Sequence on the Extended Real Line

Yuchao Li

Auguest 18, 2019

1 Problem statement

Lemma 1 (P. 42). Given two extended real-valued sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ where $a_{n}, b_{n} \in \mathbb{R}^{*}$. Assume that both $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist in \mathbb{R}^{*}. Prove that

$$
a_{n} \leq b_{n} \Longrightarrow \lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}
$$

Lemma 2 (P. 42). Given $\left\{a_{n}\right\}$ with $a_{n} \in \mathbb{R}$ and $a=\lim _{n \rightarrow \infty} a_{n} \in \mathbb{R}$, and $\left\{b_{n}\right\}$ with $b_{n} \in \mathbb{R}^{*}$ and $b=\lim _{n \rightarrow \infty} b_{n} \in \mathbb{R}^{*}$. Prove that

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}
$$

Lemma 3 (P. 42). Given $\left\{a_{n}\right\} \in \mathbb{R}^{*}$ which is monotone, prove that $\left\{a_{n}\right\}$ is convergent in \mathbb{R}^{*}.
Lemma 4 (P. 42). Given two real sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, and assume that $\limsup _{n \rightarrow \infty} a_{n} \in \mathbb{R}$, show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

2 Elaboration

Proof of Lemma 1 Approach 1. If $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ both exist in \mathbb{R}, then denote their limits as a, b respectively. Then $\forall \varepsilon>0, \exists N$ such that $\forall n>N,\left|a_{n}-a\right|<\varepsilon$ and $\left|b_{n}-b\right|<\varepsilon$. Then the sequences $\left\{a_{n}\right\}_{n=N+1}^{\infty}$ and $\left\{b_{n}\right\}_{n=N+1}^{\infty}$ are real-valued and have the same limits a and b. Therefore, we have $a \leq b$.

If $b=\lim _{n \rightarrow \infty} b_{n}$ exist in \mathbb{R} but $\lim _{n \rightarrow \infty} a_{n}$ is not in \mathbb{R}, then given $\varepsilon, \exists N$ such that $\forall n>N, b_{n}<$ $b+\varepsilon$. Since $a_{n} \leq b_{n}$, then $\left\{a_{n}\right\}_{n=N+1}^{\infty}$ has an upper bound $b+\varepsilon<\infty$. Therefore, $\lim _{n \rightarrow \infty} a_{n}=$ $-\infty$ and $-\infty<b$.
If $\lim _{n \rightarrow \infty} b_{n}=-\infty$, then $\forall x \in \mathbb{R}, \exists N$ such that $\forall n>N, b_{n}<x$. Since $a_{n} \leq b_{n}$, we conclude $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
If $\lim _{n \rightarrow \infty} b_{n}=\infty$, then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$ holds regardless the value of $\lim _{n \rightarrow \infty} a_{n}$.
Proof of Lemma 1 Approach 2. Denote the limits as $a, b \in \mathbb{R}^{*}$ respectively. Apply the metric on \mathbb{R}^{*} introduced in [Note 2]. Then we have $\lim _{n \rightarrow \infty} d\left(a_{n}, a\right)=0$ and $\lim _{n \rightarrow \infty} d\left(b_{n}, b\right)=0$. If $a>b$, then denote $2 \varepsilon=d(a, b)$. Then $\exists N$ such that $\forall n>N, d\left(a_{n}, a\right)<\varepsilon$ and $d\left(b_{n}, b\right)<\varepsilon$, which implies $a_{n}>b_{n}$, which concludes the proof.

Proof of Lemma 2. If $b \in \mathbb{R}$, then given $\varepsilon>0, \exists N$ such that $\left|b_{n}-b\right|<\varepsilon$. So the sequence $\left\{b_{n}\right\}_{n=N+1}^{\infty}$ is real-valued and the equality follows.
If $b= \pm \infty$, take $b=\infty$ as an example. Then we have $\left\{b_{n}\right\}$ is unbounded above. Since $a \in \mathbb{R}$, then given $\varepsilon>0 \exists N$ such that $\forall n>N a_{n}>a-\varepsilon$, then we have sequence $\left\{a_{n}+b_{n}\right\}$ is unbounded above. Therefore the equality holds since $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty=\infty+a=\lim _{n \rightarrow \infty} a_{n}+$ $\lim _{n \rightarrow \infty} b_{n}$.

Proof of Lemma 3. Take nonincreasing sequence as an example. If $\left\{a_{n}\right\} \cap\{-\infty\} \neq \varnothing$, then $\exists a_{K}=-\infty$. Since $\forall n>K a_{n} \leq a_{K}$, then the convergence follows.
If $\left\{a_{n}\right\} \cap\{-\infty\}=\varnothing$ but $\left\{a_{n}\right\} \cap \mathbb{R} \neq \varnothing$, then $\exists a_{K} \in \mathbb{R}$, which means $\left\{a_{n}\right\}_{n=K}^{\infty}$ is a real-valued sequence. Then it's either bounded below or unbounded below. Either case, the convergence follows.
If $\left\{a_{n}\right\} \cap\{-\infty\}=\varnothing$ and $\left\{a_{n}\right\} \cap \mathbb{R}=\varnothing$, then $a_{n}=\infty$. Then the convergence follows.
Proof of Lemma 4. Given $n, \forall k \geq n, a_{k} \leq \sup _{k \geq n} a_{k}$, and $b_{k} \leq \sup _{k \geq n} b_{k}$, consequently $a_{k}+$ $b_{k} \leq \sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}$. Therefore, we have

$$
\sup _{k \geq n}\left(a_{k}+b_{k}\right) \leq \sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k} .
$$

Since both sides are monotonically nonincreasing, so by Lemma 3 both sides have limits in \mathbb{R}^{*}, and by Lemma 1 , we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{k \geq n}\left(a_{k}+b_{k}\right) \leq \lim _{n \rightarrow \infty}\left(\sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}\right) \tag{2.1}
\end{equation*}
$$

In addition, by Lemma 3, we have $\left\{\sup _{k \geq n} a_{k}\right\}_{n=1}^{\infty}$ and $\left\{\sup _{k \geq n} b_{k}\right\}_{n=1}^{\infty}$ converge in \mathbb{R}^{*}. Since $\limsup _{n \rightarrow \infty} a_{n} \in \mathbb{R}$, denote $\bar{a}=\limsup _{n \rightarrow \infty} a_{n}$. Then given $\varepsilon>0, \exists N$ such that $\sup _{k \geq N} a_{k} \in$ $(\bar{a}-\varepsilon, \bar{a}+\varepsilon)$. Therefore, $\left\{\sup _{k \geq n} a_{k}\right\}_{n=1}^{\infty}$ is in in the interval $(\bar{a}-\varepsilon, S] \subset \mathbb{R}$ where

$$
S=\max \left\{a_{1}, \ldots, a_{N}, \bar{a}+\varepsilon\right\} .
$$

Therefore, $\left\{\sup _{k \geq n} a_{k}\right\}_{n=1}^{\infty}$ is real-valued sequence converging in \mathbb{R}. Then by Lemma 2 , we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}\right)=\lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k}+\lim _{n \rightarrow \infty} \sup _{k \geq n} b_{k} . \tag{2.2}
\end{equation*}
$$

Combine Eqs. (2.1) and (2.2), we get the desired result.

References

[1] Dimitri Bertsekas, Abstract dynamic programming, 2nd Edition, Athena Scientific, 2018.

