KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Box Condition of Some Bouneded Set

Yuchao Li

September 12, 2019

1 PROBLEM STATEMENT

The pages refer to [Ch2_Abstract_DP_2ND_EDITION_20190902] edition.

Lemma 1 (P. 87). *Given processor index set I being finite, and* $\{X_\ell\}_{\ell \in I}$ *is a partition of X, then it holds that*

$$\prod_{\ell \in I} \mathscr{B}(X_{\ell}) = \mathscr{B}(X).$$
(1.1)

Lemma 2 (P. 87). *Given policy set* \mathcal{M} *and processor index set* I *both being finite, and* $\{X_{\ell}\}_{\ell \in I}$ *is a partition of* X*, then it holds that*

$$\prod_{\ell \in I} \mathscr{J}_{|X_{\ell}}(\alpha) = \bigcap_{\ell \in I} \mathscr{J}_{\ell}(\alpha)$$
(1.2)

where

$$\mathcal{J}_{|X_{\ell}}(\alpha) = \left\{ J_{\ell} \in \mathcal{B}(X_{\ell}) \middle| \max_{\mu \in \mathcal{M}} \sup_{x \in X_{\ell}} \frac{|J_{\ell}(x) - J_{\mu}(x)|}{\nu(x)} \le \alpha \right\},\tag{1.3}$$

$$\mathscr{J}_{\ell}(\alpha) = \left\{ J \in \mathscr{B}(X) \middle| \max_{x \in \mathcal{X}_{\ell}} \sup_{x \in X_{\ell}} \frac{|J(x) - J_{\mu}(x)|}{\nu(x)} \le \alpha \right\}.$$
(1.4)

Lemma 3 (P. 87). *Given policy set* \mathcal{M} *and processor index set* I *both being finite, and* $\{X_{\ell}\}_{\ell \in I}$ *is a partition of* X*, and given* $\mathcal{J}(\alpha)$ *and* $\mathcal{J}_{\ell}(\alpha)$ *as*

$$\mathcal{J}(\alpha) = \left\{ J \in \mathcal{B}(X) \middle| \max_{\mu \in \mathcal{M}} \|J - J_{\mu}\| \le \alpha \right\},$$
$$\mathcal{J}_{\ell}(\alpha) = \left\{ J \in \mathcal{B}(X) \middle| \max_{\mu \in \mathcal{M}} \sup_{x \in X_{\ell}} \frac{|J(x) - J_{\mu}(x)|}{v(x)} \le \alpha \right\}.$$

1

Then it holds that

$$\mathcal{J}(\alpha) = \bigcap_{\ell \in I} \mathcal{J}_{\ell}(\alpha).$$
(1.5)

Theorem 1 (P. 87). *Given policy set* \mathcal{M} *and processor index set* I *both being finite, and* $\{X_\ell\}_{\ell \in I}$ *is a partition of* X*, and given* $\mathcal{J}(\alpha)$ *and* $\mathcal{J}_{|X_\ell}(\alpha)$ *as*

$$\begin{aligned} \mathcal{J}(\alpha) &= \Big\{ J \in \mathcal{B}(X) \, \Big| \, \max_{\mu \in \mathcal{M}} \|J - J_{\mu}\| \leq \alpha \Big\}, \\ \mathcal{J}_{|X_{\ell}}(\alpha) &= \Big\{ J_{\ell} \in \mathcal{B}(X_{\ell}) \, \Big| \, \max_{\mu \in \mathcal{M}} \sup_{x \in X_{\ell}} \frac{|J_{\ell}(x) - J_{\mu}(x)|}{\nu(x)} \leq \alpha \Big\}. \end{aligned}$$

Then it holds that

$$\mathscr{J}(\alpha) = \prod_{\ell \in I} \mathscr{J}_{|X_{\ell}}(\alpha).$$
(1.6)

2 ELABORATION

Proof of Lemma 1. First we show that $\mathscr{B}(X) \subseteq \prod_{\ell \in I} \mathscr{B}(X_{\ell})$. Given $J \in \mathscr{B}(X)$ and denoted as J_{ℓ} the restriction of J on X_{ℓ} . Then we have

$$\sup_{x \in X_{\ell}} \frac{|J_{\ell}(x)|}{\nu(x)} \le \sup_{x \in X} \frac{|J(x)|}{\nu(x)} = \|J\| < \infty, \forall \ell$$

where the first inequality is due to that the supremum of an upper bounded real set is no less than the supremum of its subset. Therefore, we have $J_{\ell} \in \mathscr{B}(X_{\ell}) \ \forall \ell$ and consequently $J \in \prod_{\ell \in I} \mathscr{B}(X_{\ell})$.

On the other hand, given $J \in \prod_{\ell \in I} \mathscr{B}(X_{\ell})$, and denote as M_{ℓ} the bound of $J_{\ell} \in \mathscr{B}(X_{\ell})$, then we have

$$\frac{|J(x)|}{\nu(x)} \le \sum_{\ell \in I} M_{\ell} \chi_{X_{\ell}}(x)$$

where $\chi_{X_{\ell}}(\cdot)$ is the indicator functions defined on *X*. Then take supremum on both sides of the equation, we have

$$\sup_{x\in X} \frac{|J(x)|}{\nu(x)} \leq \sup_{x\in X} \sum_{\ell\in I} M_\ell \chi_{X_\ell}(x) = \sup_{\ell\in I} \{M_\ell\} = \max_{\ell\in I} \{M_\ell\} < \infty.$$

Note that *I* being finite is needed. Otherwise, the bound of $\prod_{\ell \in I} J_{\ell}$ is $\sup_{\ell \in I} \{M_{\ell}\}$, which may be ∞ .

Proof of Lemma 2. Note that we need to apply the result of [Lemma 1, P. 87] that

$$\prod_{\ell \in I} \mathscr{B}(X_{\ell}) = \mathscr{B}(X)$$

to establish that the underline sets $\prod_{\ell \in I} \mathscr{B}(X_{\ell})$ and $\mathscr{B}(X)$ are the same. With that fact in mind, we first show that $\prod_{\ell \in I} \mathscr{J}_{|X_{\ell}}(\alpha) \subseteq \bigcap_{\ell \in I} \mathscr{J}_{\ell}(\alpha)$. Indeed, for $J \in \prod_{\ell \in I} \mathscr{J}_{|X_{\ell}}(\alpha)$, it holds $\forall \ell \in I, \forall x \in X_{\ell}, \forall \mu \in \mathcal{M}$, that

$$\frac{|J(x) - J_{\mu}(x)|}{\nu(x)} = \frac{|J_{\ell}(x) - J_{\mu}(x)|}{\nu(x)} \le \max_{\mu \in \mathcal{M}} \sup_{x \in X_{\ell}} \frac{|J_{\ell}(x) - J_{\mu}(x)|}{\nu(x)} \le \alpha.$$
(2.1)

Take supremum over $x \in X_{\ell}$ on both sides and then take maximum over $\mu \in \mathcal{M}$ on both sides, and we have $J \in \bigcap_{\ell \in I} \mathcal{J}_{\ell}(\alpha)$.

On the other hand, given $J \in \bigcap_{\ell \in I} \mathscr{J}_{\ell}(\alpha)$, it holds $\forall \ell \in I, \forall x \in X_{\ell}, \forall \mu \in \mathcal{M}$, that

$$\frac{|J_{\ell}(x) - J_{\mu}(x)|}{\nu(x)} = \frac{|J(x) - J_{\mu}(x)|}{\nu(x)} \le \max_{\mu \in \mathcal{M}} \sup_{x \in X_{\ell}} \frac{|J(x) - J_{\mu}(x)|}{\nu(x)} \le \alpha,$$
(2.2)

which implies $J_{\ell} \in \mathcal{J}_{|X_{\ell}}(\alpha) \ \forall \ell \in I$, and this concludes the proof.

Proof of Lemma 3. Here we introduce two kinds of sets defined as

$$\begin{aligned} \mathcal{J}^{\mu}(\alpha) &= \Big\{ J \in \mathcal{B}(X) \, \Big| \, \|J - J_{\mu}\| \leq \alpha \Big\}, \\ \mathcal{J}^{\mu}_{\ell}(\alpha) &= \Big\{ J \in \mathcal{B}(X) \, \Big| \sup_{x \in X_{\ell}} \frac{|J(x) - J_{\mu}(x)|}{\nu(x)} \leq \alpha \Big\}. \end{aligned}$$

Then one can verify that between those two sets, it holds that

$$\mathcal{J}^{\mu}(\alpha) = \bigcap_{\ell \in I} \mathcal{J}^{\mu}_{\ell}(\alpha), \, \forall \mu \in \mathcal{M}.$$

In addition, one may verify that

$$\mathscr{J}(\alpha) = \bigcap_{\mu \in \mathscr{M}} \mathscr{J}^{\mu}(\alpha), \ \mathscr{J}_{\ell}(\alpha) = \bigcap_{\mu \in \mathscr{M}} \mathscr{J}_{\ell}^{\mu}(\alpha).$$
(2.3)

Therefore, we have

$$\begin{split} \mathcal{J}(\alpha) &= \bigcap_{\mu \in \mathcal{M}} \mathcal{J}^{\mu}(\alpha) \\ &= \bigcap_{\mu \in \mathcal{M}} \bigcap_{\ell \in I} \mathcal{J}^{\mu}_{\ell}(\alpha) \\ &= \bigcap_{\ell \in I} \bigcap_{\mu \in \mathcal{M}} \mathcal{J}^{\mu}_{\ell}(\alpha) \\ &= \bigcap_{\ell \in I} \mathcal{J}_{\ell}(\alpha) \end{split}$$

Proof of Theorem 1. Combining [Lemmas 1, 2, 3, P. 87], we get the desired result.

Remark. As noted in the proof of [Lemma 1, P. 87], it is needed to have I being finite in order to have the underline sets $\prod_{\ell \in I} \mathscr{B}(X_{\ell})$ and $\mathscr{B}(X)$ being the same. However, as far as the proofs being concerned, it is not needed to have \mathscr{M} being finite. The steps related in the proofs are (2.1), (2.2), and (2.3), which all holds if all $\max_{\mu \in \mathscr{M}}$ involved are replaced by $\sup_{\mu \in \mathscr{M}}$ properly.

REFERENCES

[1] Dimitri Bertsekas, Abstract dynamic programming, 2nd Edition, Athena Scientific, 2018.