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1 PROBLEM STATEMENT

Lemma 1 (P. 64). Given a real valued sequence {a`} and assume that the sequence {
∑n
`=1 a`}∞n=1

converges with
∑∞
`=1 a` ∈R. It holds that

|
∞∑
`=1

a`| ≤
∞∑
`=1

|a`|. (1.1)

Theorem 1 (P. 64). Let the set of mappings Tµ : B(X ) →B(X ), µ ∈M satisfy Assumption 2.1.2.

Consider the mappings T (w)
µ : B(X ) →R(X ) defined by

(
T (w)
µ J

)
(x) =

∞∑
`=1

w`(x)
(
T `
µ J

)
(x), x ∈ X , J ∈B(X ), (1.2)

where w`(x) are nonnegative scalars such that for all x ∈ X ,

∞∑
`=1

w`(x) = 1.

Then the mapping T (w)
µ is well defined; namely for all x ∈ X , J ∈B(X ), the sequence{ n∑

`=1
w`(x)

(
T `
µ J

)
(x)

}∞
n=1

(1.3)

converges with a limit in R.

Theorem 2 (P. 64). Let the set of mappings Tµ : B(X ) →B(X ), µ ∈M satisfy Assumption 2.1.2.

Consider the mappings T (w)
µ : B(X ) → R(X ) defined in Eq. (1.2). It holds that T (w)

µ B(X ) ⊂
B(X ), namely, T (w)

µ : B(X ) →R(X ) is in fact T (w)
µ : B(X ) →B(X ); and T (w)

µ is a contraction.
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Theorem 3 (P. 64). Consider sequence {T (λn )
µ J } defined by

T (λn )
µ J = (1−λ)

n∑
`=1

λ`−1T `
µ J .

The sequence {T (λn )
µ J } converges to some element T (λ∞)

µ J ∈B(X ). In addition, it coincides with

the function T (λ)
µ J defined by point-wise limit, viz., T (λ∞)

µ J = T (λ)
µ J .

2 ELABORATION

Proof of Lemma 1. Due to continuity of | · |, we have

lim
n→∞ |

n∑
`=1

a`| = |
∞∑
`=1

a`|.

Since ∀n, it holds that

|
n∑
`=1

a`| ≤
n∑
`=1

|a`|,

which is due to triangular inequality, then taking limits on both sides and we get the desired
inequality. Note that the limit on right-hand side of Eq. (1.1) need not be checked as it’s
nonnegative and therefore monotone and it may be +∞.

Proof of Theorem 1. Since Tµ is a contraction, we have
(
T `
µ J

)
(x) → Jµ(x) ∈ R, ∀x ∈ X . There-

fore,
{(

T `
µ J

)
(x)

}∞
`=1 is bounded. Denote the bound as Mµ(x) ∈R. Then ∀n, it holds that

|
n∑
`=1

w`(x)
(
T `
µ J

)
(x)| ≤

n∑
`=1

w`(x)|(T `
µ J

)
(x)| ≤

n∑
`=1

w`(x)Mµ(x) ≤ Mµ(x),

namely the sequence of (1.3) is bounded. If Jµ(x) > 0, then ∃N such that
(
T `
µ J

)
(x) > 0 ∀` >

N . Therefore,
{∑n

`=1 w`(x)
(
T `
µ J

)
(x)

}∞
n=N is monotonically nondecreasing and bounded by

Mµ(x). Therefore the sequence (1.3) converges with the limit
∑∞
`=1 w`(x)

(
T `
µ J

)
(x) ∈ R. If

Jµ(x) < 0, similar arguments applies. If Jµ(x) = 0, then ∀ε, ∃N such that ∀`> N , |(T `
µ J

)
(x)| <

ε. Therefore, ∀k, it holds that∣∣∣ N∑
`=1

w`(x)
(
T `
µ J

)
(x)−

N+k∑
`=1

w`(x)
(
T `
µ J

)
(x)

∣∣∣= ∣∣∣ N+k∑
`=N+1

w`(x)
(
T `
µ J

)
(x)

∣∣∣
≤

N+k∑
`=N+1

w`(x)|(T `
µ J

)
(x)|

≤
N+k∑
`=N+1

w`(x)ε

≤ ε, (2.1)

which implies that the sequence (1.3) is Cauchy. [For details of Eq. (2.1) implying Cauchy,
refer to Question 4, HW5, FEO3230.] As a result, sequence (1.3) converges in R. Therefore,
∀J ∈B(X ), x ∈ X , sequence (1.3) converges in R. Namely T (w)

µ : B(X ) →R(X ).
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Proof of Theorem 2. Due to Theorem 1, ∀J ∈ B(X ) and x ∈ X ,
(
T (w)
µ J

)
(x) is well-defined and

is a real value. In particular, for J = Jµ, we have T (w)
µ Jµ = Jµ (one may verify this equality by

checking the definition Eq. (1.2)). Then we have

|(T (w)
µ J

)
(x)− Jµ(x)| =

∣∣∣ ∞∑
`=1

w`(x)
(
T `
µ J

)
(x)− Jµ(x)

∣∣∣
=

∣∣∣ ∞∑
`=1

w`(x)
(
T `
µ J

)
(x)−

∞∑
`=1

w`(x)
(
T `
µ Jµ

)
(x)

∣∣∣
=

∣∣∣ ∞∑
`=1

w`(x)
((

T `
µ J

)
(x)− (

T `
µ Jµ

)
(x)

)∣∣∣
≤

∞∑
`=1

w`(x)|(T `
µ J

)
(x)− (

T `
µ Jµ

)
(x)|

where the last inequality holds due to Lemma 1. Since Tµ is a contraction, ∀`, it holds that

|(T `
µ J

)
(x)− (

T `
µ Jµ

)
(x)| ≤α`‖J − Jµ‖v(x).

Therefore, we have

|(T (w)
µ J

)
(x)− Jµ(x)| ≤

∞∑
`=1

w`(x)α`‖J − Jµ‖v(x) ≤ ᾱ‖J − Jµ‖v(x) (2.2)

where ᾱ is given as

ᾱ= sup
x∈X

∞∑
`=1

w`(x)α` ≤α.

Note that for all x ∈ X , the sequence
{∑n

`=1 w`(x)α`
}∞

n=1 converges in real since it’s monoton-
ically nondecreasing and upper bounded byα. Therefore ᾱ is well-defined. Due to triangular
inequality, from Eq. (2.2), we have

|(T (w)
µ J

)
(x)|

v(x)
≤ ᾱ‖J − Jµ‖+

|Jµ(x)|
v(x)

.

Take supremum over x on both sides and due to Jµ ∈B(X ), we have T (w)
µ J ∈B(X ). Regarding

the contraction proof, refer to Exercise 1.3, P. 38, [1] for details.

Proof of Theorem 3. Since limn→∞ ‖T n
µ J−Jµ‖ = 0, we have limn→∞ ‖T n

µ J‖ = ‖Jµ‖ [cf. Theorem
P. 42]. Therefore {‖T n

µ J‖} is bounded. Denote its bound as Mµ. Therefore, ∀ε, ∃N such that
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∀k it holds that

‖T (λN )
µ J −T (λN+k )

µ J‖ =‖(1−λ)
N∑
`=1

λ`−1T `
µ J − (1−λ)

N+k∑
`=1

λ`−1T `
µ J‖

=‖(1−λ)
N+k∑
`=N+1

λ`−1T `
µ J‖

≤(1−λ)
N+k∑
`=N+1

λ`−1‖T `
µ J‖

≤(1−λ)
N+k∑
`=N+1

λ`−1Mµ

≤λN Mµ

≤ε,

which implies {T (λn )
µ J } is Cauchy. Since B(X ) is complete, then it is also convergent. Denote

its limit as T (λ∞)
µ J . Since convergence in norm implies point-wise convergence and limit in R

is unique, then ∀x ∈ X , it holds that
(
T (λ∞)
µ J

)
(x) = (

T (λ)
µ J

)
(x).
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