
Reading Notes
Abstract Dynamic Programming 1

Yuchao Li2

October 14, 2019

12nd Edition.
2https://yuchaotaigu.github.io

https://yuchaotaigu.github.io


ii



Oh, fantastic! Fantastic!
(Clive Tyldesley, on 2002 UCL final Zinedine
Zidane’s winning volley.)



iv



Contents

1 Introduction 3
1.1 Structure of Dynamic Programming . . . . . . . . . . . . . . 3
1.2 Abstract Dynamic Programming Models . . . . . . . . . . . . 5

1.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . 5
1.2.2 Monotonicity and Contraction Properties . . . . . . . 5
1.2.3 Some Examples . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of the Book . . . . . . . . . . . . . . . . . . . . 7
1.4 Notes, Sources, and Exercises . . . . . . . . . . . . . . . . . . 7

2 Contractive Models 11
2.1 Bellman’s Equation and Optimality Conditions . . . . . . . . 11
2.2 Limited Lookahead Policies . . . . . . . . . . . . . . . . . . . 20
2.3 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Approximate Policy Iteration . . . . . . . . . . . . . . 26
2.4.2 Approximate Policy Iteration Where Policies Converge 27

2.5 Optimistic Policy Iteration and λ-Policy Iteration . . . . . . . 28
2.5.1 Convergence of Optimistic Policy Iteration . . . . . . 30
2.5.2 Approximate Optimistic Policy Iteration . . . . . . . . 33

3 Semicontractive Models 47
3.1 Pathologies of Noncontractive DP Models . . . . . . . . . . . 47

3.1.1 Deterministic Shortest Path Problems . . . . . . . . . 47
3.1.2 Stochastic Shortest Path Problems . . . . . . . . . . . 47
3.1.3 The Blackmailer’s Dilemma . . . . . . . . . . . . . . . 47
3.1.4 Linear-Quadratic Problems . . . . . . . . . . . . . . . 47
3.1.5 An Intuitive View of Semicontractive Analysis . . . . 48

3.2 Semicontractive Models and Regular Policies . . . . . . . . . 49
3.2.1 S-Regular Policies . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Restricted Optimization over S-Regular Policies . . . 49

Appendices

v



vi CONTENTS

Appendix A Notation and Mathematical Conventions 53
A.1 Set notion and conventions . . . . . . . . . . . . . . . . . . . 53
A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix B Contraction Mappings 55
B.1 Contraction mapping fixed point theorem . . . . . . . . . . . 55
B.2 Weighted sup-norm contractions . . . . . . . . . . . . . . . . 55



Preface

1



2 CONTENTS



1

Introduction

1.1 Structure of Dynamic Programming

P. 3

Figure 1.1: P. 3 (1).

To prove this, note that by definition,

Jπ(x0) = lim sup
N→∞

N−1∑
k=0

αkg(xk, µk(xk))

= lim
N→∞

sup
K≥N

K−1∑
k=0

αkg(xk, µk(xk))

= lim
N→∞

sup
K≥N

K−1∑
k=0

ak

= lim
N→∞

sup
K≥N

zK (1.1)
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4 1. INTRODUCTION

where ak = αkg(xk, µk(xk)) and zK =
∑K−1
k=0 ak. Similarly, for Jπ1 , we have

Jπ1(x1) = lim sup
N→∞

N∑
k=1

αk−1g(xk, µk(xk))

= lim sup
N→∞

N−1∑
k=1

αk−1g(xk, µk(xk))

= lim
N→∞

sup
K≥N

K−1∑
k=1

αk−1g(xk, µk(xk))

= lim
N→∞

sup
K≥N

K−1∑
k=1

bk

= lim
N→∞

sup
K≥N

wK (1.2)

where bk = αk−1g(xk, µk(xk)) and wK =
∑K−1
k=1 bk. Since for any given K

and x0, under the deterministic dynamics xk+1 = f(xk, uk), it holds that
zK = ak + αwK . Then consider the sequence {zK} and {wK}, their limit
superiors have the relation given here.

P. 3

Figure 1.2: P. 3 (2).

This equality holds due to the principle of optimality.

P. 4

Figure 1.3: P. 4 (1).
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This equality holds due to the definition ofM.

P. 4

Figure 1.4: P. 4 (2).

The definition here is exactly the same as the definition given by Eq. (1.2),
due to the definition of the composition of mappings.

1.2 Abstract Dynamic Programming Models

1.2.1 Problem Formulation

None.

1.2.2 Monotonicity and Contraction Properties

None.

1.2.3 Some Examples

P. 11

Figure 1.5: P. 11 (1).

Here we have applied the Theorem that finite Cartesian product of countable
sets have countable elements.

P. 11

Figure 1.6: P. 11 (2).
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This equality can be justified by double expectation. That is,

Jπ,N (x0) = E
{N−1∑
k=0

αkg
(
xk, µk(xk), wk

)∣∣x0
}

= E
{
α
N−1∑
k=1

αk−1g
(
xk, µk(xk), wk

)
+ g

(
x0, µ0(x0), w0

)∣∣x0
}

= E
{
αE
{N−1∑
k=1

αk−1g
(
xk, µk(xk), wk

)
|x1
}

+ g
(
x0, µ0(x0), w0

)∣∣x0
}

= E
{
αE
{
...αE{g

(
xN−1, µN−1(xN−1), wN−1

)
|xN−1}+ ...

+ g
(
x1, µ1(x1), w1

)
|x1
}

+ g
(
x0, µ0(x0), w0

)∣∣x0
}
.

Then it can be seen from the last line that the equality holds.

P. 26

Figure 1.7: P. 26.

Regarding the first comment, refer to Eq. (6.36), Section 6.3.2, P. 428
[Ber12a], or Eq. (6.77), Section 6.8, P. 355, [BeT96] for details. In short,
the iteration in matrix form is given by

Φrk+1 = Φ(Φ′ΞΦ)−1Φ′ΞTΦrk,

where Ξ ∈ Rn×n is a diagonal matrix whose diagonal elements are ξi’s.
Therefore, the projection matrix Πξ is

Πξ = Φ(Φ′ΞΦ)−1Φ′Ξ.

Regarding the second, the definition is given as

‖ΠξJ‖ξ ≤ ‖J‖ξ.

Refer to Section 6.8, P. 355, [BeT96].
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P. 28

Figure 1.8: P. 28 (1).

Refer to the note on Exercise 1.2 (b), P. 35 [Abstract DP] 2nd Edition for
details.

P. 28

Figure 1.9: P. 28 (2).

Here, ’more general’ is compared to the case where ωi` = (1−λ)λ`. The part
highlighted above is the most general setting, and here ωi` = (1 − λi)λ`i is
one of the possible forms of (ω1`, ω1`, ...), which is a probability distribution.

1.3 Organization of the Book
None.

1.4 Notes, Sources, and Exercises
P. 35

Figure 1.10: P. 35.

To see this, due to Eq. (1.28), we have

T (λ)J − J∗ = TP (c)J − J∗ = TP (c)J − TJ∗.
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Therefore, we have

‖T (λ)J − J∗‖ = ‖TP (c)J − TJ∗‖ ≤ α‖P (c)J − J∗‖.

P. 38

Figure 1.11: P. 38 (1).

Refer to the note in P. 64, [Abstract DP] 2nd Edition, for further details.

P. 38

Figure 1.12: P. 38 (2).

We denote the right-hand side of the equation as |
∑∞
`=1(a` − b`)|. Due to

continuity of | · |, we have

lim
n→∞

|
n∑
`=1

(a` − b`)| = |
∞∑
`=1

(a` − b`)|.

Since ∀n, it holds that

|
n∑
`=1

(a` − b`)| ≤
n∑
`=1
|a` − b`|,

which is due to triangular inequality, then taking limits on both sides and
we get an inequality. The inequality here is obtained based on the triangular
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inequality and the fact that

|(T `µJ)(x)− (T `µJ ′)(x)|
v(x) ≤ ‖T `µJ − T `µJ ′‖.
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Contractive Models

2.1 Bellman’s Equation and Optimality Conditions

P. 40

Figure 2.1: P. 40 (1).

Note that H only needs to be defined on (x, u, J) where u ∈ U(x). For
(x, u′, J) where u′ 6∈ U(x), H(x, u′, J) can be left undefined.

P. 40

Figure 2.2: P. 40 (2).

J∗ is defined as the fixed point of T within R(X).

11
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P. 41

Figure 2.3: P. 41 (1).

Regarding the first comment, given the assumption H : X×U×R(X)→ R,
we have that ∀J ∈ R(X), it holds that TµJ ∈ R(X) ∀µ ∈ M. However, it
does not imply TJ ∈ R(X). Therefore, to have the k-folds well-defined, e.g.
T (TJ) well-defined, one need to ensure first TJ ∈ R(X) so that T (TJ) can
be defined.

Regarding the second comment, as noted above, H : X×U×R(X)→ R
does not imply TJ ∈ R(X) ∀J ∈ R(X). However, given J ∈ R(X), if in
addition, we have J ≤ TJ , then TµJ(x) is lower bounded by J(x) ∀µ ∈M,
∀x ∈ X, so TJ(x) = infµ∈M TµJ(x) ∈ R, which means TJ ∈ R(X) for the
given J .

P. 41

Figure 2.4: P. 41 (2).

Refer to Prop. B.5, P. 333, [Abstract DP] 2nd Edition for an example.
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P. 42

Figure 2.5: P. 42 (1).

According to Prop. B.1, P. 327, [Abstract DP] 2nd Edition, J∗ and Jµ
are fixed points of T and Tµ respectively and the convergence is defined in
terms of the weighted sup-norm. Here under the assumption that TJ ∈
B(X), TµJ ∈ B(X) holds ∀J ∈ B(X), ∀µ ∈ M [this is part of the the
Assumption 2.1.1], we would like to show that convergence in norm implies
point-wise convergence. To see this, note that by definition, we have

‖T kJ − J∗‖ = sup
x∈X

|T kJ(x)− J∗(x)|
v(x) ,

therefore, ∀x ∈ X, it holds that

|T kJ(x)− J∗(x)| ≤ v(x)‖T kJ − J∗‖.

Since T kJ → J∗ in norm, namely limk→∞ ‖T kJ − J∗‖ = 0, then by first
taking limit inferiors on both sides of above equation, and then taking limit
superiors on both sides of above equation, we get the point-wise convergence.
Replace T and J∗ with Tµ and Jµ respectively, the exact same arguments can
be applied to prove the point-wise convergence (TµJ)(x)→ Jµ(x). Note that
in our proof for the convergence in norm implying convergence point-wise,
we only requires that TJ ∈ B(X), TµJ ∈ B(X) holds ∀J ∈ B(X), ∀µ ∈ M;
the contraction property of T and Tµ is not used.

Due to above result, we have

lim sup
k→∞

T kJ(x) = lim
k→∞

T kJ(x) = J∗(x).

The same result goes for Tµ.
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P. 42

Figure 2.6: P. 42 (2).

The following four lemmas are needed in the follow up discussion. Refer to
[Hand Note 4] for proofs.

Lemma (1, P. 42). Given two extended real-valued sequences {an} and {bn}
where an, bn ∈ R∗. Assume that both limn→∞ an and limn→∞ bn exist in R∗.
Prove that

an ≤ bn =⇒ lim
n→∞

an ≤ lim
n→∞

bn.

Lemma (2, P. 42). Given {an} with an ∈ R and a = limn→∞ an ∈ R, and
{bn} with bn ∈ R∗ and b = limn→∞ bn ∈ R∗. Prove that

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

Lemma (3, P. 42). Given {an} ∈ R∗ which is monotone, prove that {an}
is convergent in R∗.

Lemma (4, P. 42). Given two real sequences {an} and {bn}, and assume
that lim supn→∞ an ∈ R, show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

There are two approaches for proof of the highlighted part.

1. For any k, we have

‖J∗ − J‖ ≤ ‖J∗ − T kJ‖+ ‖T kJ − J‖

≤ ‖J∗ − T kJ‖+
k∑
`=1

α`−1‖TJ − J‖.

Taking limit on k, we get the desired result. Here we can directly take
limit on k since limk→∞ ‖J∗−TJ‖ exists and the sequence {

∑k
`=1 α

`−1‖TJ−
J‖}∞k=1 is monotonically nondecreasing.
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2. Since T kJ → J∗ in the sense that limk→∞ ‖T kJ − J∗‖ = 0, due to
continuity of ‖ · ‖, ‖T kJ − J‖ → ‖J∗ − J‖. [A closer look of this
arguments is given below.]

Theorem (P. 42). an → a in the sense that limn→∞ ‖an − a‖ = 0, then
limn→∞ ‖an‖ = ‖ limn→∞ an‖ = ‖a‖.

Proof. Since we have ‖an‖ = ‖an−a+a‖ ≤ ‖an−a‖+‖a‖, then supk≥n ‖ak‖ ≤
supk≥n(‖an − a‖ + ‖a‖), then by [Lemma 3 P. 42], both are convergent in
R∗ and by [Lemma 1 P. 42],

lim sup
n→∞

‖an‖ ≤ lim sup
n→∞

(‖an − a‖+ ‖a‖).

Since lim supn→∞ ‖a‖ = ‖a‖ ∈ R, by [Lemma 4 P. 42],

lim sup
n→∞

(‖an − a‖+ ‖a‖) ≤ lim sup
n→∞

‖an − a‖+ ‖a‖ = ‖a‖.

On the other hand, we have

lim inf
n→∞

‖an‖ = lim inf
n→∞

‖a+ an − a‖ ≥ lim inf
n→∞

(
‖a‖ − ‖an − a‖

)
= ‖a‖,

which concludes the proof.

P. 42

Figure 2.7: P. 42 (3).

To see this, note that for a given x, we have

J∗(x) = TJ∗(x) =
(

inf
µ∈M

TµJ
∗)(x) = inf

u∈U(x)
H(x, u, J∗).

If the infimum is attained, we can define

µε(x) = arg min
u∈U(x)

H(x, u, J∗);
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otherwise, due to the definition of infimum, (∀ε > 0)(∃uε ∈ U(x))(H(x, uε, J∗) <
infu∈U(x)H(x, u, J∗) + ε = J∗(x) + ε). Then we can define

µε(x) = uε.

Note that the above construction relies onM being the Cartesian prod-
uct of feasible control sets U(x).

P. 43

Figure 2.8: P. 43 (1).

The left-hand side is the fixed point of T ; while the right-hand side is the
point-wise infimum of Jµ(x) overM.

P. 43

Figure 2.9: P. 43 (2).

Here it means that without monotonicity assumption but with contraction
assumption.

P. 44

Figure 2.10: P. 44 (1).
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Under Assumption 2.1.2 (Assumption 2.1.1 is irrelevant here), given J̄ ∈
B(X), it is still possible that Jπ 6∈ B(X). In fact, Jπ can even take value
±∞ at some x, which is to say it’s possible that Jπ 6∈ R(X). One example
could be consider the case where the state space is a singlton and control
space is infinite with accumulative cost. For µ0, we have one stage cost g0;
then the stage cost of µk is defined as g0/α

k where α is the discount factor
for all Tµk . Then it can be shown that Jπ = g0 · (+∞). This indicates that
given inital J̄ ∈ B(X), it could be that Jπ 6∈ R(X). In particular, the proof
technique used in Prop. B.1, P. 327, [Abstract DP] 2nd Edition, does not
work in this case. To see this, note the sequence generated according to the
definition is

J̄ , Tµ0 J̄ , Tµ0Tµ1 J̄ , ..., Tµ0Tµ1 · · ·Tµk J̄ , Tµ0Tµ1 · · ·TµkTµk+1 J̄ , .... (2.1)

Therefore, the normed difference of adjacent terms is bounded by

‖Tµ0 J̄ − J̄‖, α‖Tµ1 J̄ − J̄‖, ..., αk‖Tµk+1 J̄ − J̄‖, ..., (2.2)

where the kth term in (2.2) is the bound of the difference of the kth and
k+ 1th terms in (2.1). Here we have applied the result that if J, J ′ ∈ B(X),
then J − J ′ ∈ B(X) (so that the differences of any adjacent terms in (2.1)
is in B(X) and therefore can be plugged into ‖ · ‖). Note that although
due to contraction assumption, we have a geometric term αk; however, if
‖Tµk+1 J̄ − J̄‖/‖Tµk J̄ − J̄‖ = 1/α, then the sequence would not be Cauchy,
just as the example indicated.

However, under Assumptions 2.1.1 and 2.1.2, we have Jπ(x) > −∞
∀x ∈ X and ∀π ∈ Π. Since by Assumption 2.1.1, we have Tµ0Tµ1 · · ·Tµk J̄ ≥
T k+1J̄ . Taking limit supremum on both sides, and applying the fact that
convergence in norm implies convergence point-wise where we have used the
Assumption 2.1.2 [Note in P. 42], we see Jπ(x) ≥ J∗(x) > −∞.

Theorem (P. 44). Given Jk ∈ B(X), denote its point-wise limit superior
as J , namely

J(x) = lim sup
k→∞

Jk(x),

then we claim the following statement:

J 6∈ B(X) =⇒ lim sup
k→∞

‖Jk‖ =∞. (2.3)

Proof. It’s equivalent to prove the following statement:

lim sup
k→∞

‖Jk‖ <∞ =⇒ J ∈ B(X). (2.4)

Since lim supk→∞ ‖Jk‖ <∞, denote A = lim supk→∞ ‖Jk‖, then ∀x ∈ X, it
holds that

|Jk(x)|
v(x) ≤ ‖Jk‖ =⇒ lim sup

k→∞

|Jk(x)|
v(x) ≤ lim sup

k→∞
‖Jk‖ = A.
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Since ∀x ∈ X and k, we also have −|Jk(x)| ≤ Jk(x) ≤ |Jk(x)|, then it holds
that

lim inf
k→∞

(
− |Jk(x)|

)
= − lim sup

k→∞
|Jk(x)| ≤ lim sup

k→∞
Jk(x) ≤ lim sup

k→∞
|Jk(x)|.

Therefore, we have ∀x ∈ X,

|J(x)|
v(x) = | lim supk→∞ Jk(x)|

v(x) ≤ lim sup
k→∞

|Jk(x)|
v(x) ≤ A.

Then we have
sup
x∈X

|J(x)|
v(x) ≤ A.

With the [Theorem P. 44], we know that if Jπ 6∈ B(X), then

lim sup
k→∞

‖Tµ0 · · ·Tµk J̄‖ =∞.

P. 44

Figure 2.11: P. 44 (2).

By definition of ‖ · ‖, we have

sup
x∈X

∣∣(Tµ0 · · ·TµkJ
)
(x)−

(
Tµ0 · · ·TµkJ ′

)
(x)
∣∣

v(x) ≤ αk+1‖J − J ′‖,

then ∀x ∈ X and k ∈ N, we have

|ak(x)− a′k(x)| ≤ v(x)αk+1‖J − J ′‖

where ak(x) =
(
Tµ0 · · ·TµkJ

)
(x) and a′k(x) =

(
Tµ0 · · ·TµkJ ′

)
(x). Then we

have lim supk→∞(ak(x) − a′k(x)) = lim supk→∞(a′k(x) − ak(x)) = 0. Since
we have

lim sup
k→∞

ak(x) = lim sup
k→∞

(
ak(x)− a′k(x) + a′k(x)

)
≤ lim sup

k→∞

(
ak(x)− a′k(x)

)
+ lim sup

k→∞
a′k(x),
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where the inequality is due to [Lemma 4 P. 42]. Then it holds that

lim sup
k→∞

ak(x) ≤ lim sup
k→∞

(
ak(x)− a′k(x)

)
+ lim sup

k→∞
a′k(x)

≤ lim sup
k→∞

v(x)αk+1‖J − J ′‖+ lim sup
k→∞

a′k(x)

= lim
k→∞

v(x)αk+1‖J − J ′‖+ lim sup
k→∞

a′k(x)

= lim sup
k→∞

a′k(x).

Note that here we avoid to use lim supk→∞ ak(x) − lim supk→∞ a′k(x) ≤
lim supk→∞

(
ak(x) − a′k(x)

)
in order to avoid possible ∞ −∞. Swap the

order of ak(x) and a′k(x), we get

lim sup
k→∞

a′k(x) ≤ lim sup
k→∞

ak(x),

which concludes the proof.

P. 44

Figure 2.12: P. 44 (3).

Here we have applied the fact that convergence in norm implies point-wise
convergence [Theorem P. 42] and therefore, under Assumption 2.1.2, the
equation here holds.
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2.2 Limited Lookahead Policies
P. 50

Figure 2.13: P. 50.

As noted in P. 44, given a nonstationary policy π, under Assumption 2.1.2
(Assumption 2.1.1 is irrelevant), it could be that Jπ 6∈ R(X). However,
for a periodic policy π, we always have Jπ ∈ B(X). To see this, define
Tπm = Tµ0 · · ·Tµm−1 . By Exercise 1.1, P. 33, we have Tπm contraction with
modulos αm. Denote its fixed point as Jπm ∈ B(X). Given the initial
J̄ ∈ B(X), the sequence generated by applying k-folds of Tπm is

J̄ , Tπm J̄ , ..., T
k
πm J̄ , ... (2.5)

which is Cauchy has converges in norm to Jπm ∈ B(X).
On the other hand, according to the definition given in P. 44,

Jπ = lim sup
k→∞

Tµ0 · · ·Tµk J̄ ,

then the sequence generated according to the definition is given as

J̄ , Tµ0 J̄ , Tµ0Tµ1 J̄ , ..., Tπm J̄ , TπmTµ0 J̄ .... (2.6)

We claim the sequence (2.6) is Cauchy and converge to Jπ ∈ B(X), which
is equal to Jπm . To see this, denote

∆ = max
i∈{0, 1, ...,m−2}

‖ai − J̄‖

where

{a0, a1, ..., am−2} = {Tµ0 J̄ , Tµ0Tµ1 J̄ , ..., Tµ0 · · ·Tµm−2 J̄}.

Then ∀ε > 0, ∃N1(ε), such that αmi∆ < ε/3 holds ∀i > N1(ε); besides,
since sequence (2.5) Cauchy, ∃N2(ε) such that ‖T iπm J̄ − T

j
πm J̄‖ < ε/3 holds
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∀i, j > N2(ε). Denote pth and qth term of the sequence (2.6) as bp and bq,
then ∀p, q > m · max{N1(ε), N2(ε)} where bp/mc 6= 0 and bq/mc 6= 0, it
holds that

‖bp − bq‖ =‖T iπmTµ0 · · ·Tµ` J̄ − T
j
πmTµ0 · · ·Tµk J̄‖

≤‖T iπmTµ0 · · ·Tµ` J̄ − T
i
πm J̄‖+ ‖T iπm J̄ − T

j
πm J̄‖+

‖T jπmTµ0 · · ·Tµk J̄ − T
j
πm J̄‖

<αmi∆ + ε/3 + αmj∆
<ε.

where i = bp/mc, ` = p − mi − 1, j = bq/mc, and k = p − mj − 1. For
the cases where bp/mc = 0 or bq/mc = 0, the same holds. Terefore, we
have sequence (2.6) Cauchy. By the same arguments, it can be shown that
its fixed point Jπ, is the same as Jπm . Another way to see this is to regard
sequence (2.6) as the following m subsequences:

J̄ , Tπm J̄ , ..., T
k
πm J̄ , ...

Tµ0 J̄ , TπmTµ0 J̄ , ..., T
k
πmTµ0 J̄ , ...

...
Tµ0 · · ·Tµm−2 J̄ , TπmTµ0 · · ·Tµm−2 J̄ , ..., T

k
πmTµ0 · · ·Tµm−2 J̄ , ...

all of which converge to the fixed point of Tπm , then we can apply the same
arguments used in P. 329 for proving Prop. B.2, we can see the sequence
(2.6) converges to Jπ.

However, with the given initial J̄ ∈ B(X), if we consider the sequence
directly generated by the multistep look ahead algorithm, which could be of
the form

J̄ , Tµm−1 J̄ , Tµm−2Tµm−1 J̄ , ..., Tπm J̄ , Tµm−1Tπm J̄ .... (2.7)

We claim the sequence is not convergent. To see this, note that it can be
regarded as m subsequences

J̄ , Tπ0
m
J̄ , ..., T kπ0

m
J̄ , ...

Tµm−1 J̄ , Tπm−1
m

Tµm−1 J̄ , ..., T
k
πm−1
m

Tµm−1 J̄ , ...

...
Tµ1 · · ·Tµm−1 J̄ , Tπ1

m
Tµ1 · · ·Tµm−1 J̄ , ..., T

k
π1
m
Tµ1 · · ·Tµm−1 J̄ , ...

where Tπlm = Tµl · · ·Tµm−1Tµ0 · · ·Tµl−1 are contractions with modulos αm.
Since the contractions are different for different values of l, then those subse-
quences converge to different fixed points. Too see this, consider one example
where T1J = 5+0.2J and T2J = 9+0.2J . Then we have T1T2J = 9.5+0.04J
and T2T1J = 10 + 0.04J , which have different fixed points.
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P. 51

Figure 2.14: P. 51.

The Prop. 2.1.1(e) is in fact the starting point of the proof. To understand
the derivation of this bound, the proof may be read from here and proceed
backwards.

P. 52

Figure 2.15: P. 52.

Denote the perodic policy with period m as π(m). The sequence here is
well defined since as proved in P. 50, for every m, Jπ(m) ∈ B(X), therefore,
Jπ(m) − J∗ ∈ B(X).

In addition, due to [Theorem P. 44], we know the point-wise limit supe-
rior of Jπ(m)− J∗, and, therefore, the point-wise limit superior of Jπ(m), are
in the space of B(X). Namely, we have J ∈ B(X) where

J(x) = lim sup
m→∞

Jπ(m)(x).

Note that J is the point-wise limit superior of the sequence

Jπ(1), Jπ(2), Jπ(3), ...

whose every element is a cost function of a policy but J is most likely not to
be a cost function of any policy. In comparision, the definition of Jπ where
π is a nonstationary policy is the point-wise limit superior of the sequence

Tµ0 J̄ , Tµ0Tµ1 J̄ , Tµ0Tµ1Tµ2 J̄ , ...



2.3. VALUE ITERATION 23

whose every element is likely not to be a cost function of any policy but Jπ
is the cost function of π.

However, one need to note that ‖J − J∗‖ 6= lim supm→∞ ‖Jπ(m) − J∗‖.
One example could be X = [0, 1], f(x) = 0, and

fm(x) =
{

1, x ∈ (0, 1/m]
0, o.w..

Then we have fm → f point-wise, but ‖f‖∞ = 0 < lim supm→∞ ‖fm‖∞ = 1.

2.3 Value Iteration

P. 54

Figure 2.16: P. 54.

Theorem (P. 54). Given lim supk→∞ ‖bk − b‖ = 0, show that

lim sup
k→∞

‖ak − bk‖ = lim sup
k→∞

‖ak − b‖.

Proof. By triangular inequality, we have

‖ak − bk‖ ≤ ‖ak − b‖+ ‖b− bk‖.

Take limit superior on both sides. Since lim supk→∞ ‖bk − b‖ = 0, due to
[Lemma 4 P. 42] we have

lim sup
k→∞

‖ak − bk‖ ≤ lim sup
k→∞

‖ak − b‖.

Similarly, by triangular inequality, we have

‖ak − b‖ ≤ ‖ak − bk‖+ ‖b− bk‖.

Taking limit superior on both sides and due to lim supk→∞ ‖bk − b‖ = 0, we
have

lim sup
k→∞

‖ak − b‖ ≤ lim sup
k→∞

‖ak − bk‖,

which concludes the proof.
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2.4 Policy Iteration

P. 56

Figure 2.17: P. 56.

[Assumption P. 56].

P. 58

Figure 2.18: P. 58 (1).

Theorem (P. 58). Given E ⊂ R being compact, we have inf E ∈ E.

Proof. Due to the definition of inf E, ∀ε > 0, ∃e ∈ E such that e ∈ (inf E −
ε, inf E + ε); otherwise, if ∃ε0 > 0 such that (inf E − ε0, inf E + ε0)∩E = ∅,
then inf E + ε0 is another lower bound, which contridicts the definition of
inf E. As a result, we have inf E is a limit point of E. Since E is compact
hence closed, then inf E ∈ E.

The compactness of U(x) and coninuity of H(x, ·, ·) ensures that the
[Assumption P. 56] is fulfilled. To see this, note that given x ∈ X and
J ∈ R(X), since H(x, ·, J) is continuous and U(x) is compact, we have that
H(x, U(x), J) ⊂ R is a compact set. By [Theorem P. 58], inf H(x, U(x), J) ∈
H(x, U(x), J). Then U(x) ∩H−1(x, inf H(x, U(x), J), J

)
6= ∅. Namely, the

minimum is attained in U(x).

P. 58

Figure 2.19: P. 58 (2).
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Note that the condition here is for a given x, function H(x, ·, ·) is continuous
on the product space A = U(x)×Rn. If U(x) is equipped with ‖ · ‖2, Rn is
with ‖ · ‖ (weighted sup-norm), then for the product space A we can equip
an product metric

d∞(·, ·) = max{d‖·‖2(·, ·), d‖·‖(·, ·)}

where d‖·‖2(·, ·), d‖·‖(·, ·) are induced metrics on U(x) and Rn respectively.
Namely, for a1, a2 ∈ A where ai = (ui, Ji) i = 1, 2, we have d∞(a1, a2) =
max{d‖·‖2(u1, u2), d‖·‖(J1, J2)}. Then with H(x, ·, ·) being continuous on the
product space A = U(x)×Rn, we know that if (uk, Jk)→ (u, J) in the sense
of d∞, it holds that

lim
k→∞

H(x, uk, Jk) = H(x, u, J).

If we view
H(x, um, Jn) = s(m,n)

as a double sequence, then continuity of H(x, ·, ·) implies that if um, Jn are
convergent respectively, then the double sequence s(m,n) has double limit
(refer to [Note 1] for definitions). Namely, if um → u and Jn → J in the
sense of their respective norms, then s(m,n) is convergent and its double
limit is H(x, u, J). To see this, denote a = H(x, u, J). ∀ε > 0, denote

Vε = {(u′, J ′)|H(x, u′, J ′) ∈ (a− ε, a+ ε)}.

Since H continuous, Vε ⊂ A is open and (u, J) ∈ Vε. Then ∃δ > 0 such
that Bδ ⊂ Vε where Bδ = {(u′, J ′)|d∞

(
(u′, J ′), (u, J)

)
< δ}. Since um →

u and Jn → J , for the given δ, ∃N1, N2 such that d‖·‖2(um, u) < δ and
d‖·‖(Jn, J) < δ ∀m > N1, n > N2. Therefore, ∀m,n > max{N1, N2}, we
have

(um, Jn) ∈ Bδ =⇒ (um, Jn) ∈ Vε =⇒ H(x, um, Jn) ∈ (a− ε, a+ ε),

which indeed implies |s(m,n)− a| < ε.

P. 59

Figure 2.20: P. 59.

The condition of H(x, ·, ·) being continuous and its relation to the double
sequence is elaborated in the note on Assumption 2.4.1 (c), P. 58, [Abstract
DP] 2nd Edition.
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2.4.1 Approximate Policy Iteration

P. 60

Figure 2.21: P. 60.

In the Proof of Proposition 2.4.4 shown below, monotonicity Assumption
2.1.1 is not needed, then why is it stated in the proposition?

Prof. Bertsekas: the monotonicity assumption is not needed for the
proposition as stated. However, monotonicity is an essential assumption
for PI to have the fundamental policy improvement property, so I think it’s
better not to confuse the reader by removing it from the statement of the
proposition.

P. 61

Figure 2.22: P. 61 (1).

Here we have implicitly utilized Prop. 2.1.2, P. 43, [Abstract DP] 2nd Edi-
tion, which states that Jµ̄− J∗ ≥ 0. Therefore, we do not need to check the
boundedness of J∗ − Jµ̄.
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P. 61

Figure 2.23: P. 61 (2).

Lemma (P. 61). Given real valued sequence {an}, real-valued constant γ ∈
(0, 1), and real-valued constant β, if

an+1 ≤ γan + β,

then supk≥n ak <∞ and lim supn→∞ an <∞.

Proof. a1 ≤ γa0 + β, then a2 ≤ γ2a0 + (γ + 1)β. By induction, we have

an ≤ γna0 + 1− γn

1− γ β.

Since the sequence
{
γna0 + 1−γn

1−γ β
}
is convergent, then it is also bounded

above, therefore supk≥n ak < ∞. Since {supk≥n ak}∞n=0 is nonincreasing,
then lim supn→∞ an ≤ supk≥0 ak <∞.

By [Lemma P. 61], {‖Jµn − J∗‖} is upper-bounded by positive sequence{
αn‖Jµ0 − J∗‖+ 1−αn

1−α β
}
where β = ε+2αδ

1−α , therefore, lim sup ‖Jµn − J∗‖ ∈
[0,∞), then taking limit superior on both sides of the highlighted part, the
limits involved are all real numbers.

2.4.2 Approximate Policy IterationWhere Policies Converge

None.
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2.5 Optimistic Policy Iteration and λ-Policy Iter-
ation

P. 64

Figure 2.24: P. 64.

The well-definedness of T (λ)
µ is ensured by the following theorems. Their

proofs is in [Hand Note 3].

Lemma (P. 64). Given a real valued sequence {a`} and assume that the
sequence {

∑n
`=1 a`}∞n=1 converges with

∑∞
`=1 a` ∈ R. Prove that

|
∞∑
`=1

a`| ≤
∞∑
`=1
|a`|. (2.8)

Theorem (1, P. 64). Let the set of mappings Tµ : B(X) → B(X), µ ∈ M
satisfy Assumption 2.1.2. Consider the mappings T (w)

µ : B(X) → R(X)
defined by

(
T (w)
µ J

)
(x) =

∞∑
`=1

w`(x)
(
T `µJ

)
(x), x ∈ X, J ∈ B(X), (2.9)

where w`(x) are nonnegative scalars such that for all x ∈ X,
∞∑
`=1

w`(x) = 1.

Prove that the mapping T (w)
µ is well defined; namely for all x ∈ X, J ∈

B(X), the sequence { n∑
`=1

w`(x)
(
T `µJ

)
(x)
}∞
n=1

(2.10)

converges with a limit in R.

Theorem (2, P. 64). Let the set of mappings Tµ : B(X) → B(X), µ ∈ M
satisfy Assumption 2.1.2. Consider the mappings T (w)

µ : B(X) → R(X)
defined in Eq. (2.9). Prove that T (w)

µ B(X) ⊂ B(X), namely, T (w)
µ : B(X)→

R(X) is in fact T (w)
µ : B(X)→ B(X); and T (w)

µ is a contraction.
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The following result shows that the operator T (λ)
µ defined point-wise is

no difference compared one defined by convergence in norm.

Theorem (3, P. 64). Consider sequence {T (λn)
µ J} defined by

T (λn)
µ J = (1− λ)

n∑
`=1

λ`−1T `µJ.

The sequence {T (λn)
µ J} converges to some element T (λ∞)

µ J ∈ B(X). In
addition, it coincides with the limit defined point-wise, viz., T (λ∞)

µ J = T
(λ)
µ J .

Note that the above result does not stand for the more general operator
T

(w)
µ , when X has infinite cardinality. The following is an example.

Example 2.5.1. Given X = {1, 2, ...} and define w`(x) as

w`(x) = 0, ` ≤ x,
∞∑

`=x+1
w`(x) = 1.

Further we assume that v(x) = x. Define Tµ : B(X)→ B(X) as

(TµJ)(x) = (1− α)x+ αJ(x).

Then one can verify that Jµ(x) = x. Then consider sequence {T (wn)
µ Jµ}

defined point-wise as

(T (wn)
µ Jµ

)
(x) =

n∑
`=1

w`(x)
(
T `µJµ

)
(x).

which can be verified to belong to B(X). Then ∀n, it holds that

‖T (wn)
µ Jµ − Jµ‖ = sup

x∈X

|
∑n
`=1w`(x)

(
T `µJµ

)
(x)− Jµ(x)|

v(x)

= sup
x∈X

|
∑∞
`=n+1w`(x)Jµ(x)|

v(x) .

Since ∀n, ∃x such that x > n. Therefore, we have ‖T (wn)
µ Jµ − Jµ‖ = 1 for

all n. This implies the sequence does not converge in norm. Otherwise, its
limit in norm at all x would have same values as Jµ(x).
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2.5.1 Convergence of Optimistic Policy Iteration

P. 66

Figure 2.25: P. 66 (1).

Due to Eq. (2.11), this lower bound here is never tight.

P. 66

Figure 2.26: P. 66 (2).

The highlighted part Eq. (2.11) is never tight for any finite k and α ∈ (0, 1).

T kµJ −
α− αk

1− α cv ≥ T kµJ −
α

1− αcv (2.11)

P. 67

Figure 2.27: P. 67.

This part of the bound is not tight since in the proof, Eq. (2.38) is used.
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P. 68

Figure 2.28: P. 68.

Since Eq. (2.38) is used, so this bound is not tight.

P. 69

Figure 2.29: P. 69 (1).

By Eq. (2.44), J∗ − Jk ≤ αk

1−αcv, Jk − J
∗ ≤ (k+1)αk

1−α cv, we have

|Jk − J∗| ≤
(k + 1)αk

1− α cv =⇒ ‖Jk − J∗‖ ≤
(k + 1)αk

1− α .

P. 69 (20190814)

Figure 2.30: P. 69 (20190814).
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Since M̂ is finite, denote δ = min
µ̂∈M̂ ‖Tµ̂J

∗ − TJ∗‖, then ∀ε ∈ (0, δ) and
∀µ̂ ∈ M̂, it holds that ‖Tµ̂J∗ − TJ∗‖ > ε. Then we have

‖Tµ̂Jk − TJk‖ = ‖Tµ̂Jk − Tµ̂J∗ + Tµ̂J
∗ − TJ∗ + TJ∗ − TJk‖

≥ ‖Tµ̂J∗ − TJ∗‖ − ‖Tµ̂Jk − Tµ̂J∗‖ − ‖TJ∗ − TJk‖
≥ ‖Tµ̂J∗ − TJ∗‖ − 2α‖J∗ − Jk‖
≥ δ − 2α‖J∗ − Jk‖.

Since Jk → J∗ in norm, then ∃N such that ∀k > N , δ − α‖J∗ − Jk‖ > ε.

P. 69

Figure 2.31: P. 69 (2).

Regarding bounds given Eq. (2.47) here, the ’upper bound for optimistic PI’
is refers to

J∗ ≤ Jk + αm0+···+mk

1− α cv ⇐⇒ J∗ − αm0+···+mk

1− α cv ≤ Jk (2.12)

and the ’lower bound for optimistic PI’ is refers to

Jk −
(k + 1)αk

1− α cv ≤ J∗ ⇐⇒ Jk ≤ J∗ + (k + 1)αk

1− α cv. (2.13)

Given J0 ≥ TJ0, we have

J0 ≥ TJ0 = Tµ0J0 ≥ Tm0−1
µ0 J0 ≥ Tm0

µ0 J0 = J1 ≥ TTm0−1
µ0 J0 ≥ TTm0

µ0 J0 = TJ1,

namely, given J0 ≥ TJ0, it holds for all k that Jk ≥ TJk and Jk ≥ J∗.
Therefore, the bound that actually regulate the error is (2.13), which is still
worse than VI, and the bound (2.12) is automatically fulfilled. On the other
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hand, if J0 ≤ TJ0, it is not true that for all k that Jk ≤ TJk and Jk ≤ J∗,
one special example is given in Fig. 2.5.1, P. 64, [Abstract DP] 2nd Edition,
where J0 ≤ TJ0 but J1 ≥ TJ1, which means eventually it converges from
above.

2.5.2 Approximate Optimistic Policy Iteration

P. 70

Figure 2.32: P. 70.

Lemma (P. 70). Given f, g, h ∈ B(X), show that

sup
x∈X

(f − g) ≤ sup
x∈X

(f − h) + sup
x∈X

(h− g). (2.14)

In particular, if g is constant 0, it holds

sup
x∈X

f ≤ sup
x∈X

(f − h) + sup
x∈X

h. (2.15)

Proof. ∀x ∈ X, it holds that

(f − h)(x) ≤ sup
x∈X

(f − h), (h− g)(x) ≤ sup
x∈X

(h− g),

therefore we have

(f − g)(x) = (f − h+ h− g)(x) ≤ sup
x∈X

(f − h) + sup
x∈X

(h− g),

take supremum on both sides and we get the desired result.

Theorem (P. 70). M is continuous with respect to the weighted superum
norm ‖ · ‖; namely, given fn, f ∈ B(X), if limn→∞ ‖fn − f‖ = 0, then
limn→∞M(fn) = M(f).

Proof. By [Lemma P. 70], M(fn) ≤M(fn − f) +M(f), we have

lim sup
n→∞

M(fn) ≤ lim sup
n→∞

M(fn−f)+M(f) ≤ lim sup
n→∞

‖fn−f‖+M(f) = M(f),

where we have applied [Lemmas P. 42]. On the other hand, due to definition
of M(·),

M(fn) = sup
x∈X

fn(x)
v(x) = sup

x∈X

f(x) + fn(x)− f(x)
v(x) . (2.16)
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In addition, we have

f(x) + fn(x)− f(x)
v(x) ≥ f(x)

v(x) −
|fn(x)− f(x)|

v(x)

≥ f(x)
v(x) − sup

y∈X

|fn(y)− f(y)|
v(y)

= f(x)
v(x) − ‖fn − f‖. (2.17)

Taking Eq. (2.17) into Eq. (2.16), we have

M(fn) ≥ sup
x∈X

f(x)
v(x) − ‖fn − f‖ = M(f)− ‖fn − f‖.

Taking limit inferior on both sides, we have

lim inf
n→∞

M(fn) ≥M(f)− lim sup
n→∞

‖fn − f‖ = M(f),

which conclude the proof.

P. 71

Lemma (P. 71). Given real sequences {rn}, {sn}, {tn} and {an}, assume
the following conditions hold for all n ≥ 1:

rn ≤ αrrn−1 + β; (2.18)
sn ≤ αsrn; (2.19)
tn ≤ αttn−1 + γrn + δ; (2.20)
an = sn + tn, an ≥ ζ; (2.21)

where the constants αr, αt ∈ (0, 1), the constants αs, γ are positive real
values, and the constants β, δ, ζ are real values. Then the limit superiors
lim supn→∞ rn, lim supn→∞ sn and lim supn→∞ tn are all real values.

Proof. By [Lemma P. 61], ∀n supk≥n rk < ∞ and the sequence {rn} is
bounded by the sequence

{
αnr0 + 1−αn

1−α β
}
. Since

{
αnr0 + 1−αn

1−α β
}
is con-

vergent, then it is bounded by some constant, denoted as Mr. Therefore,
supk≥n rk ≤ Mr. As a result, we have supk≥n sk ≤ Ms where Ms = αsMr.
Apply the upper bound on rn to Eq. (2.20), we have

tn ≤ αttn−1 + γMr + δ,

and by [Lemma P. 61], we have {tn} is bounded by some constant Mt. In
what follows, we show that Eq. (2.21) guarantees that the limit superiors
are reals. Adding Eq. (2.20) and (2.19), and by Eq. (2.21), we have

ζ ≤ an = sn + tn ≤ (αs + γ)rn + αtMt + δ,
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which indicates {rn} is lower bounded since αs+γ is some positive constant.
Similarly, by Eq. (2.21),

tn = an − sn ≥ ζ −Ms, sn = an − tn ≥ ζ −Mt.

Therefore, their limit superiors are real.

Alternatively, we can prove by contradiction. Once we get Mr, Ms and
Mt, note that the sequence {supk≥n rk} is monotonically nonincreasing, then
if it is unbounded below, given −(Mt + ε)/αs, ∃N such that supk≥N rk ≤
(ζ − Mt − ε)/αs. By Eq. (2.19), we have ∀n ≥ N , sk ≤ ζ − Mt − ε.
Therefore, we have tk + sk ≤ ζ − ε, which contradicts Eq. (2.21). Therefore,
{supk≥n rk} is bounded below. Repeat the same arguments, we can have
that {supk≥n sk} and {supk≥n tk} are bounded below. Therefore, their limit
superiors are real.

P. 74

Given Assumption 2.1.2 holds, namely ‖TµJk − TµJ‖ ≤ α‖Jk − J‖, and
‖TJk − TJ‖ ≤ α‖Jk − J‖ where α ∈ (0, 1). Then for all sequence {Jk} ⊂
B(X) such that ‖Jk−J‖ → 0 where J ∈ B(X), we have ∀k ‖TµJk−TµJ‖ ≤
α‖Jk − J‖, and ‖TJk − TJ‖ ≤ α‖Jk − J‖. Namely, with Assumption 2.1.2
true, we have

‖Jk − J‖ → 0 =⇒ ‖TµJk − TµJ‖ → 0;
‖Jk − J‖ → 0 =⇒ ‖TJk − TJ‖ → 0.

P. 75

Denote the second part of Prop. 2.5.4 as property P , where

P = (∃ε > 0)(∀‖J − J∗‖ < ε)(TµJ = TJ =⇒ µ ∈M∗),

then we have

¬P = (∀ε > 0)(∃‖J − J∗‖ < ε)(TµJ = TJ 6=⇒ µ ∈M∗)
= (∀ε > 0)(∃‖J − J∗‖ < ε, ∃µ ∈M \M∗)(TµJ = TJ).

Since M is finite, so as M\M∗, then given the sequence {εk} and its
corresponding {Jk} and {µk}, there must be some µ̄ ∈ {µk} which repeated
infinite times.
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P. 77 (20190902)

As shown in [Theorem 3 P. 64], when the complete space F(X) = B(X) and
the norm is weighted sup-norm, there is no difference between interpreting
T

(λ)
µ J as a function of x defined as point-wise limit

(
T (Λ)
µ J

)
(x) = (1− λ)

∞∑
`=1

λ`−1(T `µJ)(x), x ∈ X, J ∈ B(X), (2.22)

or as an element of F(X) which is the limit of the convergent sequence
{T (λn)

µ J} in F(X) given as

lim
n→∞

‖T (λn)
µ J − T (λ)

µ J‖ = 0 (2.23)

where

T (λn)
µ J = (1− λ)

n∑
`=1

λ`−1T `µJ.

However, since the nature of F(X) and the norm ‖ · ‖ are left unspecified,
T

(λ)
µ J shall be interpreted as the in Eq. (2.23). In what follows, we repeat

the first part of [Theorem 3 P. 64], which shows that {T (λn)
µ J} is convergent

in F(X) and therefore T (λ)
µ as its limit is well-defined.

Theorem (P. 77). Let Assumption 2.5.2 (b) hold. Then ∀J ∈ F(X), the
sequence {T (λn)

µ J} defined by

T (λn)
µ J = (1− λ)

n∑
`=1

λ`−1T `µJ

is convergent.

Proof. Since limn→∞ ‖Tnµ J − Jµ‖ = 0, we have limn→∞ ‖Tnµ J‖ = ‖Jµ‖ [cf.
Theorem P. 42]. Therefore {‖Tnµ J‖} is bounded. Denote its bound as Mµ.



2.5. OPTIMISTIC POLICY ITERATION AND λ-POLICY ITERATION37

Therefore, ∀ε, ∃N such that ∀k

‖T (λN )
µ J − T (λN+k)

µ J‖

=‖(1− λ)
N∑
`=1

λ`−1T `µJ − (1− λ)
N+k∑
`=1

λ`−1T `µJ‖

=‖(1− λ)
N+k∑
`=N+1

λ`−1T `µJ‖

≤(1− λ)
N+k∑
`=N+1

λ`−1‖T `µJ‖

≤(1− λ)
N+k∑
`=N+1

λ`−1Mµ

≤λNMµ

≤ε,

which implies {T (λn)
µ J} is Cauchy. Since F(X) is complete, then it is also

convergent.

P. 87 (20190902)

The following lemma shows the relation between the Cartesian product of
B(X`) and B(X).

Lemma (1, P. 87). Given processor index set I being finite, and {X`}`∈I is
a partition of X, then it holds that∏

`∈I
B(X`) = B(X). (2.24)

Proof. First we show that B(X) ⊆
∏
`∈I B(X`). Given J ∈ B(X) and de-

noted as J` the restriction of J on X`. Then we have

sup
x∈X`

|J`(x)|
v(x) ≤ sup

x∈X

|J(x)|
v(x) = ‖J‖ <∞, ∀`

where the first inequality is due to that the supremum of an upper bounded
real set is no less than the supremum of its subset. Therefore, we have
J` ∈ B(X`) ∀` and consequently J ∈

∏
`∈I B(X`).

On the other hand, given J ∈
∏
`∈I B(X`), and denote as M` the bound

of J` ∈ B(X`), then we have

|J(x)|
v(x) ≤

∑
`∈I

M`χX`(x)
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where χX`(·) is the indicator functions defined on X. Then take supremum
on both sides of the equation, we have

sup
x∈X

|J(x)|
v(x) ≤ sup

x∈X

∑
`∈I

M`χX`(x) = sup
`∈I
{M`} = max

`∈I
{M`} <∞.

Note that I being finite is needed. Otherwise, the bound of
∏
`∈I J` is

sup`∈I{M`}, which may be ∞.

The following lemma proves the relation between the Cartesian product
and set intersection under different construction.

Lemma (2, P. 87). Given policy setM and processor index set I both being
finite, and {X`}`∈I is a partition of X, then it holds that∏

`∈I
J|X`(α) =

⋂
`∈I
J`(α) (2.25)

where

J|X`(α) =
{
J` ∈ B(X`)

∣∣∣∣∣max
µ∈M

sup
x∈X`

|J`(x)− Jµ(x)|
v(x) ≤ α

}
, (2.26)

J`(α) =
{
J ∈ B(X)

∣∣∣∣∣max
µ∈M

sup
x∈X`

|J(x)− Jµ(x)|
v(x) ≤ α

}
. (2.27)

Proof. Note that we need to apply the result of [Lemma 1, P. 87] that∏
`∈I
B(X`) = B(X)

to establish that the underline sets
∏
`∈I B(X`) and B(X) are the same. With

that fact in mind, we first show that
∏
`∈I J|X`(α) ⊆

⋂
`∈I J`(α). Indeed,

for J ∈
∏
`∈I J|X`(α), it holds ∀` ∈ I, ∀x ∈ X`, ∀µ ∈M, that

|J(x)− Jµ(x)|
v(x) = |J`(x)− Jµ(x)|

v(x) ≤ max
µ∈M

sup
x∈X`

|J`(x)− Jµ(x)|
v(x) ≤ α. (2.28)

Take supremum over x ∈ X` on both sides and then take maximum over
µ ∈M on both sides, and we have J ∈

⋂
`∈I J`(α).

On the other hand, given J ∈
⋂
`∈I J`(α), it holds ∀` ∈ I, ∀x ∈ X`, ∀µ ∈

M, that

|J`(x)− Jµ(x)|
v(x) = |J(x)− Jµ(x)|

v(x) ≤ max
µ∈M

sup
x∈X`

|J(x)− Jµ(x)|
v(x) ≤ α, (2.29)

which implies J` ∈ J|X`(α) ∀` ∈ I, and this concludes the proof.
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Lemma (3, P. 87). Given policy setM and processor index set I both being
finite, and {X`}`∈I is a partition of X, and given J (α) and J`(α) as

J (α) =
{
J ∈ B(X)

∣∣∣ max
µ∈M

‖J − Jµ‖ ≤ α
}
,

J`(α) =
{
J ∈ B(X)

∣∣∣∣∣max
µ∈M

sup
x∈X`

|J(x)− Jµ(x)|
v(x) ≤ α

}
.

Then it holds that
J (α) =

⋂
`∈I
J`(α). (2.30)

Proof. Here we introduce two kinds of sets defined as

J µ(α) =
{
J ∈ B(X)

∣∣∣ ‖J − Jµ‖ ≤ α},
J µ` (α) =

{
J ∈ B(X)

∣∣∣∣∣ sup
x∈X`

|J(x)− Jµ(x)|
v(x) ≤ α

}
.

Then one can verify that between those two sets, it holds that

J µ(α) =
⋂
`∈I
J µ` (α), ∀µ ∈M.

In addition, one may verify that

J (α) =
⋂
µ∈M

J µ(α), J`(α) =
⋂
µ∈M

J µ` (α). (2.31)

Therefore, we have

J (α) =
⋂
µ∈M

J µ(α)

=
⋂
µ∈M

⋂
`∈I
J µ` (α)

=
⋂
`∈I

⋂
µ∈M

J µ` (α)

=
⋂
`∈I
J`(α)

Theorem (P. 87). Given policy setM and processor index set I both being
finite, and {X`}`∈I is a partition of X, and given J (α) and J|X`(α) as

J (α) =
{
J ∈ B(X)

∣∣∣ max
µ∈M

‖J − Jµ‖ ≤ α
}
,

J|X`(α) =
{
J` ∈ B(X`)

∣∣∣∣∣max
µ∈M

sup
x∈X`

|J`(x)− Jµ(x)|
v(x) ≤ α

}
.
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Then it holds that
J (α) =

∏
`∈I
J|X`(α). (2.32)

Proof. Combining [Lemmas 1, 2, 3, P. 87], we get the desired result.

Remark. As noted in the proof of [Lemma 1, P. 87], it is needed to have I
being finite in order to have the underline sets

∏
`∈I B(X`) and B(X) being

the same. However, as far as the proofs being concerned, it is not needed
to have M being finite. The steps related in the proofs are (2.28), (2.29),
and (2.31), which all holds if all maxµ∈M involved are replaced by supµ∈M
properly.

P. 87 (20190902)

With the Box condition proved, we can show that the sequence {J t} gener-
ated by the algorithm is bounded. First, we denote ∆1 and ∆2 as

∆1 = max
µ∈M

‖J0 − Jµ‖,

∆2 = max
µ,µ′∈M

‖Jµ − Jµ′‖,

and we have ∆1 ≤ max{∆1,∆2/(1 − α)}. Denote as Ĵ1 the function had
the first update is done synchronously, namely all components are updated,
rather than only ∀x ∈ X` where 0 ∈ R` ∪R`, then we have

‖Ĵ1 − Jµ‖ ≤ ‖Ĵ1 − Jµ0‖+ ‖Jµ0 − Jµ‖
= ‖Tµ0J0 − Jµ0‖+ ‖Jµ0 − Jµ‖
≤ α‖J0 − Jµ0‖+ ‖Jµ0 − Jµ‖
≤ αmax

µ∈M
‖J0 − Jµ‖+ max

µ,µ′∈M
‖Jµ − Jµ′‖

= α∆1 + ∆2

≤ αmax{∆1,
∆2

1− α}+ ∆2

= max{α∆1 + ∆2,
∆2

1− α}.

Take maxµ∈M on both sides, we have

max
µ∈M

‖Ĵ1 − Jµ‖ ≤ max{α∆1 + ∆2,
∆2

1− α}.

If ∆1 ≥ ∆2/(1 − α), we have α∆1 + ∆2 ≤ α∆1 + (1 − α)∆1 = ∆1, and
α∆1 + ∆2 ≥ ∆2/(1−α); otherwise, we have α∆1 + ∆2 < ∆2/(1−α). With
this shown, we have

max
µ∈M

‖Ĵ1 − Jµ‖ ≤ max{∆1,
∆2

1− α}.
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Denote ∆ = max{∆1,∆2/(1− α)}. Then we see that Ĵ1, J0 ∈ J (∆). Now
consider the real J1, which is given as

J1(x) =
{
Ĵ1(x) if x ∈ X`, 0 ∈ R` ∪R`,
J0(x) o.w..

Then by the box condition, we see that J1, which is Cartesian products
of portions of J0 and Ĵ1, is also in the set J (∆). By induction, we can
establish that J t ∈ J (∆) ∀t.

P. 90

Here we show that the norm is well-defined and the corresponding space is
complete. To this end, we define a new state space S whose elements are
all feasible state control pairs s = (x, u) where u ∈ U(x). If we denote as
Sx the set of state and control pairs where the state is x and the control
u ∈ U(x), viz., the set ∪u∈U(x){(x, u)}, then we see that Sx ∩ Sx′ = ∅ for
x 6= x′ and

S =
⋃
x∈X

Sx.

Define a positive function v̂ : S → R+ where v̂(s) = v(x) with s = (x, u). In
addition, given V (·) and Q(·, ·), we have corresponding functions V̂ : S → R
and Q̂ : S → R defined as

V̂ (s) = V (x), Q̂(s) = Q(x, u), with s = (x, u). (2.33)

Then with the weight v̂ and corresponding norm denoted as ‖·‖v̂, we denote
as B1(S) the functional space whose elements are functions defined on S to
R with aforementioned weighted sup-norm bounded. Then we have B1(S) is
complete with respect to ‖ · ‖v̂. The proof can be found in P. 329, [Abstract
DP], 2nd Edition. Now consider instead functions W : S → R2 of the form

W (s) = (V̂ (s), Q̂(s)).

Consider now the functional space B2(S) whose elements are W with the
property that max{‖V̂ ‖v̂, ‖Q̂‖v̂} <∞. Now we prove

‖W‖ = max{‖V̂ ‖v̂, ‖Q̂‖v̂}

indeed defines a norm on B2(S). We only show the triangular inequality part.
The proof for the other two properties are neglected. Given W1 = (V̂1, Q̂1),
W2 = (V̂2, Q̂2), we have W1 +W2 = (V̂1 + V̂2, Q̂1 + Q̂2). Then we have

‖W1 +W2‖ = max{‖V̂1 + V̂2‖v̂, ‖Q̂1 + Q̂2‖v̂}.
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Since we have

‖V̂1 + V̂2‖v̂ ≤ ‖V̂1‖v̂ + ‖V̂2‖v̂
≤ max{‖V̂1‖v̂, ‖Q̂1‖v̂}+ max{‖V̂2‖v̂, ‖Q̂2‖v̂}
= ‖W1‖+ ‖W2‖,

and similarly
‖Q̂1 + Q̂2‖v̂ ≤ ‖W1‖+ ‖W2‖.

We then have

‖W1 +W2‖ = max{‖V̂1 + V̂2‖v̂, ‖Q̂1 + Q̂2‖v̂} ≤ ‖W1‖+ ‖W2‖,

which confirms in part that the norm ‖ · ‖ is well-defined.
Now we proceed to prove B2(S) is complete. Given Cauchy sequence

{Wk} ⊂ B2(S) with respect to ‖ · ‖ where Wk = (V̂k, Q̂k), we can see that
{V̂k}, {Q̂k} ⊂ B1(S) are both Cauchy with respect to ‖ · ‖v̂. Note that since
{Wk} is some arbitrary Cauchy sequence, so V̂k is more general than the
form defined in Eq. (2.33). Since B1(S) is complete, ‖V̂k − V̂ ∗‖v̂ → 0 and
‖Q̂k − Q̂∗‖v̂ → 0 where V̂ ∗, Q̂∗ ∈ B1(S). Denote W ∗ = (V̂ ∗, Q̂∗). Then it’s
easy to see thatW ∗ ∈ B2(S). In addition, since ∀ε > 0, ∃KV (ε) and ∃KQ(ε)
such that ‖V̂k − V̂ ∗‖v̂ < ε ∀k ≥ KV (ε), and ‖Q̂k − Q̂∗‖v̂ < ε ∀k ≥ KQ(ε),
then ∀k ≥ K(ε) = max{KV (ε),KQ(ε)}, max{‖V̂k− V̂ ∗‖v̂, ‖Q̂k− Q̂∗‖v̂} < ε,
viz.,

‖Wk −W ∗‖ < ε, ∀k ≥ K(ε),

which shows that {Wk} is convergent and B2(S) therefore is complete.

P. 90

We continue to use the notations introduced above. Note the difference be-
tween B(X) and B1(S). If we assume H(·, ·, ·) is such that Q̂(s) = Q(x, u) =
H(x, u, J) is in the space B1(S) ∀J ∈ B(X), then it implies that TµJ ∈ B(X)
and TJ ∈ B(X) ∀J ∈ B(X) (part of Assumption 2.1.2). To see this, we de-
note as Sµ the set ∪x∈X{(x, µ(x))}. Then we have

sup
x∈X

|(TµJ)(x)|
v(x) = sup

s∈Sµ

|Q̂(s)|
v̂(s) ≤ sup

s∈S

|Q̂(s)|
v̂(s) <∞

since Sµ ⊆ S. In addition, we denote as Sx the set ∪u∈U(x){(x, u)}, then we
have

(TJ)(x) = inf
u∈U(x)

H(x, u, J) = v(x) inf
s∈Sx

Q̂(s)
v̂(s)

as ∀s ∈ Sx, v̂(s) = v(x). Since

−|Q̂(s)|
v̂(s) ≤

Q̂(s)
v̂(s) ≤

|Q̂(s)|
v̂(s) =⇒ − sup

s∈Sx

|Q̂(s)|
v̂(s) ≤ inf

s∈Sx

Q̂(s)
v̂(s) ≤ sup

s∈Sx

|Q̂(s)|
v̂(s) ,
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we have

|(TJ)(x)| =
∣∣∣v(x) inf

s∈Sx

Q̂(s)
v̂(s)

∣∣∣ ≤ v(x) sup
s∈Sx

|Q̂(s)|
v̂(s) ≤ v(x) sup

s∈S

|Q̂(s)|
v̂(s) <∞

holds for all x ∈ X where the last inequality follows from Q̂ ∈ B1(S) and
v(x) is finite for all x ∈ X. Therefore, we have |(TJ)(x)| < ∞ ∀x ∈ X. In
addition, by dividing v(x) on both sides, we have

|(TJ)(x)|
v(x) ≤ sup

s∈S

|Q̂(s)|
v̂(s) , ∀x ∈ X.

Therefore, we have

sup
x∈X

|(TJ)(x)|
v(x) ≤ sup

s∈S

|Q̂(s)|
v̂(s) <∞,

viz., TJ ∈ B(X).
On the other hand, TµJ ∈ B(X) and TJ ∈ B(X) ∀J ∈ B(X), does not

imply that Q̂ ∈ B1(S) ∀J ∈ B(X) where Q̂(s) = Q(x, u) = H(x, u, J). One
example is found below.

Example 2.5.2. Consider X = {x} and U(x) = N. In addition, we define
v(x) = 1 and H(·, ·, ·) as

H(x, u, J) = u+ αJ(x)

where α ∈ (0, 1). Then we have TµJ ∈ B(X) ∀µ ∈ M and TJ ∈ B(X), but
Q̂ 6∈ B1(S).

P. 90

Here ’all’ means for all V, Ṽ ∈ B(X) and all Q, Q̃ such that Q̂, ˆ̃Q ∈ B1(S)
where Q̂(s) = Q(x, u) and ˆ̃Q(s) = Q̃(x, u) for s = (x, u).

P. 91

Due to the definition of Fµ, we see that given V, Q, the function Fµ(V,Q)(·, ·)
is a function of (x, u). Therefore, the norm here refers to the norm defined
on Q(·, ·).

P. 91

Assume that Q̂(s) = Q(x, u) = H(x, u, J) is in the space B1(S) ∀J ∈ B(X),
rather than assuming TµJ ∈ B(X) and TJ ∈ B(X) ∀J ∈ B(X). Here we
would like to show that this step follows from ‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖
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∀µ ∈ M. Follow the notations defined above, we denote as Sµ the set
∪x∈X{(x, µ(x))}. Then

‖TµJ − TµJ ′‖ = sup
x∈X

|H(x, µ(x), J)−H(x, µ(x), J ′)|
v(x)

= sup
(x,u)∈Sµ

|H(x, u, J)−H(x, u, J ′)|
v(x)

= sup
s∈Sµ

|Q̂(s)− Q̂′(s)|
v̂(s)

where Q̂(s) = H(x, u, J) and Q̂′(s) = H(x, u, J ′). Since ‖TµJ − TµJ ′‖ ≤
α‖J − J ′‖ ∀µ ∈M, we have

sup
s∈Sµ

|Q̂(s)− Q̂′(s)|
v̂(s) ≤ α‖J − J ′‖, ∀µ ∈M,

which is to say, given J, J ′ ∈ B(X), ∀µ ∈ M, α‖J − J ′‖ is an upper bound
of the set {|Q̂(s) − Q̂′(s)|/v̂(s)}s∈Sµ . Consequently α‖J − J ′‖ is an upper
bound of the set {|Q̂(s)− Q̂′(s)|/v̂(s)}s∈∪µ∈MSµ . Since we have

S ⊆
⋃
µ∈M

Sµ,
⋃
µ∈M

Sµ ⊆ S =⇒ S =
⋃
µ∈M

Sµ

where S contains all the feasible state control pairs (x, u). One may verify
the above relation by definitions ofM, S, Sµ. Therefore, we have α‖J−J ′‖
as an upper bound of the set {|Q̂(s)− Q̂′(s)|/v̂(s)}s∈S , viz.,

‖Q̂− Q̂′‖ = sup
s∈S

|Q̂(s)− Q̂′(s)|
v̂(s) ≤ α‖J − J ′‖.

P. 91

Here ’all’ means for all Q, Q̃ such that Q̂, ˆ̃Q ∈ B1(S) where Q̂(s) = Q(x, u)
and ˆ̃Q(s) = Q̃(x, u) for s = (x, u). For all such Q, we have MQ ∈ B(X).
The proof is entirely similar to the one given for Q̂ ∈ B1(S) ∀J ∈ B(X)
implying TJ ∈ B(X) ∀J ∈ B(X). Here we repeat the arguments.

(MQ)(x) = inf
u∈U(x)

Q(x, u) = inf
s∈Sx

Q̂(s) = v(x) inf
s∈Sx

Q̂(s)
v̂(s) .

Since

−|Q̂(s)|
v̂(s) ≤

Q̂(s)
v̂(s) ≤

|Q̂(s)|
v̂(s) =⇒ − sup

s∈Sx

|Q̂(s)|
v̂(s) ≤ inf

s∈Sx

Q̂(s)
v̂(s) ≤ sup

s∈Sx

|Q̂(s)|
v̂(s) ,
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we have ∀x ∈ X

|(MQ)(x)| =
∣∣∣v(x) inf

s∈Sx

Q̂(s)
v̂(s)

∣∣∣ ≤ v(x) sup
s∈Sx

|Q̂(s)|
v̂(s) ≤ v(x) sup

s∈S

|Q̂(s)|
v̂(s) <∞,

namely |MQ(x)| < ∞ for all x. Dividing both sides with v(x) and taking
supremum over x ∈ X, we see that MQ ∈ B(X).

P. 91

In addition to this, it also follows from the relation

‖Qµ − Q̃µ‖ ≤ ‖Q− Q̃‖,

and this can be verified as follows. Since

‖Qµ − Q̃µ‖ = sup
x∈X

|Qµ(x)− Q̃µ(x)|
v(x) = sup

s∈Sµ

|Q̂(s)− ˆ̃Q(s)|
v̂(s) ,

‖Q− Q̃‖ = sup
x∈X,u∈U(x)

|Q(x, u)− Q̃(x, u)|
v(x) = sup

s∈S

|Q̂(s)− ˆ̃Q(s)|
v̂(s) ,

the inequality is obtained since Sµ ⊆ S.

P. 93

This update on J t can be viewed as an combination of an step of local
policy evaluation of Q on the old policy µt, and picking out the term of the
evaluated Q whose control input corresponds to the new control µt+1. To
see this, we have ∀x ∈ X`

J t+1(x) = min
u∈U(x)

H
(
x, u,min{V t, J t}

)
= H

(
x, µt+1(x),min{V t, J t}

)
= H

(
x, µt+1(x),min{V t, Qtµt}

)
.

Therefore, this step is performing policy evaluation of Q on the old policy
(together with picking out the term of interests), and policy improvement
on V , µ simultaneously.
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3

Semicontractive Models

3.1 Pathologies of Noncontractive DP Models

3.1.1 Deterministic Shortest Path Problems

None.

3.1.2 Stochastic Shortest Path Problems

None.

3.1.3 The Blackmailer’s Dilemma

None.

3.1.4 Linear-Quadratic Problems

P. 122

To see this, note that the sequence generated by the iteration is given as

p, r2 + p(γ + r)2, ..., r2 + · · ·+ (γ + r)2n−2r2 + p(γ + r)2n, ....

Therefore, the limit is r2

1−(γ+r)2 since |γ + r| < 1.

P. 122

Denote as p0x
2 the cost function Jµ0 and as r0x the control µ0(x). Then we

have p0 ≥ γ2 − 1 and
µ1(x) = − p0γ

1 + p0
x,

as is shown in P. 120, [Abstract DP] 2nd Edition, which indeed is linear
feedback and r1 = − p0γ

1+p0
. Then we have

|γ + r1| =
|γ|

1 + p0
≤ |γ|

1 + γ2 − 1 = 1
|γ|

< 1

47
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where the first inequality follows from that p0 ≥ γ2 − 1. Therefore, µ1 is
also stable linear control.

3.1.5 An Intuitive View of Semicontractive Analysis

P. 123

A direct consequence of this part of the assumption is that Ĵ , defined point-
wise by

Ĵ(x) = inf
µ∈M̂

Jµ(x),

can only takes values in R ∪ {−∞}, viz., Ĵ(x) <∞ ∀x ∈ X.

P. 124

Due to Eq. (3.8), we have TJµk(x) ∈ [Jµk(x), Jµk+1(x)] ⊆ R. Therefore,
∀x ∈ X, the sequence {TJµk(x)}∞k=0 is a real sequence. In addition, it
is monotonically decreasing due to the monotonicity assumption of T and
Jµk ≥ Jµk+1 . Therefore, ∀x ∈ X {TJµk(x)}∞k=0 is convergent.

P. 125

To see that ∀x ∈ X, the sequence {T kJ(x)}∞k=0 is convergent, we use the
following arguments. We first have

T kµJ ≥ T kJ ≥ T kĴ = Ĵ , ∀µ ∈ M̂, k ≥ 0. (3.1)

Take limit inferior on both sides of Eq. (3.1) and since that TµJ → Jµ is
converging point-wise, we have

Jµ(x) = lim
k→∞

(T kµJ)(x) = lim inf
k→∞

(T kµJ)(x) ≥ lim inf
k→∞

(T kJ)(x) ≥ Ĵ(x).

Then we have ∀x ∈ X, it holds that

Ĵ(x) = inf
µ∈M̂

Jµ(x) ≥ lim inf
k→∞

(T kJ)(x) ≥ Ĵ(x) =⇒ lim inf
k→∞

(T kJ)(x) = Ĵ(x).

Similarly, we can get
lim sup
k→∞

(T kJ)(x) ≥ Ĵ(x).

Therefore, we have ∀x ∈ X, the sequence {(T kJ)(x)}∞k=0 is convergent.
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3.2 Semicontractive Models and Regular Policies

3.2.1 S-Regular Policies

P. 128

3.2.2 Restricted Optimization over S-Regular Policies

P. 131

Lemma (P. 131). Given nonempty set S ⊂ E(X), the relation of MS and
WS being empty set is given as follows:

MS 6= ∅ =⇒ WS 6= ∅;
WS 6= ∅ =⇒ (MS 6= ∅) ∨ (J∞ ∈ S);

where J∞ denotes the constant function that is equal to +∞ ∀x ∈ X.

Proof. For the first part, since MS 6= ∅, then ∃µ ∈ M that is S-regular.
Therefore, Jµ ∈ WS and WS 6= ∅. On the other hand, if (MS = ∅) ∧ (J∞ 6∈
S), we have J∗S = J∞ and ∀J ∈ S, J < J∗S due to J∞ 6∈ S, which indicates
that WS = ∅. Taking logical not in above claim and we prove the second
part.
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Appendix A

Notation and Mathematical
Conventions

A.1 Set notion and conventions
None.

A.2 Functions

P. 324

Lemma (P. 324). Let {smn} ⊂ R∗ be an extended real-valued double se-
quence, which is monotonically nondecreasing separately for each index in
the sense that

smn ≤ s(m+1)n, smn ≤ sm(n+1), ∀m,n = 0, 1, ... ,

then it holds that
lim
m→∞

(
lim
n→∞

smn
)

= lim
m→∞

smm.

Proof. If {smn} is bounded above and {smn}∩R 6= ∅, then ∃sMN ∈ R. Since
{smn} is monotonically nondecreasing, then s`k ∈ R ∀` > M, k > N . Then
it is shown in Theorem 4.2, [Note 1] that the double sequence has real limit
sup smn. If {smn} is bounded above and {smn} ∩ R = ∅, then smn = −∞
∀m,n, then the convergence of the double sequence follows. If {smn} is
unbounded above, then ∀x ∈ R, ∃sMN > x, since {smn} nondecreasing,
then s`k > x ∀` > M, k > N . Therefore, limm,n→∞ smn exists and is ∞
according to definition. In conclusion, we prove that the double sequence
converges and has a limit in R∗.

In addition, ∀m, the sequence {smn}∞n=0 is a monotone sequence in R∗,
then by [Lemma 3 P. 42], it is convergent. Then by the [Hand Note 1], we
get

lim
m→∞

(
lim
n→∞

smn
)

= lim
m,n→∞

smn.
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Per definition of the limit of the double sequence, we have

lim
m,n→∞

smn = lim
m→∞

smm,

which conclude the proof.



Appendix B

Contraction Mappings

B.1 Contraction mapping fixed point theorem
None.

B.2 Weighted sup-norm contractions

P. 329

The original claim is

∀ε > 0, ∃K(ε) ∈ N+, such that P
(
K(ε), ε

)
where

P
(
K(ε), ε

)
=
( |Jk(x)− J∗(x)|

v(x) ≤ ε, ∀x ∈ X, k ≥ K(ε)
)
.

Therefore, the contrary is

∃ε > 0, ∀K ∈ N+, such that ¬P (K, ε)

where

¬P (K, ε) =
(
∃
(
x(K, ε) ∈ X, k(K, ε) ≥ K

)
,

∣∣Jk(K,ε)
(
x(K, ε)

)
− J∗

(
x(K, ε)

)∣∣
v
(
x(K, ε)

) > ε
)
.

Therefore, given ε, the sequence {xm1 , xm2 , ...} is constructed by induction:
xm1 = x(1, ε) where m1 = k(1, ε); given xmn and mn, xmn+1 = x(mn + 1, ε)
and mn+1 = k(mn + 1, ε).
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