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1 PROBLEM STATEMENT

Lemma 1 (P. 42). Given two extended real-valued sequences {an} and {bn} where an , bn ∈ R∗.
Assume that both limn→∞ an and limn→∞ bn exist in R∗. Prove that

an ≤ bn =⇒ lim
n→∞an ≤ lim

n→∞bn .

Lemma 2 (P. 42). Given {an} with an ∈ R and a = limn→∞ an ∈ R, and {bn} with bn ∈ R∗ and
b = limn→∞ bn ∈R∗. Prove that

lim
n→∞(an +bn) = lim

n→∞an + lim
n→∞bn .

Lemma 3 (P. 42). Given {an} ∈R∗ which is monotone, prove that {an} is convergent in R∗.

Lemma 4 (P. 42). Given two real sequences {an} and {bn}, and assume that limsupn→∞ an ∈R,
show that

limsup
n→∞

(an +bn) ≤ limsup
n→∞

an + limsup
n→∞

bn .

2 ELABORATION

Proof of Lemma 1 Approach 1. If limn→∞ an and limn→∞ bn both exist in R, then denote their
limits as a, b respectively. Then ∀ε > 0, ∃N such that ∀n > N , |an − a| < ε and |bn −b| < ε.
Then the sequences {an}∞n=N+1 and {bn}∞n=N+1 are real-valued and have the same limits a and
b. Therefore, we have a ≤ b.
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If b = limn→∞ bn exist in R but limn→∞ an is not in R, then given ε, ∃N such that ∀n > N , bn <
b +ε. Since an ≤ bn , then {an}∞n=N+1 has an upper bound b +ε<∞. Therefore, limn→∞ an =
−∞ and −∞< b.
If limn→∞ bn = −∞, then ∀x ∈ R, ∃N such that ∀n > N , bn < x. Since an ≤ bn , we conclude
limn→∞ an =−∞.
If limn→∞ bn =∞, then limn→∞ an ≤ limn→∞ bn holds regardless the value of limn→∞ an .

Proof of Lemma 1 Approach 2. Denote the limits as a, b ∈ R∗ respectively. Apply the metric
on R∗ introduced in [Note 2]. Then we have limn→∞ d(an , a) = 0 and limn→∞ d(bn ,b) = 0. If
a > b, then denote 2ε = d(a,b). Then ∃N such that ∀n > N , d(an , a) < ε and d(bn ,b) < ε,
which implies an > bn , which concludes the proof.

Proof of Lemma 2. If b ∈ R, then given ε > 0, ∃N such that |bn − b| < ε. So the sequence
{bn}∞n=N+1 is real-valued and the equality follows.
If b = ±∞, take b =∞ as an example. Then we have {bn} is unbounded above. Since a ∈ R,
then given ε > 0 ∃N such that ∀n > N an > a − ε, then we have sequence {an + bn} is un-
bounded above. Therefore the equality holds since limn→∞(an+bn) =∞=∞+a = limn→∞ an+
limn→∞ bn .

Proof of Lemma 3. Take nonincreasing sequence as an example. If {an} ∩ {−∞} 6= ;, then
∃aK =−∞. Since ∀n > K an ≤ aK , then the convergence follows.
If {an}∩ {−∞} = ; but {an}∩R 6= ;, then ∃aK ∈ R, which means {an}∞n=K is a real-valued se-
quence. Then it’s either bounded below or unbounded below. Either case, the convergence
follows.
If {an}∩ {−∞} =; and {an}∩R=;, then an =∞. Then the convergence follows.

Proof of Lemma 4. Given n, ∀k ≥ n, ak ≤ supk≥n ak , and bk ≤ supk≥n bk , consequently ak +
bk ≤ supk≥n ak + supk≥n bk . Therefore, we have

sup
k≥n

(
ak +bk

)≤ sup
k≥n

ak + sup
k≥n

bk .

Since both sides are monotonically nonincreasing, so by Lemma 3 both sides have limits in
R∗, and by Lemma 1, we have

lim
n→∞sup

k≥n
(ak +bk ) ≤ lim

n→∞(sup
k≥n

ak + sup
k≥n

bk ) (2.1)

In addition, by Lemma 3, we have {supk≥n ak }∞n=1 and {supk≥n bk }∞n=1 converge in R∗. Since
limsupn→∞ an ∈ R, denote ā = limsupn→∞ an . Then given ε > 0, ∃N such that supk≥N ak ∈
(ā −ε, ā +ε). Therefore, {supk≥n ak }∞n=1 is in in the interval (ā −ε,S] ⊂R where

S = max{a1, ..., aN , ā +ε}.

Therefore, {supk≥n ak }∞n=1 is real-valued sequence converging in R. Then by Lemma 2, we
have

lim
n→∞(sup

k≥n
ak + sup

k≥n
bk ) = lim

n→∞sup
k≥n

ak + lim
n→∞sup

k≥n
bk . (2.2)

Combine Eqs. (2.1) and (2.2), we get the desired result.
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