)/∂xi − γ1/m
i, for all x ∈ S(x∗; γ2).

Let γ3 = min{γ1, γ2}, then for all i ∈ A(x∗), we have ∂f(x∗)/∂xi − γ3/m
i ≥

∂f(x∗)/∂xi > γ1/m
i, and S(x∗; γ3) ⊂ S(x∗; γ2). Therefore, for all i ∈ A(x∗),

there holds

∂f(x∗)/∂xi > γ3/m
i, (48)

|∂f(x)/∂xi − ∂f(x∗)/∂xi| < ∂f(x∗)/∂xi − γ3/m
i, for all x ∈ S(x∗; γ3).

(49)
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For all x belonging to S(x∗; γ3) and satisfying x ≥ 0, and i ∈ A(x∗), we have
xi = |xi−x∗i| ≤ |x−x∗| < γ3. In view of Eq. (48) and (49), we have ∂f(x)/∂xi >
γ3/m

i. Therefore, xi −mi∂f(x)/∂xi < γ3 − γ3 < 0..

In summary, for all x belonging to S(x∗; γ3) and satisfying x ≥ 0, and i ∈ A(x∗),

we have
[
xi −mi∂f(x)/∂xi

]+
= 0 and ∂f(x)/∂xi > 0.

P. 88 Consider the function h : ℜn 7→ ℜn with its ith component hi(x) =
xi−w(x). The function h is continuous, and hi(x

∗) = x∗i. Therefore, hi(x
∗) > 0

for all i ̸∈ A(x∗). Due to continuity of h, there exists some γ4 > 0 such
that hi(x) > 0 [equivalently, xi > w(x)] for all x ∈ S(x∗; γ4) and i ̸∈ A(x∗).
From the preceding discussion, we see that for all x belonging to S(x∗; γ3) and

satisfying x ≥ 0, and i ∈ A(x∗), we have
[
xi − mi∂f(x)/∂xi

]+
= 0, then we

have xi = xi −
[
xi − mi∂f(x)/∂xi

]+ ≤ w(x) for all x ∈ S(x∗; γ3) and x ≥ 0.
Define δ2 = min{γ3, γ4}. Then for all x ∈ S(x∗; δ2) and satisfying x ≥ 0, we
have xi ≤ w(x) and ∂f(x)/∂xi > 0 for all i ∈ A(x∗), and xi > w(x) for all
i ̸∈ A(x).

Define Ĩ+(x) as the set Ĩ+(x) = {i | 0 ≤ x ≤ w(x), ∂f(x)/∂xi > 0}. Then the
above discussion shows that A(x∗) = Ĩ+(x) for all x belong to S(x∗; δ2) and
satisfying x ≥ 0.

P. 88 Since x∗i > 0 for all i ̸∈ A(x∗), Let ϵ̄ = mini̸∈A(x∗) x
∗i/3 and define

δ3 = min{δ2,mini̸∈A(x∗) x
∗i/3}. Then for all x ∈ S(x∗; δ3) and satisfying x ≥ 0

and i ̸∈ A(x∗), we have xi > x∗i − δ3 ≥ 2x∗i/3 > ϵ̄.

P. 89 Define D(x) as positive definite matrix such that it is diagonal with
respect to the set Ĩ+(x) and satisfies

λ1[w(x)]
q1 |z|2 ≤ z′D(x)z ≤ λ2[w(x)]

q2 |z|2, for all z ∈ ℜn, (50)

where λ1 and λ2 are some positive scalars, and q1 and q2 are some nonnegative
integers. In addition, denote the ith diagonal element of D(x) as dii(x), and it
satisfies

λ̄1 ≤ dii(x) for all i ∈ Ĩ+(x).

In addition, we define p : ℜn 7→ ℜn as p(x) = D(x)∇f(x), with its ith compo-
nent denoted as pi(x). We also introduce the function α : ℜn 7→ [ᾱ, 1]. Finally,
we introduce the function x̂ : ℜn 7→ ℜn defined as x̂(x) = [x−α(x)p(x)]+, with
its ith element denoted as x̂i(x).

Next, we argue that for some γ5 ∈ (0, δ3], we have xi − α(x)pi(x) < 0 for all
x ∈ S(x∗; γ5) with x ≥ 0, and i ∈ A(x∗), which implies that

x̂i(x) = 0 for all x ∈ S(x∗; γ5) with x ≥ 0, and i ∈ A(x∗). (51)

We note first that in view of the discussion in [P. 88] and γ5 ≤ γ3, we have
∂f(x)/∂xi > 0 for all i ∈ A(x∗). As a result, xi−α(x)pi(x) ≤ xi−ᾱλ̄1∂f(x)/∂x

i.
Using the same arguments as those in [P. 88] with ᾱλ̄1 in place of mi, we can
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show that there exists some γ5 such that for all x ∈ S(x∗; γ5) and x ≥ 0, there
holds xi − α(x)pi(x) < 0 for all i ∈ A(x∗).

In view of Eq. (50), we have

∑
i̸∈A(x∗)

|pi(x)|2 ≤ λ
∑

i̸∈A(x∗)

∣∣∣∣∣∂f(x)∂xi

∣∣∣∣∣
2

for all x ∈ S(x∗; δ3), x ≥ 0, (52)

where λ = max|x−x∗|≤δ3,x≥0 λ2[w(x)]
q2 ; cf. Eq. (50). Since ∂f(x∗)/∂xi = 0 for

all i ̸∈ A(x∗), then there exists some γ6 ∈ (0, δ5) such that the right hand side
of the above expression is strictly less than ϵ̄2/4, where recall that xi > ϵ̄ for
all i ̸∈ A(x∗) for all x ∈ S(x∗; δ3); cf [P. 88]. As a result, for all i ̸∈ A(x∗),
xi − α(x)pi(x) > ϵ̄− ϵ̄/2 > 0. Equivalently,

x̂i(x) > 0 for all x ∈ S(x∗; γ6) with x ≥ 0, and i ̸∈ A(x∗). (53)

Combining Eqs. (51) and (53), we have that

A(x∗) = A
(
x̂(x)

)
for all x ∈ S(x∗; γ6) with x ≥ 0. (54)

Finally, there exists some γ7 ∈ (0, γ6] such that the right hand side of Eq. (52)
is no more than δ23/8 for all x with |x − x∗| < γ7 and x ≥ 0. Define δ4 =
min{γ7, δ3/(2

√
2)}. Then |x̂(x) − x∗| ≤ |x − x∗| + |x̂(x) − x|. Clearly, for all

x such that |x − x∗| < δ4 and x ≥ 0, we have x̂i(x) = 0 for all i ∈ A(x∗).
Therefore, for all x ∈ S(x∗; δ4) with x ≥ 0, there holds

|x̂(x)− x|2 =
∑

i̸∈A(x∗)

|x̂i(x)− xi|2 +
∑

i∈A(x∗)

|x∗i − xi|2

≤
∑

i̸∈A(x∗)

|x̂i(x)− xi|2 + |x− x∗|2

≤
∑

i̸∈A(x∗)

|pi(x)|2 + |x− x∗|2 = δ23/4,

where the last inequality is due to that α(x) ≤ 1. Therefore, for all x ∈ S(x∗; δ4)
with x ≥ 0, there holds

|x̂(x)− x∗| ≤ |x̂(x)− x|+ |x− x∗| ≤ δ3/2 + δ3/(2
√
2) ≤ δ3.

Together with Eq. (54), we have established that for all x ∈ S(x∗; δ4) with
x ≥ 0,

A(x∗) = A
(
x̂(x)

)
,
∣∣x̂(x)− x∗∣∣ ≤ δ3.

P. 89 For all x ∈ S(x∗; δ4) with x ≥ 0, let us define the function p̄ as p̄ =(
x− x̂(x)

)
/α(x), with its ith component denoted as p̄i(x). In other words, p̄(x)

48



is the effective gradient that satisfies x̂(x) = x − α(x)p̄(x). In particular, from
the discussion in [P. 89], we have that

p̄i(x) =

{
pi(x) i ̸∈ A(x∗),

xi/α(x) i ∈ A(x∗).

Since A(x∗) = Ĩ+(x), so D(x) is diagonal with respect to A(x∗). As a result,
we have

∇f(x)′p̄(x) = ∇f(x)′D̃(x)∇f(x),

where D̃(x) is identical to D(x), except that for every i ∈ A(x∗), its ith diagonal
element, denoted as d̃ii(x), is given as dii(x)β, where β = p̄i(x)/pi(x) > 0. As a
result, D̃(x) is still positive definite, and for x that is not critical, we have

∇f(x)′p̄(x) > 0.

Suppose that for some k̄, we have xk̄ ∈ S(x∗; δ4) with xk̄ ≥ 0, then there holds
p̄i(xk̄) ≥ 0 for all i ∈ A(x∗), and for all k ≥ k̄ + 1, we have p̄i(xk) = 0 for all
i ∈ A(x∗)
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