State-Dependent Weighted Multistep Mappings

Yuchao Li

Auguest 11, 2019

1 Problem statement

Lemma 1 (P. 64). Given a real valued sequence $\left\{a_{\ell}\right\}$ and assume that the sequence $\left\{\sum_{\ell=1}^{n} a_{\ell}\right\}_{n=1}^{\infty}$ converges with $\sum_{\ell=1}^{\infty} a_{\ell} \in \mathbb{R}$. It holds that

$$
\begin{equation*}
\left|\sum_{\ell=1}^{\infty} a_{\ell}\right| \leq \sum_{\ell=1}^{\infty}\left|a_{\ell}\right| \tag{1.1}
\end{equation*}
$$

Theorem 1 (P. 64). Let the set of mappings $T_{\mu}: \mathscr{B}(X) \rightarrow \mathscr{B}(X), \mu \in \mathscr{M}$ satisfy Assumption 2.1.2. Consider the mappings $T_{\mu}^{(w)}: \mathscr{B}(X) \rightarrow \mathscr{R}(X)$ defined by

$$
\begin{equation*}
\left(T_{\mu}^{(w)} J\right)(x)=\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x), x \in X, J \in \mathscr{B}(X) \tag{1.2}
\end{equation*}
$$

where $w_{\ell}(x)$ are nonnegative scalars such that for all $x \in X$,

$$
\sum_{\ell=1}^{\infty} w_{\ell}(x)=1
$$

Then the mapping $T_{\mu}^{(w)}$ is well defined; namely for all $x \in X, J \in \mathscr{B}(X)$, the sequence

$$
\begin{equation*}
\left\{\sum_{\ell=1}^{n} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)\right\}_{n=1}^{\infty} \tag{1.3}
\end{equation*}
$$

converges with a limit in \mathbb{R}.
Theorem 2 (P. 64). Let the set of mappings $T_{\mu}: \mathscr{B}(X) \rightarrow \mathscr{B}(X), \mu \in \mathscr{M}$ satisfy Assumption 2.1.2. Consider the mappings $T_{\mu}^{(w)}: \mathscr{B}(X) \rightarrow \mathscr{R}(X)$ defined in Eq. (1.2). It holds that $T_{\mu}^{(w)} \mathscr{B}(X) \subset$ $\mathscr{B}(X)$, namely, $T_{\mu}^{(w)}: \mathscr{B}(X) \rightarrow \mathscr{R}(X)$ is in fact $T_{\mu}^{(w)}: \mathscr{B}(X) \rightarrow \mathscr{B}(X) ;$ and $T_{\mu}^{(w)}$ is a contraction.

Theorem 3 (P. 64). Consider sequence $\left\{T_{\mu}^{\left(\lambda_{n}\right)} J\right\}$ defined by

$$
T_{\mu}^{\left(\lambda_{n}\right)} J=(1-\lambda) \sum_{\ell=1}^{n} \lambda^{\ell-1} T_{\mu}^{\ell} J
$$

The sequence $\left\{T_{\mu}^{\left(\lambda_{n}\right)} J\right\}$ converges to some element $T_{\mu}^{\left(\lambda_{\infty}\right)} J \in \mathscr{B}(X)$. In addition, it coincides with the function $T_{\mu}^{(\lambda)} J$ defined by point-wise limit, viz., $T_{\mu}^{\left(\lambda_{\infty}\right)} J=T_{\mu}^{(\lambda)} J$.

2 Elaboration

Proof of Lemma 1. Due to continuity of $|\cdot|$, we have

$$
\lim _{n \rightarrow \infty}\left|\sum_{\ell=1}^{n} a_{\ell}\right|=\left|\sum_{\ell=1}^{\infty} a_{\ell}\right|
$$

Since $\forall n$, it holds that

$$
\left|\sum_{\ell=1}^{n} a_{\ell}\right| \leq \sum_{\ell=1}^{n}\left|a_{\ell}\right|
$$

which is due to triangular inequality, then taking limits on both sides and we get the desired inequality. Note that the limit on right-hand side of Eq. (1.1) need not be checked as it's nonnegative and therefore monotone and it may be $+\infty$.

Proof of Theorem 1. Since T_{μ} is a contraction, we have $\left(T_{\mu}^{\ell} J\right)(x) \rightarrow J_{\mu}(x) \in \mathbb{R}, \forall x \in X$. Therefore, $\left\{\left(T_{\mu}^{\ell} J\right)(x)\right\}_{\ell=1}^{\infty}$ is bounded. Denote the bound as $M_{\mu}(x) \in \mathbb{R}$. Then $\forall n$, it holds that

$$
\left|\sum_{\ell=1}^{n} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)\right| \leq \sum_{\ell=1}^{n} w_{\ell}(x)\left|\left(T_{\mu}^{\ell} J\right)(x)\right| \leq \sum_{\ell=1}^{n} w_{\ell}(x) M_{\mu}(x) \leq M_{\mu}(x)
$$

namely the sequence of (1.3) is bounded. If $J_{\mu}(x)>0$, then $\exists N$ such that $\left(T_{\mu}^{\ell} J\right)(x)>0 \forall \ell>$ N. Therefore, $\left\{\sum_{\ell=1}^{n} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)\right\}_{n=N}^{\infty}$ is monotonically nondecreasing and bounded by $M_{\mu}(x)$. Therefore the sequence (1.3) converges with the limit $\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x) \in \mathbb{R}$. If $J_{\mu}(x)<0$, similar arguments applies. If $J_{\mu}(x)=0$, then $\forall \varepsilon, \exists N$ such that $\forall \ell>N,\left|\left(T_{\mu}^{\ell} J\right)(x)\right|<$ ε. Therefore, $\forall k$, it holds that

$$
\begin{align*}
\left|\sum_{\ell=1}^{N} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)-\sum_{\ell=1}^{N+k} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)\right| & =\left|\sum_{\ell=N+1}^{N+k} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)\right| \\
& \leq \sum_{\ell=N+1}^{N+k} w_{\ell}(x)\left|\left(T_{\mu}^{\ell} J\right)(x)\right| \\
& \leq \sum_{\ell=N+1}^{N+k} w_{\ell}(x) \varepsilon \\
& \leq \varepsilon \tag{2.1}
\end{align*}
$$

which implies that the sequence (1.3) is Cauchy. [For details of Eq. (2.1) implying Cauchy, refer to Question 4, HW5, FEO3230.] As a result, sequence (1.3) converges in \mathbb{R}. Therefore, $\forall J \in \mathscr{B}(X), x \in X$, sequence (1.3) converges in \mathbb{R}. Namely $T_{\mu}^{(w)}: \mathscr{B}(X) \rightarrow \mathscr{R}(X)$.

Proof of Theorem 2. Due to Theorem 1, $\forall J \in \mathscr{B}(X)$ and $x \in X,\left(T_{\mu}^{(w)} J\right)(x)$ is well-defined and is a real value. In particular, for $J=J_{\mu}$, we have $T_{\mu}^{(w)} J_{\mu}=J_{\mu}$ (one may verify this equality by checking the definition Eq. (1.2)). Then we have

$$
\begin{aligned}
\left|\left(T_{\mu}^{(w)} J\right)(x)-J_{\mu}(x)\right| & =\left|\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)-J_{\mu}(x)\right| \\
& =\left|\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(T_{\mu}^{\ell} J\right)(x)-\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(T_{\mu}^{\ell} J_{\mu}\right)(x)\right| \\
& =\left|\sum_{\ell=1}^{\infty} w_{\ell}(x)\left(\left(T_{\mu}^{\ell} J\right)(x)-\left(T_{\mu}^{\ell} J_{\mu}\right)(x)\right)\right| \\
& \leq \sum_{\ell=1}^{\infty} w_{\ell}(x)\left|\left(T_{\mu}^{\ell} J\right)(x)-\left(T_{\mu}^{\ell} J_{\mu}\right)(x)\right|
\end{aligned}
$$

where the last inequality holds due to Lemma 1 . Since T_{μ} is a contraction, $\forall \ell$, it holds that

$$
\left|\left(T_{\mu}^{\ell} J\right)(x)-\left(T_{\mu}^{\ell} J_{\mu}\right)(x)\right| \leq \alpha^{\ell}\left\|J-J_{\mu}\right\| v(x)
$$

Therefore, we have

$$
\begin{equation*}
\left|\left(T_{\mu}^{(w)} J\right)(x)-J_{\mu}(x)\right| \leq \sum_{\ell=1}^{\infty} w_{\ell}(x) \alpha^{\ell}\left\|J-J_{\mu}\right\| v(x) \leq \bar{\alpha}\left\|J-J_{\mu}\right\| \nu(x) \tag{2.2}
\end{equation*}
$$

where $\bar{\alpha}$ is given as

$$
\bar{\alpha}=\sup _{x \in X} \sum_{\ell=1}^{\infty} w_{\ell}(x) \alpha^{\ell} \leq \alpha .
$$

Note that for all $x \in X$, the sequence $\left\{\sum_{\ell=1}^{n} w_{\ell}(x) \alpha^{\ell}\right\}_{n=1}^{\infty}$ converges in real since it's monotonically nondecreasing and upper bounded by α. Therefore $\bar{\alpha}$ is well-defined. Due to triangular inequality, from Eq. (2.2), we have

$$
\frac{\left|\left(T_{\mu}^{(w)} J\right)(x)\right|}{\nu(x)} \leq \bar{\alpha}\left\|J-J_{\mu}\right\|+\frac{\left|J_{\mu}(x)\right|}{\nu(x)} .
$$

Take supremum over x on both sides and due to $J_{\mu} \in \mathscr{B}(X)$, we have $T_{\mu}^{(w)} J \in \mathscr{B}(X)$. Regarding the contraction proof, refer to Exercise 1.3, P. 38, [1] for details.

Proof of Theorem 3. Since $\lim _{n \rightarrow \infty}\left\|T_{\mu}^{n} J-J_{\mu}\right\|=0$, we have $\lim _{n \rightarrow \infty}\left\|T_{\mu}^{n} J\right\|=\left\|J_{\mu}\right\|[\mathrm{cf}$. Theorem P. 42]. Therefore $\left\{\left\|T_{\mu}^{n} J\right\|\right\}$ is bounded. Denote its bound as M_{μ}. Therefore, $\forall \varepsilon, \exists N$ such that
$\forall k$ it holds that

$$
\begin{aligned}
\left\|T_{\mu}^{\left(\lambda_{N}\right)} J-T_{\mu}^{\left(\lambda_{N+k}\right)} J\right\| & =\left\|(1-\lambda) \sum_{\ell=1}^{N} \lambda^{\ell-1} T_{\mu}^{\ell} J-(1-\lambda) \sum_{\ell=1}^{N+k} \lambda^{\ell-1} T_{\mu}^{\ell} J\right\| \\
& =\left\|(1-\lambda) \sum_{\ell=N+1}^{N+k} \lambda^{\ell-1} T_{\mu}^{\ell} J\right\| \\
& \leq(1-\lambda) \sum_{\ell=N+1}^{N+k} \lambda^{\ell-1}\left\|T_{\mu}^{\ell} J\right\| \\
& \leq(1-\lambda) \sum_{\ell=N+1}^{N+k} \lambda^{\ell-1} M_{\mu} \\
& \leq \lambda^{N} M_{\mu}
\end{aligned}
$$

$$
\leq \varepsilon,
$$

which implies $\left\{T_{\mu}^{\left(\lambda_{n}\right)} J\right\}$ is Cauchy. Since $\mathscr{B}(X)$ is complete, then it is also convergent. Denote its limit as $T_{\mu}^{\left(\lambda_{\infty}\right)} J$. Since convergence in norm implies point-wise convergence and limit in \mathbb{R} is unique, then $\forall x \in X$, it holds that $\left(T_{\mu}^{\left(\lambda_{\infty}\right)} J\right)(x)=\left(T_{\mu}^{(\lambda)} J\right)(x)$.

References

[1] Dimitri Bertsekas, Abstract dynamic programming, 2nd Edition, Athena Scientific, 2018.

