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1 PROBLEM STATEMENT

Lemma 1 (P. 42). Given two extended real-valued sequences {a,} and {b,} where a,, b, € R*.
Assume that both lim,,_.o a, andlim,,_.., b, exist in R*. Prove that

a, <b, = lim a, < lim b,,.
n—oo n—oo
Lemma 2 (P. 42). Given {a,} with a, € R and a = lim,,_, a, € R, and {b,} with b,, € R* and
b=1lim,,_. b, € R*. Prove that

lim (a, + b,) = lim a, + lim b,,.
n—oo n—oo n—oo
Lemma 3 (P. 42). Given{a,} € R* which is monotone, prove that{a,} is convergent in R*.

Lemma 4 (P. 42). Given two real sequences {a,} and {b,}, and assume thatlimsup,,_,, an €R,
show that

limsup(a, + by) <limsup a, +limsup b,.
n—o0 n—oo n—o0

2 ELABORATION

Proof of Lemma 1 Approach 1. Iflim,,_., a, and lim,_.., b, both exist in R, then denote their
limits as a, b respectively. Then Ve > 0, AN such that Vn > N, |a, —al < € and |b,, — b| < €.
Then the sequences {a,}7’ ., and {b,}?> ., are real-valued and have the same limits a and
b. Therefore, we have a < b.



If b =1im,_ b, existin R but lim,_. a, is notin R, then given €, AN such that Vn > N, b, <
b+ e. Since ap, < by, then {a,}) has an upper bound b + € < co. Therefore, lim;,—.oc a, =
—oo and —oco < b.

Iflim;,,_.oo by, = —00, then Vx € R, 3N such that Vn > N, b,, < x. Since a, < b,,, we conclude
lim,, oo a; = —00.

Iflim, .o by, = 0o, then lim,,_. a, <lim,_.., b, holds regardless the value of lim,,_.oc a,. O

N+1

Proof of Lemma 1 Approach 2. Denote the limits as a, b € R* respectively. Apply the metric
on R* introduced in [Note 2]. Then we have lim,,_.o. d(a,, a) = 0 and lim,,—., d(b,,, b) = 0. If
a > b, then denote 2¢ = d(a,b). Then AN such that Vn > N, d(a,,a) < € and d(b,, b) < &,
which implies a,, > b,,, which concludes the proof. O

Proofof Lemma 2. If b € R, then given € > 0, 3N such that |b, — b| < €. So the sequence
{bn}‘;l": N1 1S real-valued and the equality follows.

If b = o0, take b = oo as an example. Then we have {b,} is unbounded above. Since a € R,
then given € > 0 3N such that Vn > N a, > a — ¢, then we have sequence {a,, + b} is un-
bounded above. Therefore the equality holds since lim ;.o (@, +b;) = co = co+a =lim,_.o an+
lim;,_.oo by O

Proof of Lemma 3. Take nonincreasing sequence as an example. If {a,} N {—oc} # @, then
Jag = —oo. Since Vn > K a, < ag, then the convergence follows.

If {a,} N {—oo} = @ but {a,;} NR # @, then Jag € R, which means {an}"’f:K is a real-valued se-
quence. Then it’s either bounded below or unbounded below. Either case, the convergence
follows.

If{a,} Nn{—o0} = ® and {a,} "R = @, then a, = co. Then the convergence follows. O

Proof of Lemma 4. Given n, Yk = n, ay < sup., Gk, and by < supy.., by, consequently ay +
by < supy.s,, ar + supys, bx- Therefore, we have

sup (ax + by) < sup ay +sup by.
k=n k=n

Since both sides are monotonically nonincreasing, so by Lemma 3 both sides have limits in
R*, and by Lemma 1, we have

hm sup(a;C +by) < hm (sup ay +sup by) 2.1
X f>n X k=n k=n

In addition, by Lemma 3, we have {sup., ai}%>; and {sup;, b}, converge in R*. Since
limsup,,_.., an € R, denote a = limsup,,_,, a,. Then given € > 0, AN such that sup,. y ar €
(a—eg,a+e). Therefore, {supy., a5, is inin the interval (a - ¢, S] < R where

S =max{ay, ..., ay, a+ €}.

Therefore, {supy., ar};., is real-valued sequence converging in R. Then by Lemma 2, we
have

lim (sup ay +sup by) = hm 0 sup aj + hm n sup by. (2.2)
=0 k=n k=n X k=n X k=n
Combine Egs. (2.1) and (2.2), we get the desired result. O
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