Norm Construction for Linear Mapping

Yuchao Li

July 18, 2019

1 Problem statement

In the norm construction given in the footnote, P. 326, [1], show that β is independent of δ.

2 Elaboration

Denote the matrix $\hat{J}=\Lambda+B(\delta)$ where Λ is the diagonal matrix which contains the eigenvalues of \hat{J} and $B(\delta)$ is a super-diagonal matrix whose super-diagonal elements are either δ or 0 . Therefore, $\forall z \in \mathbb{R}^{n}$, it holds that

$$
\begin{align*}
z^{\prime} \jmath^{\prime} \hat{J} z & =z^{\prime}(\Lambda+B(\delta))^{\prime}(\Lambda+B(\delta)) z \\
& =z^{\prime} \Lambda^{2} z+z^{\prime} \Lambda B(\delta) z+z^{\prime} B(\delta)^{\prime} \Lambda z+z^{\prime} B(\delta)^{\prime} B(\delta) z \\
& =z^{\prime} \Lambda^{2} z+2 z^{\prime} \Lambda B(\delta) z+z^{\prime} B(\delta)^{\prime} B(\delta) z \\
& \left.\leq z^{\prime} \Lambda^{2}+\delta^{2} I\right) z+2 z^{\prime} \Lambda B(\delta) z \tag{2.1}
\end{align*}
$$

where I is the identity matrix and the inequality holds since $\left|z^{\prime} B(\delta)^{\prime} B(\delta) z\right| \leq z^{\prime} \delta^{2} I z$. Here we applys a property of superdiagonal matrix, for example, a straight forward computation shown that

$$
\left[\begin{array}{lll}
0 & \delta & 0 \\
0 & 0 & \delta \\
0 & 0 & 0
\end{array}\right]^{\prime}\left[\begin{array}{lll}
0 & \delta & 0 \\
0 & 0 & \delta \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \delta^{2} & 0 \\
0 & 0 & \delta^{2}
\end{array}\right] .
$$

Note that the components of $z^{\prime} \Lambda B(\delta) z$ have the form $\delta \lambda_{\ell} z_{\ell} z_{\ell+1}$ where λ_{ℓ} is an eigenvalue of A (also of \hat{j}. Therefore, we have

$$
\left|2 \delta \lambda_{\ell} z_{\ell} z_{\ell+1}\right| \leq \delta \sigma(A)\left(z_{\ell}^{2}+z_{\ell+1}^{2}\right) \Rightarrow 2 z^{\prime} \Lambda B(\delta) z \leq \sum_{\ell=1}^{n-1}\left|2 \delta \lambda_{\ell} z_{\ell} z_{\ell+1}\right|<2 \delta \sigma(A)\|z\|^{2}
$$

Note that the last inequality is strict. Then continue from Eq. (2.1), we have

$$
\begin{aligned}
z^{\prime} \hat{J}^{\prime} \hat{J} z & <z^{\prime}\left(\Lambda^{2}+\delta^{2} I+2 \delta \sigma(A) I\right) z \\
& \leq\left(\sigma(A)^{2}+\delta^{2}+2 \delta \sigma(A)\right) z^{\prime} I z \\
& =(\sigma(A)+\delta)\|z\|^{2} .
\end{aligned}
$$

So one typical β is 1 and the bound is not tight.

References

[1] Dimitri Bertsekas, Abstract dynamic programming, 2nd Edition, Athena Scientific, 2018.

