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Introduction

1.1 Structure of Dynamic Programming

P.3

91 = o) 14 ).

Figure 1.1: P. 3 (1).

To prove this, note that by definition,

N-1

Jr(x0) = limsup Y o g(ap, (k)

K-1

= lim su oF Ti, T
N%szgv,;) 9(p, b (zx))

K-1
= lim sup Z ag
N—oo K>N Pt

= lim sup zx
N—>ooK2N
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where a = a¥g(xy, pr(xr)) and zx = EkK:_Ol ay. Similarly, for J,, we have

N
Jr (21) = limsup Y o g (ay, wi(ar))
N-1

= lim sup Z akflg(l’kaﬂk(xk))
N—oo k=1

K-1

= lim su (g, w(zk
N%OK;?V]; 9@k, pr ()

K—-1
= lim sup Z b,
NHOOKZN el

= lim sup wg (1.2)
N~>OOKZN

where by, = o* tg(ay, ur(zy)) and wi = ZkK:_ll bi. Since for any given K
and xp, under the deterministic dynamics xpi1 = f(zk,ug), it holds that
2Kk = ap + awg. Then consider the sequence {zx} and {wg}, their limit

superiors have the relation given here.

P.3

We have for all z € X

JH(z) = inf {q(l ;(0(;1‘)) + oty (f(:r. ,1[0(;1:)))}

m={po,m1} €Il

&:‘ inf {g(;z:. po(z)) + ﬂillgn Iy (£ (2, o () }

" poEM

= inf {g(;p. po(2)) + " (f(x, po(x))) }

HoEM

Figure 1.2: P. 3 (2).
This equality holds due to the principle of optimality.

P. 4

Defining
(T T)(m) = B, plo). ), r € X,
and

(T)() = ei?rf.r; H(x,u, 7)5;% (T,J)(z), x€X,

Figure 1.3: P. 4 (1).
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This equality holds due to the definition of M.

P. 4

DN=¥os)
Figure 1.4: P. 4 (2).

The definition here is exactly the same as the definition given by Eq. (1.2),
due to the definition of the composition of mappings.

1.2 Abstract Dynamic Programming Models

1.2.1 Problem Formulation

None.

1.2.2 Monotonicity and Contraction Properties

None.

1.2.3 Some Examples
P. 11
is defined as a (possibly countably infinite) sum, since the disturbances wy,

k= 0.1,..., take values in a countable set. Indeed, the reader may verify
that @

value can be written as summations over a finite or a countable set. ~ they

make sense without resort to measure-theoretic integration concepts. t
Figure 1.5: P. 11 (1).

Here we have applied the Theorem that finite Cartesian product of countable
sets have countable elements.

P. 11

N-1
1{%; {Zakg(mk,“k(mk),wk)},
k=0

k=0,1,...

Figure 1.6: P. 11 (2).
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This equality can be justified by double expectation. That is,

N-1

Jen(z0) =E Z g (g, pr(zr), ’wk)|-'170}
k=0
N1

a Y " g (g, pr(wr), wi) + g(xo, po(zo), w0)|$o}
k=1

tij

tij

N—
{OéE Z (@, p(xr), wi) |21} + g(wo, po(2o), wo |1»‘0}
E{aE{ aFE{g(zn_1,pn-1(xN-1), wN_1)|TN_1} + ...
+ g(@1, pr (@), wr)|z1 } + g(wo,uo($0)>wo)|xo}-

Then it can be seen from the last line that the equality holds.

P. 26

By contrast, the projected equation mapping ¢ T need not be mono-

l (EEANCENPENIOICEAHNE) \oreover

while the projection Tl¢ is( with respect to the projection norm

[[-]|¢. it need not be nonexpansive with respect to the sup-norm. As a result

the projected equation mapping II.7" need not be a sup-norm contraction.
These facts play a significant role in approximate DP methodology.

Figure 1.7: P. 26.

Regarding the first comment, refer to Eq. (6.36), Section 6.3.2, P. 428
[Berl2al, or Eq. (6.77), Section 6.8, P. 355, [BeT96] for details. In short,
the iteration in matrix form is given by

ot = o(¥'EPR) ' O'ET DY,

where = € R™ " is a diagonal matrix whose diagonal elements are &;’s.
Therefore, the projection matrix Il is

Il = (=) 1'=.
Regarding the second, the definition is given as
Mg Jlle < IS le-

Refer to Section 6.8, P. 355, [BeT96].
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P. 28

The preceding formulas show that T() and P(¢) are closely related. i

that iterating with TV is “faster” than iterating with P(?), since the eigen-
values of A are within the unit circle, so that T'is a contraction. In aition.
methods such as TD(A), LSTD(A), LSPE(A). and their projected versions,
which are based on T, can be adapted to be used with P(c),

Figure 1.8: P. 28 (1).

Refer to the note on Exercise 1.2 (b), P. 35 [Abstract DP] 2nd Edition for
details.

P. 28

The mapping T™ is obtained for wiy = (1 — M)AL, independently of
the state .

The solution of Eqs. (1.24) and (1.25)
by simulation-based methods is discussed in the paper [YuB12]; see also
Exercise 1.3.

Figure 1.9: P. 28 (2).
Here, 'more general’ is compared to the case where wi; = (1—A)AY. The part

highlighted above is the most general setting, and here w;; = (1 — \)\¢ is
one of the possible forms of (w1, wiy, ...), which is a probability distribution.

1.3 Organization of the Book

None.

1.4 Notes, Sources, and Exercises

P. 35

Thus T™).J is obtained by extrapolation along the line segment P().J — J.

a; illustrated in Fig. 1.4.1. Note that since T is a contraction mapping,

Figure 1.10: P. 35.

To see this, due to Eq. (1.28), we have

TN — g  =T7POJ — J* = TP J _TJ*
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Therefore, we have
ITNT = J*| = |TPOT = TJ*| < || POT - .

P. 38

Consider a set of mappings 1), : B(X) = B(X), p € M, satisfying the contraction
Assumption 1.2.2. Consider also the mappings EBE)ERBEX) defined by

oc

(T J) (2 Z z€ X, JeB(X),

Figure 1.11: P. 38 (1).
Refer to the note in P. 64, [Abstract DP| 2nd Edition, for further details.

P. 38

Solution: By the contraction property of T),, we have for all .J. J" € B(X) and
zeX,

[T D) () = (T8 T) (= &—M

v(x)
Z D)ITET - TLT|

(o)

Figure 1.12: P. 38 (2).

uMg

We denote the right-hand side of the equation as | Y 72, (a¢ — b¢)|. Due to
continuity of |- |, we have

n o0
T}%Ié(w—@ |; (ae — be)|.

Since Vn, it holds that

1> (ae —be)| < lag — bl
= =1

which is due to triangular inequality, then taking limits on both sides and
we get an inequality. The inequality here is obtained based on the triangular
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inequality and the fact that

(T3 T) (@) — (T0") ()]
v(x)

< HTfJ - TfJ’H.
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Contractive Models

2.1 Bellman’s Equation and Optimality Conditions
P. 40

We denote by R(X) the set of real-valued functions J : X +— R. We
have a mapping (£ and for each policy € M, we

consider the mapping 7}, : R(X) — R(X) defined by
(T J) () :H(.r,pc(x),J), VrelX.

Figure 2.1: P. 40 (1).

Note that H only needs to be defined on (x,u,J) where u € U(x). For

(x,u/,J) where v € U(z), H(z,u', J) can be left undefined.

P. 40

[We will use frequently the second equality above, which holds because M
can be Vigwed as the Cartesian product Il,exU(xz).] We want to find a

function
—L_ VzeX,
e ERCAPeHUCHINIERREN) We also want to obtain a policy

p* € M such that T, J" =T.J".

Figure 2.2: P. 40 (2).

J* is defined as the fixed point of T" within R(X).

11
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Note that the monotonicity assumption implies the following proper-
ties. for all .J..J/ € R(X) and k =0, 1,.... which we will use extensively:

J<) = G 1 <Ti). YueM,

G - THI<THJ,  TEI<TH'J, VueM.

Figure 2.3: P. 41 (1).

Regarding the first comment, given the assumption H : X x U x R(X) — R,
we have that VJ € R(X), it holds that T,,J € R(X) Vu € M. However, it
does not imply T'J € R(X). Therefore, to have the k-folds well-defined, e.g.
T(TJ) well-defined, one need to ensure first 7'J € R(X) so that T'(TJ) can
be defined.

Regarding the second comment, as noted above, H : X xU x R(X) — R
does not imply T'J € R(X) VJ € R(X). However, given J € R(X), if in
addition, we have J < T'J, then T, J(x) is lower bounded by J(x) Vi € M,
Vo € X, so TJ(x) = infyep Ty J(x) € R, which means T'J € R(X) for the
given J.

Assumption 2.1.2: (Contraction) For all .J € B(X) and u € M.

OSSN ETHENIBE) I'urthermore, for some

a € (0,1), we have

ITd =TT < allJ = 7, Y .J.J eBX), peM.

Figure 2.4: P. 41 (2).

Refer to Prop. B.5, P. 333, [Abstract DP] 2nd Edition for an example.
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P. 42

(b) For any J € B(X) and p € M,

Jim 1T = TR =0, i, = T =0,

Figure 2.5: P. 42 (1).

According to Prop. B.1, P. 327, [Abstract DP] 2nd Edition, J* and J,
are fixed points of T" and T}, respectively and the convergence is defined in
terms of the weighted sup-norm. Here under the assumption that T.J €
B(X), T,J € B(X) holds VJ € B(X), Vu € M [this is part of the the
Assumption 2.1.1], we would like to show that convergence in norm implies
point-wise convergence. To see this, note that by definition, we have

7" T (2) — J*(x)|
v(x) ’

IT*J = J*|| = sup
zeX

therefore, Vo € X, it holds that
T () = J* ()| < o(@)|T"T = .

Since T%J — J* in norm, namely limy_,, |T%J — J*|| = 0, then by first
taking limit inferiors on both sides of above equation, and then taking limit
superiors on both sides of above equation, we get the point-wise convergence.
Replace T and J* with T}, and J, respectively, the exact same arguments can
be applied to prove the point-wise convergence (7,.J)(x) — J,(x). Note that
in our proof for the convergence in norm implying convergence point-wise,
we only requires that T'J € B(X), T,,J € B(X) holds VJ € B(X), Vu € M;
the contraction property of T" and T}, is not used.

Due to above result, we have

limsup T%J (z) = lim T%J(z) = J*(z).

k— o0 k—o0

The same result goes for T},.
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To show part (d), we use the triangle inequality to write for every Fk,

k k
I1T*J — J| < D NTET - T1T|| <) ot TT - .
(=1 (=1

{@IGWS) The right-hand side inequality follows from the left-hand side and
the contraction property of 1. The proof of part (e) is similar to part (d)
[indeed it is the special case of part (d) where 1" is equal to 1},. i.e., when
U(z) = {p(z)} for all z € X]. Q.E.D.

Figure 2.6: P. 42 (2).

The following four lemmas are needed in the follow up discussion. Refer to
[Hand Note 4] for proofs.

Lemma (1, P. 42). Given two extended real-valued sequences {a,} and {b,}
where ay,, b, € R*. Assume that both lim,_ .o a, and lim,_ . b, exist in R*.
Prove that
anp < b, — lim a, < lim b,.
n—oo n—,oo

Lemma (2, P. 42). Given {a,} with a, € R and a = lim,_, a, € R, and
{bn} with b, € R* and b = lim,,_,o by, € R*. Prove that

g (G + bn) = lizg an -l B

Lemma (3, P. 42). Given {a,} € R* which is monotone, prove that {a,}
is convergent in R*.

Lemma (4, P. 42). Given two real sequences {an} and {b,}, and assume
that lim sup,, ., an € R, show that

lim sup(a, + by,) < limsup a,, + lim sup b,,.

n—oo n—oo n—oo

There are two approaches for proof of the highlighted part.
1. For any k, we have
175 = JI| < 177 =TT + |78 = J)|
< ||J* = TrT| + i oY T T = T
{=1

Taking limit on k, we get the desired result. Here we can directly take
limit on k since limy,_, o ||J*—TJ|| exists and the sequence {3 F_, o/~ || T'.J—
J||}32, is monotonically nondecreasing.
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2. Since T*J — J* in the sense that limy .o |T%J — J*|| = 0, due to
continuity of || - ||, [|T*J — J|| — ||J* — J||. [A closer look of this
arguments is given below.]

Theorem (P. 42). a,, — a in the sense that lim,_, ||a, — a|| = 0, then
limp o0 [|an|| = [|limp o0 an|| = [|a].
Proof. Since we have ||a, || = ||an—a+a| < ||an—al|+|al], then supys,, [|ax| <

supy>y(llan — all + |la]|), then by [Lemma 3 P. 42], both are convergent in
R* and by [Lemma 1 P. 42],

tim sup [lan | < lim sup(lax — all + [la]).
Since limsup,, , |la]| = ||a]| € R, by [Lemma 4 P. 42],
lim sup(||an — al| + [|al]) <limsup [la, —all + o] = [la].-

On the other hand, we have

liminf ||a,| = liminf ||a + a,, — a|| > liminf (||a]] — |la, — al]) = ||a|,
n—oo n—0o0 n—oo
which concludes the proof. O
P. 42

Part (c) of the preceding proposition shows that there exists a p € M
such that J, = J* if and only if the minimum of H(w,u, J") over U(x) is
attained for all € X. Of course the minimum is attained if U(z) is
finite for every @, but otherwise this is not guaranteed in the ahsence of
additional assumptions. Part (d) provides a useful error bound: we can
evaluate the proximity of any function J € B(X) to the fixed point J* by
applying 7" to J and computing ||T.J —J]|. {

Figure 2.7: P. 42 (3).

To see this, note that for a given x, we have

“(z) = TJ*(z) = (inf T,J*)(z) = inf H .
J*(x) J*(x) (ulélM wJ ) () ant (x,u, J*)

If the infimum is attained, we can define

pe(z) = arg min H (z, u, J*);
ueU(x)
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otherwise, due to the definition of infimum, (Ve > 0)(3u. € U(x))(H (z,u., J*) <
infyepr(z) H(7,u, J*) + € = J*(x) +¢). Then we can define

fe () = Ue.

Note that the above construction relies on M being the Cartesian prod-
uct of feasible control sets U(x).

P. 43

Proposition 2.1.2: Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold. Then

Furthermore, for every e > 0, there exists pe € M such that

J(z) < Jp (z) £ T (z) + ¢, Vze X (280))

Figure 2.8: P. 43 (1).

The left-hand side is the fixed point of T'; while the right-hand side is the
point-wise infimum of J,(x) over M.

P. 43

Note that_ we may have inf,c p Jyu(x) < J*(2)

for some 2. This is illustrated by the following example.

Figure 2.9: P. 43 (2).

Here it means that without monotonicity assumption but with contraction
assumption.

P. 44

Jn(@) =lmsup (g T @), ¥ Y.

Figure 2.10: P. 44 (1).



2.1. BELLMAN’S EQUATION AND OPTIMALITY CONDITIONS 17

Under Assumption 2.1.2 (Assumption 2.1.1 is irrelevant here), given J €
B(X), it is still possible that J. ¢ B(X). In fact, J; can even take value
+o0 at some x, which is to say it’s possible that J; € R(X). One example
could be consider the case where the state space is a singlton and control
space is infinite with accumulative cost. For pg, we have one stage cost go;
then the stage cost of uy is defined as go/a* where « is the discount factor
for all T),,. Then it can be shown that J; = go - (+-00). This indicates that
given inital J € B(X), it could be that J, ¢ R(X). In particular, the proof
technique used in Prop. B.1, P. 327, [Abstract DP] 2nd Edition, does not
work in this case. To see this, note the sequence generated according to the
definition is

Iy Tuods TpoTyy Iy ooy Tuo Ty - T s Tpo Ty - Ty Ty s oo (2.1)

k+1%

Therefore, the normed difference of adjacent terms is bounded by

1Ty T = TN, @l Ty T = T oes @B T T T o (22)

k+1

where the kth term in is the bound of the difference of the kth and
k+ 1th terms in . Here we have applied the result that if J, J' € B(X),
then J — J € B(X) (so that the differences of any adjacent terms in
is in B(X) and therefore can be plugged into || - ||). Note that although
due to contraction assumption, we have a geometric term oF; however, if
| Tysrd — I/ Ty — J|| = 1/c, then the sequence would not be Cauchy,
just as the example indicated.

However, under Assumptions 2.1.1 and 2.1.2, we have J;(x) > —o0
Vz € X and Vr € II. Since by Assumption 2.1.1, we have T}, T}, -+ - T}y J >
T*+1J. Taking limit supremum on both sides, and applying the fact that
convergence in norm implies convergence point-wise where we have used the
Assumption 2.1.2 [Note in P. 42], we see J.(z) > J*(z) > —c0.

Theorem (P. 44). Given J;, € B(X), denote its point-wise limit superior
as J, namely
J(x) = limsup J(x),

k—o00

then we claim the following statement:

J ¢ B(X) = limsup || Ji| = 0. (2.3)

k—o0

Proof. It’s equivalent to prove the following statement:

limsup || Ji|| < 00 = J € B(X). (2.4)

k—o0

Since limsupy_, ., ||Jx|| < 0o, denote A = limsupy_, ., ||Jx||, then Vz € X it
holds that

J
< ||kl = 1imsup| k(@)

< limsup | J.|| = A.
o(@) msup = oy < fmsup i
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Since Vo € X and k, we also have —|Jy(z)| < Ji(z) < [Ji(x)[, then it holds
that

liminf ( — |Jgx(z)|) = —limsup |Ji(z)| < limsup Ji(z) < limsup |Jx(x)|.
k—o0 k—o0 k—o0 k—o0
Therefore, we have Va € X,
@) _ limsupg g B@)] _ ()
v(x) v(z) k—oo  U(T)

Then we have

< A.

L)

< A.
zeX ’U(CC) N

With the [Theorem P. 44], we know that if J; ¢ B(X), then

limsup || Ty, -+ Ty, J|| = 0.

k—o00

P. 44

=
the definition of Jr does not matter, since for any two J..J’ € B(X), we

have
o T = T T = T Ty =+ T Pl < a1 T = 1|
SO ANSAEPERERHOng Sice by Prop. 2.1.1(h), Ju(x) =

limg o0 (T/FJ) () for all p € M, J € B(X), and = € X, in the DP context
we recognize J,, as the cost function of the stationary policy {yu, u, ...}

Figure 2.11: P. 44 (2).

By definition of || - ||, we have
sup |(Tyo -+ T ) () = (Tpg -+ Ty J') ()| < oF T - T,
zeX ’U(l‘)

then Vo € X and k € N, we have
|ar(z) — aj(@)] < v(@)a [T =T

where ay(z) = (T, - Ty, J)(z) and aj(z) = (T, -+ Ty J')(x). Then we
have limsupy,_, . (ax(x) — a,(x)) = limsup,_,(a}(z) — ax(z)) = 0. Since
we have

lim sup ay(z) = limsup (ax(z) — aj,(z) + aj,(z))
k—o0 k—o00

< limsup (a(z) — aj(z)) + lim sup aj,(z),
k—oo k—o0
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where the inequality is due to [Lemma 4 P. 42]. Then it holds that

lim sup ax(z) < limsup (ax(z) — aj(x)) + lim sup aj ()
k—ro0 k—ro0 k—ro0

< limsup v(z)a1||J = J'|| 4 lim sup a},(z)
k—ro0 k—ro0

= lim v(z)a*"YJ — J'|| + lim sup a},(z)
k—o0 k—o00

= lim sup aj ().
k—ro0

Note that here we avoid to use limsupy_,. ag(x) — limsup;_,., aj(z) <
limsupy,_, (ax(x) — aj(z)) in order to avoid possible co — co. Swap the
order of ay(x) and a(x), we get

lim sup aj,(x) < lim sup ag(z),
k—o0 k—o0

which concludes the proof.

P. 44

Te() = T sup (Tg Ty - - T D) () > (RS

k— o0

Figure 2.12: P. 44 (3).

Here we have applied the fact that convergence in norm implies point-wise
convergence [Theorem P. 42| and therefore, under Assumption 2.1.2, the
equation here holds.
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2.2 Limited Lookahead Policies

P. 50

Proposition 2.2.2: (Multistep Lookahead Error Bound) Let
the contraction Assumption 2.1.2 hold. The periodic policy

0T = 00 o i i s o T s
generated by the method of Eq. (2.10) satisfies
2am € ale+20)(1 — am-1)

B | < = n
|@ = 1 —am I I 1l — @i (1—-a)(1—am)
(2.11)

Figure 2.13: P. 50.

As noted in P. 44, given a nonstationary policy 7, under Assumption 2.1.2
(Assumption 2.1.1 is irrelevant), it could be that J. & R(X). However,
for a periodic policy m, we always have J. € B(X). To see this, define
Ty, =Ty Ty, By Exercise 1.1, P. 33, we have T}, contraction with
modulos ™. Denote its fixed point as Jr, € B(X). Given the initial
J € B(X), the sequence generated by applying k-folds of Ty, is

J, Ty, oy TE T, (2.5)

which is Cauchy has converges in norm to J;, € B(X).
On the other hand, according to the definition given in P. 44,

Jr =limsup T}, --- T, J,

k—o00

then the sequence generated according to the definition is given as
Iy Tyod s Tuo Ty s woes T Iy Tre Ty .. (2.6)

We claim the sequence ([2.6)) is Cauchy and converge to J; € B(X), which
is equal to Jr,,. To see this, denote

A= max la; — J||
i€{0,1,...,m—2}

where
{ao, a1, oy am—2} = {TpoJs TpeTpsJs oo Tpg++* Ty 5 }-

Then Ve > 0, 3Ny (e), such that o™ A < /3 holds Vi > Ni(e); besides,
since sequence (2.5) Cauchy, IN3(e) such that |7 J— T2 J|| < e/3 holds
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Vi,j > Na(e). Denote pth and gth term of the sequence (2.6)) as b, and by,
then Vp,q > m - max{Ni(e), Na(e)} where |p/m| # 0 and [g/m] # 0, it
holds that

1bp = bgll =IT%, Ty -+ Tpgd = T2 Ty -+ - Ty |
<|yT2 o WJ—T; I+ 175, T = T2, T+
” Tm ,uo"'TMkj_T%mJH
<a™A+¢/34+a™A
<E.

where i = |p/m|, { =p—mi—1, j = |¢g/m], and k = p—mj — 1. For
the cases where [p/m| = 0 or |g/m] = 0, the same holds. Terefore, we
have sequence Cauchy. By the same arguments, it can be shown that
its fixed point Jr, is the same as J,, . Another way to see this is to regard
sequence as the following m subsequences:

J, :
Tods T Tuo s - T’“ T

Ty TF T+ T,

Hm—2

Tuo - T 2J T To -+ T,

Hm—2

J, ...

all of which converge to the fixed point of 7%, , then we can apply the same
arguments used in P. 329 for proving Prop. B.2, we can see the sequence
converges to Jr.

However, with the given initial J € B(X), if we consider the sequence
directly generated by the multistep look ahead algorithm, which could be of
the form

J, Ty, J, ST S Ty T, Ty, T .. (2.7)

We claim the sequence is not convergent. To see this, note that it can be
regarded as m subsequences

J, Twoj Tk J, ..
Ty s Tom1 Ty 1S5 ooy T i Ty 1 o

Ty Ty Iy T Ty T,

Hm—1

Ty oy TH Ty -+ T,

Hm—1

J, ...

tme1 Xy -+ Ty, _, are contractions with modulos o™
Since the contractions are different for different values of [, then those subse-
quences converge to different fixed points. Too see this, consider one example
where T7J = 5+0.2J and ToJ = 9+0.2J. Then we have T1T5J = 9.5+0.04J
and To77J = 10 4+ 0.04J, which have different fixed points.

where Ty =Ty, --- T,
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P. 51
mapping of Example 1.3.1,
* 1 * *
T — J*|| < T o 1T+ * Tyt —a ™ = 7.
Combining the last two relations. we obtain the desired result. Q.E.D.

Figure 2.14: P. 51.

The Prop. 2.1.1(e) is in fact the starting point of the proof. To understand
the derivation of this bound, the proof may be read from here and proceed
backwards.

P. 52

We finally note that Prop. 2.2.2 shows that as the lookahead size m
increases, the corresponding hound for ||.J; —J7|| tends to e+a(e+25)/(1—

«), or
sl <~

m—so0 I —a

Figure 2.15: P. 52.

Denote the perodic policy with period m as w(m). The sequence here is
well defined since as proved in P. 50, for every m, Jr(,) € B(X), therefore,
Jw(m) —J" e B(X).

In addition, due to [Theorem P. 44], we know the point-wise limit supe-
rior of Jr () — J*, and, therefore, the point-wise limit superior of Jr(,,), are
in the space of B(X). Namely, we have J € B(X) where

J(r) = limsup Jy(m) (7).

m—ro0

Note that J is the point-wise limit superior of the sequence

Jﬂ'(l)? J7r(2)7 JTI'(?))?

whose every element is a cost function of a policy but J is most likely not to
be a cost function of any policy. In comparision, the definition of .J; where
7 is a nonstationary policy is the point-wise limit superior of the sequence

Tyods Tuo Ty Iy Tyao Ty Ty ..
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whose every element is likely not to be a cost function of any policy but J;
is the cost function of .

However, one need to note that ||J — J*|| # limsup,,_, [|Jx@m) — |-
One example could be X = [0,1], f(z) =0, and

1, z€(0,1/m]

0, o.w..

fm (@) = {
Then we have f,, — f point-wise, but || f|lcc = 0 < limsup,,,_ || fmllco = 1.

2.3 Value Iteration

P. 54

and finally

.
1 = THIo|| < “17

Figure 2.16: P. 54.

Theorem (P. 54). Given limsup,_, . ||bx — b|| = 0, show that

limsup ||ag — bg|| = lim sup ||ag — b]|.
k—ro0 k—ro0

Proof. By triangular inequality, we have
llar — bl < [lax — bl + [[b — br|l.

Take limit superior on both sides. Since limsup,_, ||bx — b|| = 0, due to
[Lemma 4 P. 42] we have

lim sup ||ag — bg|| < limsup ||ax — b||.
k—o0 k—o0

Similarly, by triangular inequality, we have
lar, — bl < llag — bg| + [[b — bg]|-

Taking limit superior on both sides and due to limsup,_, . ||bx — b|| = 0, we
have
limsup ||ag — b|] < limsup ||ax — bkl
k—ro0 k—o0

which concludes the proof. O
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2.4 Policy Iteration

P. 56

use this assumption for all the PT algorithms of the book). 1l folluine
proposition establishes a basic cost improvement property, as well as finite
convergence for the case where the set of policies is finite.

Figure 2.17: P. 56.

[Assumption P. 56].

P. 58
(11 wach control constraint set U(x), # = 1,....n, is a compact
subset of #.

Figure 2.18: P. 58 (1).

Theorem (P. 58). Given E C R being compact, we have inf E € E.

Proof. Due to the definition of inf E, Ve > 0, de € E such that e € (inf E —
g,inf F + ¢); otherwise, if Jeg > 0 such that (inf E — gg,inf E+¢e9) N E =0,
then inf E' + ¢¢ is another lower bound, which contridicts the definition of
inf . As a result, we have inf F is a limit point of F. Since E is compact
hence closed, then inf ' € E. O

The compactness of U(z) and coninuity of H(z,-,-) ensures that the
[Assumption P. 56] is fulfilled. To see this, note that given z € X and
J € R(X), since H(z,-,J) is continuous and U(x) is compact, we have that
H(z,U(z),J) C Risacompact set. By [Theorem P. 58], inf H(z,U(z),J) €
H(z,U(x),J). Then U(x) N H ! (x,inf H(x,U(z),J),J) # (. Namely, the
minimum is attained in U(z).

P. 58
(¢} ach function H(z,+,"), x = 1,....n, is continuous over U(x) x
R

Figure 2.19: P. 58 (2).



2.4. POLICY ITERATION 25

Note that the condition here is for a given z, function H(x, -, -) is continuous
on the product space A = U(z) x R™. If U(z) is equipped with || - ||2, R™ is
with || - || (weighted sup-norm), then for the product space A we can equip
an product metric

doo (v, +) = max{d., (- ), dj (-, ) }
where d|.,(-,-), d|. (-, ) are induced metrics on U(x) and R" respectively.
Namely, for a1,as € A where a; = (u;,J;) ¢ = 1,2, we have dx(a1,a2) =
max{d,., (u1,uz2),d). (J1, J2)}. Then with H(z, -, ) being continuous on the
product space A = U(z) x R", we know that if (ug, Ji) — (u, J) in the sense
of d, it holds that
lim H(x,u, Ji) = H(x,u,J).

k—o0
If we view
H(x,um, Jn) = s(m,n)

as a double sequence, then continuity of H(z, -, -) implies that if u,,, J, are
convergent respectively, then the double sequence s(m,n) has double limit
(refer to [Note 1] for definitions). Namely, if u,, — v and J, — J in the
sense of their respective norms, then s(m,n) is convergent and its double
limit is H(x,u,J). To see this, denote a = H(z,u,J). Ye > 0, denote

Ve={(,J)|H(z,u',J) € (a—e,a+e¢)}.

Since H continuous, V. C A is open and (u,J) € V.. Then 3§ > 0 such
that Bs C V. where Bs = {(v/, J')|doo ((/, J'), (u, J)) < 8}. Since uy, —
u and J, — J, for the given §, ANy, Ny such that d.,(um,u) < ¢ and
djj|(Jn,J) < 0 ¥m > Ny, n > Na. Therefore, Vm,n > max{Ni, N2}, we
have

(Um, Jn) € By = (um, Jpn) € Vo = H(x,um,Jp) € (a —&,a+¢),

which indeed implies |s(m,n) —a| < e.

P. 59

=
H_ w=L....n ueU(r).

Figure 2.20: P. 59.

The condition of H(z,-,-) being continuous and its relation to the double
sequence is elaborated in the note on Assumption 2.4.1 (c), P. 58, [Abstract
DP] 2nd Edition.
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2.4.1 Approximate Policy Iteration

P. 60

Proposition 2.4.4: i
EOTSAEARNNGIA) Lot J. 77. and ; satisty

|J=Jdull £6, |TJ —TJ| Le,
where 6 and e are some scalars. Then

e+ 2ad
l—a

Iz = T*|| <€ allJu — J*|| + (2.25)

Figure 2.21: P. 60.

In the Proof of Proposition 2.4.4 shown below, monotonicity Assumption
2.1.1 is not needed, then why is it stated in the proposition?

Prof. Bertsekas: the monotonicity assumption is not needed for the
proposition as stated. However, monotonicity is an essential assumption
for PI to have the fundamental policy improvement property, so I think it’s
better not to confuse the reader by removing it from the statement of the
proposition.

=" gl = 1ot perane = ald= o S o,

‘which is equivalent to the desired relation (2.25). Q.E.D.
Figure 2.22: P. 61 (1).

Here we have implicitly utilized Prop. 2.1.2, P. 43, [Abstract DP] 2nd Edi-
tion, which states that J; — J* > 0. Therefore, we do not need to check the
boundedness of J* — Jj.
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P. 61

Proof of Prop. 2.4.3: Applying Prop. 2.4.4, we have

i . €+ 206
1 err = T < @l T = T+ ——

which ny taking the lim sup of both sides as k — oo vields the desired result.
Q.E.D.

Figure 2.23: P. 61 (2).

Lemma (P. 61). Given real valued sequence {ay}, real-valued constant v €
(0,1), and real-valued constant 3, if

ant1 < Yan + B,
then supys,, ar < oo and limsup,,_,, a, < oo.

Proof. a1 < yag + 3, then as < 72ag + (v + 1). By induction, we have

1 — ~m
an§7na0+ 1_,):)/ B.

Since the sequence {y"ag + %B} is convergent, then it is also bounded
above, therefore supy, ar < oo. Since {supys, ar}n>, is nonincreasing,
then limsup,,_,, a, < supgsgag < 0. O

By [Lemma P. 61]71 {||Jun — J*||} is upper-bounded by positive sequence
{a™|J,0 — J*|| + 12228} where 8 = 5220 therefore, limsup || J,» — J*|| €

[0, 00), then taking limit superior on both sides of the highlighted part, the
limits involved are all real numbers.

2.4.2 Approximate Policy Iteration Where Policies Converge

None.
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2.5 Optimistic Policy Iteration and A-Policy Iter-
ation

P. 64

where .Jy is an initial function in B(X ), and for any policy p and scalar

A e (0.1), T,(LA) is the multistep mapping defined by

Figure 2.24: P. 64.

The well-definedness of T,SA) is ensured by the following theorems. Their
proofs is in [Hand Note 3].

Lemma (P. 64). Given a real valued sequence {ay} and assume that the
sequence {Y y_q ar}oe; converges with > 2, a; € R. Prove that

1> ad < agl. (2.8)
=1 =1

Theorem (1, P. 64). Let the set of mappings T, : B(X) — B(X), p € M
satisfy Assumption 2.1.2. Consider the mappings T;Ew) : B(X) —» R(X)
defined by

(T ) (x) = > wel@)(ThI) (x), = € X, J € B(X), (2.9)
=1
where wy(x) are nonnegative scalars such that for all x € X,

Z wy(x) = 1.
(=1

Prove that the mapping Téw) is well defined; namely for oll x € X, J €
B(X), the sequence

n=1

{ X wel@)(T}7) (@)} (2.10)
/=1
converges with a limit in R.
Theorem (2, P. 64). Let the set of mappings T), : B(X) — B(X), p € M
satisfy Assumption 2.1.2. Consider the mappings T,Sw) : B(X) - R(X)
)
: B(X

defined in Eq. (2.9). Prove that T,Sw)B(X) C B(X), namely, T,Sw B(X)—
R(X) is in fact Tﬁw) :B(X) — B(X); and Tﬁw) is a contraction.
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The following result shows that the operator T;SA) defined point-wise is
no difference compared one defined by convergence in norm.

Theorem (3, P. 64). Consider sequence {T,Y‘")J} defined by

An) T _ - L=1mt
T T = (1= X)) Y AT
(=1
The sequence {Tls)‘")J} converges to some element T;E/\‘”)J € B(X). In
addition, it coincides with the limit defined point-wise, viz., T,S/\W)J = T,S/\)J.

Note that the above result does not stand for the more general operator
Tlsw), when X has infinite cardinality. The following is an example.

Example 2.5.1. Given X = {1, 2, ...} and define wy(z) as

[e.9]

wy(z) =0, £ <z, Z wy(z) = 1.
{=z+1

Further we assume that v(z) = . Define T}, : B(X) — B(X) as
(Tu)(z) = (1 — )z + alJ(x).

Then one can verify that J,(z) = 2. Then consider sequence {Tlsw")JM}
defined point-wise as

(T8 ) () = > we(@) (Th ) ().
=1

which can be verified to belong to B(X). Then Vn, it holds that

T 7, = g, = sup 12t @ L) ) = Ju(@)

zeX U(JZ)
sy | S () ()
zeX U(l‘)

Since Vn, Jdx such that > n. Therefore, we have ||TL(Lw")J# — Ju|| =1 for
all n. This implies the sequence does not converge in norm. Otherwise, its
limit in norm at all  would have same values as J,,(z).
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2.5.1 Convergence of Optimistic Policy Iteration

P. 66

Lemma 2.5.2: Let the monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold, let .J € B(X) and ¢ > 0 satisfy

J>TJ—cu,

and let € M be such that T),.J =T'J. Then for all £ > 0, we have

—i' (2.38)

and

TET = T(TET) —okcw. (2.39)

Figure 2.25: P. 66 (1).
Due to Eq. (2.11)), this lower bound here is never tight.

P. 66
17 =T, > Th - Zom-g_i.

Figure 2.26: P. 66 (2).

The highlighted part Eq. (2.11]) is never tight for any finite k£ and o € (0, 1).

k «

k o — k
TuJ— 1—achT“J_1—a

cv (2.11)

P. 67

Then for all k& > 0,

-%—- > Tliss — fosrev,  (241)

Figure 2.27: P. 67.

This part of the bound is not tight since in the proof, Eq. (2.38) is used.



2.5. OPTIMISTIC POLICY ITERATION AND A\-POLICY ITERATION31

P. 68

Then for all &k > 0.

e 4 P E
JF = R > 2.44
k 1_QCU— k l_acv—_ - ] ( )

where ), is defined by Eq. (2.42).

Figure 2.28: P. 68.

Since Eq. (2.38) is used, so this bound is not tight.

Proof of Props. 2.5.1 and 2.5.2: Let ¢ be a scalar satisfying Eq. (2.43).

(PATEGHPTORI2ISIN To show the second part (finite termination when the

Figure 2.29: P. 69 (1).
By Eq. (2.44), J* — J < %cv, Jp—J* < %cv, we have

(k+ )ak‘

— J¥ <
[ = T < T

k+1)ak .
%C’U — ”Jk—J ||S

P. 69 (20190814)

Proof of Props. 2.5.1 and 2.5.2: Let ¢ be a scalar satisfying Eq. (2.43).
Then the error bounds (2.44) show that limy_ o || /e —J|| = 0, i.e., the first
part of Prop. 2.5.1. To show the second part (finite termination when the

number of policies is finite), let M be the finite set of nonoptima‘i:i)olicies.

——-= This

implies that p* ¢ M for all k sufficiently large. The proof of Prop. 2.5.2
follows using the compactness and continuity Assumption 2.4.1, and the
convergence argument of Prop. 2.4.2. Q.E.D.

Figure 2.30: P. 69 (20190814).
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Since M is finite, denote § = minﬂeﬂHTﬂJ* — TJ*||, then Ve € (0,6) and
Vi € M, it holds that |TpJ* —TJ*|| > e. Then we have

||TﬂJk —TJ| = ||TﬂJk — TﬂJ* + TﬂJ* —-TJ +TJ" — T Ji||
> " — T — |Tads — Tad*| — |T° — T
2 || TpJ* = TT*|| = 2a||J* = Ji|
> 6 — 2al|J* — Ji|.

Since Jx — J* in norm, then 3N such that Vk > N, 6 — af|J* — Ji|| > .

P. 69

In comparing the bounds (2.47) and (2.48), we should also take into
account the associated overhead for a single iteration of each method: op-
timistic PI requires at iteration k a single application of T and my — 1
applications of Tuk (each being less time-consuming than an application of
T'). while VI requires a single application of 7.

rather than Jo < T (implying convergence to J° from below). Tlix i~
consistent with the results of other works, which indicate that the conver-
gence properties of the method are fragile when the condition Jo > T'Jy
does not hold (see [WiB93], [BeT96], [BeY10]. [BeY12], [YuBl13a]).

Figure 2.31: P. 69 (2).

Regarding bounds given Eq. (2.47) here, the 'upper bound for optimistic PT’
is refers to

am0+...+mk am0+...+mk

J< p+——cv = J———cv < J (2.12)
1—a 11—«
and the ’lower bound for optimistic PI” is refers to
(k+ 1)a®

k+1)a*
MC’USJ* = Sy <J+ 0. (2.13)

J. —
k 1l—« 1l -«

Given Jy > T'Jy, we have
Jo>TJy=TyJo > T;’go—lJo > T Jo = Ji > TT;ng—UO > TT)" Jo = T,

namely, given Jy > TJy, it holds for all k£ that J, > TJ, and Ji > J*.
Therefore, the bound that actually regulate the error is (2.13]), which is still
worse than VI, and the bound (2.12)) is automatically fulfilled. On the other
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hand, if Jy < T'Jp, it is not true that for all & that J, < TJ, and J, < J*,
one special example is given in Fig. 2.5.1, P. 64, [Abstract DP] 2nd Edition,
where Jy < T'Jy but J; > TJ;, which means eventually it converges from
above.

2.5.2 Approximate Optimistic Policy Iteration
P. 70

a1

Figure 2.32: P. 70.

Lemma (P. 70). Given f,g,h € B(X), show that

sup(f —g) < sup(f —h) +sup(h — g). (2.14)
reX reX xeX

In particular, if g is constant 0, it holds

sup f < sup(f —h) + sup h. (2.15)
rzeX reX reX

Proof. Vx € X, it holds that

(f = h)(x) < sup(f —h), (h = g)(x) < sup(h - g),
zeX zeX

therefore we have

(f—9)(@)=(f —h+h—g)(x) <sup(f—h)+sup(h—g),
reX rxeX

take supremum on both sides and we get the desired result. O

Theorem (P. 70). M is continuous with respect to the weighted superum
norm || - ||; namely, given f,,f € B(X), if limyoo || fn — fIl = 0, then

Proof. By [Lemma P. 70], M (f,) < M(fn — f) + M(f), we have

limsup M(f,) < limsup M(f,—f)+M(f) < limsup | fu =M (F) = M(J).

n—oo n—oo

where we have applied [Lemmas P. 42]. On the other hand, due to definition

of M(),
M(f) = sup 22D _ g HE)+ 1n@) = @)

x€X U(ZB) rx€X U(iﬂ)

(2.16)
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In addition, we have

F@) + fule) = f@) _ f@)  |fule) — ()
o(2) = o) o(@)
fle) o 1ay) = fy)]
Z @ IR
=2 1t 11 (2.17)
Taking Eq. into Eq. , we have
M) = sup 28 = fl = M)~ 1 1
reX ’U(ZL‘)

Taking limit inferior on both sides, we have

liminf M(f,) > M(f) — lim sup | fo — fIl = M(f),

n—oo

which conclude the proof. ]

P. 71

Lemma (P. 71). Given real sequences {rn}, {sn}, {tn} and {a,}, assume
the following conditions hold for all n > 1:

' < o1 + B; (2.18)
Sn < QTp; (2.19)
tn < g1 +y7rn + 6 (2:20)
Gn = Sp + tn, an > ; ( )

where the constants o,y € (0,1), the constants as, v are positive real
values, and the constants 3, 6, ¢ are real values. Then the limit superiors
lim sup,,_,o ™n, limsup,, .o, sn and limsup,, .. t, are all real values.

Proof. By [Lemma P. 61], ¥n supys, 7x < oo and the sequence {r,} is
bounded by the sequence {a™ry + 1{_7;,8}. Since {a"ry + 1:“; B} is con-
vergent, then it is bounded by some constant, denoted as M,. Therefore,
SUPg>, Tk < M. As a result, we have supys,, sy < Mg where Mg = asM,.

Apply the upper bound on 7, to Eq. (2.20)), we have

th < aytp—1 + PYMT + 57

and by [Lemma P. 61], we have {¢,} is bounded by some constant M;. In
what follows, we show that Eq. (2.21) guarantees that the limit superiors

are reals. Adding Eq. (2.20) and (2.19)), and by Eq. (2.21]), we have

Cganzsn+tnS(as+’7)rn+atMt+6v
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which indicates {r,} is lower bounded since a4y is some positive constant.

Similarly, by Eq. (2.21]),
tn = an —Sp > C— Ms, sp=an —ty, > (— M.

Therefore, their limit superiors are real. ]

Alternatively, we can prove by contradiction. Once we get M,, M, and
M, note that the sequence {supy~,, 7%} is monotonically nonincreasing, then
if it is unbounded below, given —(M; + €)/as, 3N such that sups v 7% <
(¢ — My — ¢)/as. By Eq. , we have Vn > N, s < ¢ — My — e.
Therefore, we have t; 4+ sp < ( — ¢, which contradicts Eq. . Therefore,
{supp>, 7%} is bounded below. Repeat the same arguments, we can have
that {supys,, s} and {sup,s,, tx} are bounded below. Therefore, their limit
superiors are real. -

P. 74

Given Assumption 2.1.2 holds, namely ||T,J; — T, J|| < allJ, — J||, and

|\ TJ, —TJ| < afJi — J|| where a € (0,1). Then for all sequence {Ji} C
B(X) such that ||.J,, — J|| = 0 where J € B(X), we have Vk ||T,,J;, — T, J| <
allJy — J||, and || TJ, — TJ| < af||Ji — J||. Namely, with Assumption 2.1.2
true, we have

|k = J| =0 = |[TpJyx — TpJ|| — 0;
|Jx —J|| =0 = | TJ, —TJ| — 0.

P. 75

Denote the second part of Prop. 2.5.4 as property P, where
P=Fe>0)V|J-J <e) Ty =TJ = pe M),

then we have

~P = (Ve > 0T — J*|| < e)(TJ =TJ = pe M)
= (Ve > 0T — T <&, Ju e M\ M) T,J =TJ).

Since M is finite, so as M \ M*, then given the sequence {ex} and its
corresponding {Jx} and {u}, there must be some i € {py} which repeated
infinite times.
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P. 77 (20190902)

As shown in [Theorem 3 P. 64], when the complete space F(X) = B(X) and
the norm is weighted sup-norm, there is no difference between interpreting

(N

T, J as a function of x defined as point-wise limit

(TN ) (= ZA‘ NTLJ)(2), = € X, J € B(X), (2.22)

or as an element of F(X) which is the limit of the convergent sequence
{Tls/\"),]} in F(X) given as

lim [T =TV T =0 (2.23)
where
T T = (1- ) an ATl
=1
However, since the nature of F(X) and the norm || - || are left unspecified,

TAS)‘)J shall be interpreted as the in Eq. (2.23]). In what follows, we repeat
the first part of [Theorem 3 P. 64|, which shows that {7, ;(L)\”)J } is convergent
in F(X) and therefore T,S)‘) as its limit is well-defined.

Theorem (P. 77). Let Assumption 2.5.2 (b) hold. Then ¥J € F(X), the
sequence {T;E)‘”)J} defined by

T ZV Tl

1s convergent.

Proof. Since limy, o0 [|T)}J — Ju|| = 0, we have limy, o0 [| T} J|| = ||| [cf.
Theorem P. 42]. Therefore {||7};J||} is bounded. Denote its bound as M.
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Therefore, Ve, 3N such that Vk

HT;SAN)J _ T/SAN-HC)JH

N N+k
=1 =N)Y NI — (1= A) Y AT

(=1 /=1

N+k
==X Y AT

{=N+1

N+k
<(1=X) Y AT

{=N+1

N-+k
<(1-X) > AM,

{=N+1
<\VM,
<e

)

which implies {T,S)‘")J } is Cauchy. Since F(X) is complete, then it is also
convergent. O
P. 87 (20190902)

The following lemma shows the relation between the Cartesian product of

B(Xy) and B(X).

Lemma (1, P. 87). Given processor index set I being finite, and {Xy}ocs is
a partition of X, then it holds that

[1B8(x0) = B(x). (2.24)

lel

Proof. First we show that B(X) C [[,c; B(X,). Given J € B(X) and de-
noted as Jy the restriction of J on X,. Then we have

up 11(2)
reXy /U(i)

o @)

=2 @)

= |71l < oo, V¢

8 w

where the first inequality is due to that the supremum of an upper bounded
real set is no less than the supremum of its subset. Therefore, we have
Jo € B(Xy) V¢ and consequently J € [[,c; B(Xp).

On the other hand, given J € [[,c; B(X¢), and denote as M, the bound
of Jy € B(Xy), then we have

/()] < Z Myxx,(x)
v(x) lel
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where xx,(-) is the indicator functions defined on X. Then take supremum
on both sides of the equation, we have
|/ ()] _ _
sup < sup ZMgXXZ(JU) = sup{M,} = max{M,} < oc.
zex U(x) T zex el el tel
Note that I being finite is needed. Otherwise, the bound of [],c; J; is
supycr{ My}, which may be oco. O

The following lemma proves the relation between the Cartesian product
and set intersection under different construction.

Lemma (2, P. 87). Given policy set M and processor index set I both being
finite, and {Xy}oes is a partition of X, then it holds that

175 () = () Tile) (2.25)
el lel
where
Jix, (@) = {Jz € B(Xy)| max Sup W < Of}a (2.26)
_ |J () = Ju()|
To(@) = {J € B(X) mex mseu)% Tﬂf)ﬂ < a}. (2.27)

Proof. Note that we need to apply the result of [Lemma 1, P. 87] that

[1B(Xe) = B(X)
lel
to establish that the underline sets [],c; B(X,) and B(X) are the same. With

that fact in mind, we first show that [[,c; J)x,(a) € Npes Je(@). Indeed,
for J € [[ye; Jix, (), it holds V¢ € I, Vx € X, Vu € M, that

|J(z) = Ju(@)] _ |Je(x) — Ju(@)] N M X
v(z) B o(z) < ma st P o(2) <a. (2.28)

Take supremum over x € Xy on both sides and then take maximum over
p € M on both sides, and we have J € (7 Jo().

On the other hand, given J € ,c; Ji(av), it holds V¢ € I, Vx € X, Vi €
M, that

[Je(@) = Ju(@)| _ [J(@) = (@)
v(z) a v(z) = rex v(z)

<a, (2.29)

which implies J; € J|x,(a) V£ € I, and this concludes the proof. O
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Lemma (3, P. 87). Given policy set M and processor index set I both being
finite, and {Xy}eer is a partition of X, and given J(a) and Jy(a) as

I(a) = {7 € BX) | max ||~ Jul| < o,

max sup
HEM zeX, v(x)

Ji(a) = {J € B(X)

Then it holds that
T () = () To(e). (2.30)

el

Proof. Here we introduce two kinds of sets defined as

J*e) = {J € BX) ||| = Jl| < a},

()~ Juo)l _
2T }

Tt (a) = {J € B(X)

Then one can verify that between those two sets, it holds that
T (a) = () T (), Vi€ M.
lel
In addition, one may verify that
J(a)= (] J"a), Tele)= [ T¢(a). (2.31)
HEM HEM
Therefore, we have

J()= ] J"a)

pnemM

=N NT @

peEMILE]

= N T (@)

Lel peM

= Je(e)

el
O

Theorem (P. 87). Given policy set M and processor index set I both being
finite, and {X¢}eer is a partition of X, and given J () and Jx,(a) as

I(a) = {7 € BX) | max ||/~ Jul| < o,

max sup 1243 =@l 1
HEM zeX, v(z)

Jix, (@) = {JK € B(Xy)
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Then it holds that
JI(a) =[] Jx, (). (2.32)

lel
Proof. Combining [Lemmas 1, 2, 3, P. 87], we get the desired result. O
Remark. As noted in the proof of [Lemma 1, P. 87], it is needed to have I

being finite in order to have the underline sets [[,c; B(X,) and B(X) being
the same. However, as far as the proofs being concerned, it is not needed

to have M being finite. The steps related in the proofs are (2.28)), (2.29),
and (2.31), which all holds if all max,cpr involved are replaced by SUP e M

properly.
P. 87 (20190902)

With the Box condition proved, we can show that the sequence {.J'} gener-
ated by the algorithm is bounded. First, we denote A; and As as

Ar = a0 = .
Ay = J,— Iy
2 M,‘f}%’&” w = Jwll,
and we have A; < max{A1,A2/(1 — «)}. Denote as J! the function had

the first update is done synchronously, namely all components are updated,
rather than only VY € X, where 0 € Ry U Ry, then we have

[T = Tull < (1T = Tl + 10 — Tl
=T J® = Jpoll + 1| J0 — J,l|
< allJ = Juoll + ([0 — Jul]
< amax 177 = Tl +M,I;I¢1’%)/(\/t [y = T

=alA; + Ay

< amax{Aj, 1

= max{al; + Ay, 1

Take max,c ¢ on both sides, we have
Ay
1-— a}'

If Ay > Ag/(1 — ), we have aA; + Ay < aA; + (1 — a)A; = Ay, and
a1+ Ag > Ag/(1 — a); otherwise, we have aA; + Ay < Ay /(1 — ). With
this shown, we have

71
max |J° = Ju|| < max{aA; + Ay,

X A
T < A 21,
gle%(HJ Ju|| < max{ 1’1—a}
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Denote A = max{A1,Ay/(1 — a)}. Then we see that J', JO € J(A). Now
consider the real J!, which is given as

1 _ jl(:l?) if x € Xy, 0€ R UTRy,
Tle) = JO(x) o.w..

Then by the box condition, we see that J', which is Cartesian products
of portions of JY and J!, is also in the set J(A). By induction, we can
establish that J' € J(A) Vt.

P. 90

Here we show that the norm is well-defined and the corresponding space is
complete. To this end, we define a new state space S whose elements are
all feasible state control pairs s = (z,u) where u € U(z). If we denote as
S, the set of state and control pairs where the state is z and the control
u € U(x), viz., the set Uyey(z){(z,u)}, then we see that S, N Sy = () for

x # 2’ and
S=J S

zeX

Define a positive function 9 : S — R where 9(s) = v(x) with s = (z,u). In
addition, given V(-) and Q(+,-), we have corresponding functions V' : § — R
and @ : S — R defined as

A A

Vi(s) =V(x), Q(s) = Q(x,u), with s = (z,u). (2.33)

Then with the weight ¢ and corresponding norm denoted as || ||3, we denote
as B1(S) the functional space whose elements are functions defined on S to
R with aforementioned weighted sup-norm bounded. Then we have B (.S) is
complete with respect to || - ||3. The proof can be found in P. 329, [Abstract
DP], 2nd Edition. Now consider instead functions W : S — R? of the form

Consider now the functional space B2(S) whose elements are W with the
property that max{||V||s, ||@]/s} < co. Now we prove

IW | = max{[|Vlo, | Qlls}
indeed defines a norm on By(.S). We only show the triangular inequality part.
The proof for the other two properties are neglected. Given Wy = (V1,Q1),
Wy = (Va,Q2), we have Wy + Wy = (V] + Vo, Q1 + Q2). Then we have

W1+ Wa| = max{[[Vi + Vallo. [|Q1 + Q2ll}.
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Since we have

Vi + Valls < [Vills + [ Valls

< max{||Vi|s, [| Q1
= WAl + [[W2,

o} + max{||Vallo, | Q25 }

and similarly
1Q1 + Q2o < [Whll + [[Wal].

We then have
Wi + Wal| = max{||Vi + Valls, [|Q1 + Qalls} < WAl + |Wall,

which confirms in part that the norm || - || is well-defined.

Now we proceed to prove Ba(S) is complete. Given Cauchy sequence
{Wy} C By(S) with respect to || - || where W, = (Vi, Qx), we can see that
{Vi.}, {Qx} C Bi(S) are both Cauchy with respect to || - ||s. Note that since
{W}} is some arbitrary Cauchy sequence, so V}, is more general than the
form defined in Eq. (2.33). Since B1(S) is complete, HVkA_ ‘A{*Hv — 0 and
|Qr — Q*||s — 0 where V*,Q* € B1(S). Denote W* = (V*,Q*). Then it’s
easy to see that W* € By(S). In addition, since Ve > 0, 3Ky (¢) and 3K g(¢)
such that ||V — V*||s < & Yk > Ky (), and HQk — Q* v <& Vk = Kq(e),
then Vk > K (e) = max{Ky(¢), Kg(e)}, max{|| Vi, — V*|s, |Qr — Q*|ls} <€,

viz.,

Wi = W7*|| <, Vk > K(e),
which shows that {WW;} is convergent and By(S) therefore is complete.

P. 90

We continue to use the notations introduced above. Note the difference be-
tween B(X) and By (S). If we assume H(-, -, -) is such that Q(s) = Q(x, u) =
H(z,u,J) is in the space B1(S) VJ € B(X), then it implies that T),J € B(X)
and T'J € B(X) VJ € B(X) (part of Assumption 2.1.2). To see this, we de-
note as S, the set Upex{(z, u(x))}. Then we have

o (TD@L _ | 1Q0)
zeX ’U(LE)

since S, C S. In addition, we denote as S the set Uy,ecp(z){ (7, u)}, then we
have

= in T, U =wv(x) in Q(S)
(T(0) =t Hlo ) = o(o) g 9
as Vs € Sy, 0(s) = v(z). Since
0@ 0w 106 Q@] Q) Q)
Be) S 00s) S ae) R o) S eEs o) S ok a(s)
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we have

Q(s)|

00s)] N
< vle) smp Sy S vy <

(T (@) = [v(z) inf f((;))'

holds for all z € X where the last inequality follows from Q € B1(S) and
v(x) is finite for all z € X. Therefore, we have |(T'J)(z)| < co Vz € X. In
addition, by dividing v(z) on both sides, we have

|(T'T)(2)] Q(s)|

< sup —

, Vo e X.
v(z) T ses (s)

Therefore, we have

o [TD@] Q)
zex V() ses 0(s)
viz., TJ € B(X).
On the other hand, T,,J € B(X) and T'J € B(X) VJ € B(X), does not
imply that Q € B,(S) VJ € B(X) where Q(s) = Q(z,u) = H(x,u,J). One
example is found below.

Example 2.5.2. Consider X = {z} and U(z) = N. In addition, we define
v(z) =1and H(-,-,-) as

H(z,u,J) =u+ aJ(zx)

where o € (0,1). Then we have T),J € B(X) Yu € M and TJ € B(X), but

A

Q & Bi(9).

P. 90

Here ’all’ means for all V, V € B(X) and all Q, Q such that 0, é € Bi(9)
where Q(s) = Q(z,u) and Q(s) = Q(x,u) for s = (x,u).

P. 91

Due to the definition of F),, we see that given V, @, the function F,(V,Q)(:, )
is a function of (z,u). Therefore, the norm here refers to the norm defined

on Q(+,+).

P. 91

Assume that Q(s) = Q(z,u) = H(x,u,.J) is in the space B1(S) V.J € B(X),
rather than assuming 7),J € B(X) and T'J € B(X) VJ € B(X). Here we
would like to show that this step follows from ||T),J — T,J'|| < «f|J — J'||
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Vu € M. Follow the notations defined above, we denote as S, the set
Urex{(z, u(z))}. Then

’H(xa /,L(.%'), J) — H(xa /,L(.YJ), J/)’

v(x)
|H (z,u,J) — H(z,u,J")|

|T,J —T,J"|| = sup
zeX

= sup
(:L",U)GS# v(x)
129~ Q)
sES, U(S)

where Q(s) = H(z,u,J) and Q'(s) = H(x,u,J"). Since |T,,J — T,J|| <
allJ = J'|| Vu € M, we have

N OR(0]

<allJ—J|, Yu e M,
seS, U(S)

which is to say, given J,J' € B(X), Vu € M, a||J — J'|| is an upper bound
of the set {|Q(s) — Q'(5)|/0(s)}ses,. Consequently af.J — J'|| is an upper
bound of the set {|Q(s) — Q'(5)/9(s)}seu,crS,- Since we have

SC S, U SuCs = 5= {J S,
HEM HEM pEM

where S contains all the feasible state control pairs (z,u). One may verify
the above relation by definitions of M, S, S,,. Therefore, we have a|.J —J'||
as an upper bound of the set {|Q(s) — Q'(s)|/0(s)}ses, viz.,

Q(s) — Q'(s)]

< allJ=J.
i <eli-Jl

1Q — Q'l| = sup
seSs

P. 91

Here ’all’ means for all Q, Q such that Q, 62 € B1(S) where Q(s) = Q(z,u)
and Q(s) = Q(x,u) for s = (z,u). For all such @, we have MQ € B(X).
The proof is entirely similar to the one given for @ € Bi(S) VJ € B(X)
implying T'J € B(X) VJ € B(X). Here we repeat the arguments.

= in r.u) = in As:vxin Q(S)
(MQ)w) = inf Q) = inf Q(s) =via) jnt T
Since
060w _ Wl 10 Q) [Q0s)
os) S als) S als) e S e S P )
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we have Vo € X

(MQ)(w)| = [o(w) inf ffff))} < v(x) sup '?8‘ < v(@)sup |Q<(>)‘ =0

namely |[MQ(z)| < oo for all z. Dividing both sides with v(z) and taking
supremum over x € X, we see that MQ € B(X).

P. 91

In addition to this, it also follows from the relation

1Qu — Qull < 11Q = Qll,
and this can be verified as follows. Since
o 1Qu(@) = Gu@)] Q) — Q)|
1Qu = Qull = sup : o02) a =sup ST
HQ . Q” — sup ’Q(l’,u) — Q(x7u)| = sup | (S)A_ Q(S)‘7
zeX,uel(z) U(CC) ses v S)

the inequality is obtained since S, C S.

P. 93

This update on J! can be viewed as an combination of an step of local
policy evaluation of @ on the old policy !, and picking out the term of the
evaluated @@ whose control input corresponds to the new control u!*!. To
see this, we have Vx € X

J" N (2) = min H(z,u, min{V*,J'
(1) = min H(zumin{V", J')
= H(z, " (z), min{V*, J*})
= H(z, " (2), min{V", Q),.}).
Therefore, this step is performing policy evaluation of ) on the old policy

(together with picking out the term of interests), and policy improvement
on V, p simultaneously.
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3

Semicontractive Models

3.1 Pathologies of Noncontractive DP Models

3.1.1 Deterministic Shortest Path Problems

None.

3.1.2 Stochastic Shortest Path Problems

None.

3.1.3 The Blackmailer’s Dilemma

None.

3.1.4 Linear-Quadratic Problems
P. 122
To see this, note that the sequence generated by the iteration is given as
Pl p(y+r)2 L (v )T L p(y )P
2

Therefore, the limit is ———5 since |y +r| < 1.

P. 122

Denote as poz? the cost function J w0 and as 7oz the control uo(a:). Then we
have py > 72 — 1 and

1 boy
x)=— x,
W) = -7
as is shown in P. 120, [Abstract DP] 2nd Edition, which indeed is linear
feedback and r; = — 1’1’;’0. Then we have
1
[y + | = il < h =—<1

14+po ~ 1+792-1 |y

47
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where the first inequality follows from that pg > v? — 1. Therefore, u! is
also stable linear control.

3.1.5 An Intuitive View of Semicontractive Analysis
P. 123

A direct consequence of this part of the assumption is that J , defined point-
wise by

J(x) = inf_J,(z),
HEM

can only takes values in R U {—o0}, viz., J(z) < co Vz € X.

P. 124

Due to Eq. (3.8), we have T'J k(x) € [J,x(z), Jps1(x)] € R. Therefore,
Vr € X, the sequence {T'J,x(z)}72, is a real sequence. In addition, it
is monotonically decreasing due to the monotonicity assumption of 7" and
Juk > Jpir. Therefore, Vo € X {TJx(2)}72, is convergent.

P. 125

To see that Vz € X, the sequence {T*J(x)}?°, is convergent, we use the
following arguments. We first have

TEJ>Tr>Th = J, Ve M, k> 0. (3.1)

Take limit inferior on both sides of Eq. (3.1) and since that T*J — J,, is

converging point-wise, we have

Ju(z) = lim (T/’fJ)(:):) = lim inf(T*.J)(z) > liminf(T*.J)(x) > J(z).

k—o00 k—o00 ® k—o00

Then we have Va € X, it holds that

J(z) = inf_J,(x) > liminf(T*J)(z) > J(z) = liminf(T"J)(z) = J().

pneEM k—o0 k—o0

Similarly, we can get
lim sup(T*.J)(z) > J(x).

k—o00

Therefore, we have Vo € X, the sequence {(T*.J)(z)}$2, is convergent.



3.2. SEMICONTRACTIVE MODELS AND REGULAR POLICIES 49

3.2 Semicontractive Models and Regular Policies

3.2.1 S-Regular Policies

P. 128

3.2.2 Restricted Optimization over S-Regular Policies

P. 131

Lemma (P. 131). Given nonempty set S C £(X), the relation of Mg and

Ws being empty set is given as follows:

Ms # 0 = Ws #0;
Ws#£0) = Mg #0)V (Js €95);

where Joo denotes the constant function that is equal to +00 Vo € X.

Proof. For the first part, since Mg # (0, then 3y € M that is S-regular.
Therefore, J, € Wg and Wg # (). On the other hand, if (Mg = 0) A (Jx &
S), we have J§ = J and VJ € S, J < Jg due to J ¢ S, which indicates
that Wg = (). Taking logical not in above claim and we prove the second
part. ]
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Appendices

o1






Appendix A

Notation and Mathematical
Conventions

A.1 Set notion and conventions

None.

A.2 Functions

P. 324

Lemma (P. 324). Let {smn} C R* be an extended real-valued double se-
quence, which is monotonically nondecreasing separately for each index in
the sense that

Smn < S(m+1)n> Smn < Sm(n+1)s Vm,n=0,1, ...,

then it holds that

lim ( lim s = lim S,um.

Proof. If {spy} is bounded above and {s;,, } "R # (0, then 3s);n € R. Since
{$mn} is monotonically nondecreasing, then sy, € R V¢ > M, k > N. Then
it is shown in Theorem 4.2, [Note 1] that the double sequence has real limit
Sup Smn- If {Smn} is bounded above and {s;,,} NR = ), then s,,,, = —0c0
Vm,n, then the convergence of the double sequence follows. If {s,,,} is
unbounded above, then Vx € R, Jsy;y > x, since {s;,,} nondecreasing,
then sp, > o V0 > M, k > N. Therefore, lim,, 500 Smn exists and is oo
according to definition. In conclusion, we prove that the double sequence
converges and has a limit in R*.

In addition, ¥m, the sequence {smn}oe, is a monotone sequence in R*,
then by [Lemma 3 P. 42], it is convergent. Then by the [Hand Note 1], we
get

lim ((lm Sy,) = Hm Spp.
m—00 n—0o0 m,n-}()o

53
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Per definition of the limit of the double sequence, we have

lim s, = lim s
mmn—oo T mToo TV

which conclude the proof. O



Appendix B

Contraction Mappings

B.1 Contraction mapping fixed point theorem

None.

B.2 Weighted sup-norm contractions

P. 329

The original claim is
Ve > 0, 3K (¢) € N4, such that P(K(¢g),¢)
where

|[J(2) = J*(2)]
v(x)

P(K(e)e) = ( <e Vo X, k>K(e)).

Therefore, the contrary is
Jde > 0, VK € N4, such that =P(K,¢)

where

|Jk(K,E)(x(K75)> - J*(‘r(Kvg)H > E)

~P(K,e) = (El(a:(K,g) € X, k(K,e) > K), o (@K, 2))

Therefore, given &, the sequence {,,, Tm,, ...} is constructed by induction:
Tm, = x(1,€) where my = k(1,¢); given x,, and my,, Ty, = (M, +1,¢€)
and my4+1 = k(my, + 1,¢).
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