KTH, SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Convergence of Double Sequences

Yuchao Li

July 16, 2019

1 PROBLEM STATEMENT

For extended real line \mathbb{R}^* , we apply the metric given in [Note 2]. That is, $\forall x, y \in \mathbb{R}^*$, the metric is defined as

$$d(x, y) = |f(x) - f(y)|$$
(1.1)

where $f : \mathbb{R}^* \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ is given by

$$f(x) = \begin{cases} -\frac{\pi}{2}, & x = -\infty \\ \arctan x, & x \in \mathbb{R}, \\ \frac{\pi}{2}, & x = \infty. \end{cases}$$
(1.2)

Then similar to the Definition 2.1 in [Note 1], we say a double sequence $\{s(n, m)\}$ that is defined on \mathbb{R}^* converges to $a \in \mathbb{R}^*$, which we write as $\lim_{n,m\to\infty} s(n,m) = a$, if $\forall \varepsilon > 0$, $\exists N(\varepsilon)$, such that $\forall n, m \ge N(\varepsilon)$, it holds that

$$d(s(n,m),a) < \varepsilon. \tag{1.3}$$

Prove the following statement.

Let $\lim_{n,m\to\infty} s(n,m) = a \in \mathbb{R}^*$. Then $\lim_{n\to\infty} (\lim_{m\to\infty} s(n,m)) = a$ if and only if $\lim_{m\to\infty} s(n,m)$ exists for each $n \in \mathbb{N}$.

2 ELABORATION

1. For necessity, since $\lim_{n\to\infty} (\lim_{m\to\infty} s(n,m))$ is well-defined, then $\lim_{m\to\infty} s(n,m)$ exists for each $n \in \mathbb{N}$.

2. For sufficiency, since we know that $\lim_{n,m\to\infty} s(n,m) = a \in \mathbb{R}^*$, then given any $\varepsilon > 0$, $\exists N_1(\varepsilon)$ such that $\forall n, m \ge N_1(\varepsilon)$, it holds that $d(s(n,m), a) < \varepsilon/2$. Since $\lim_{m\to\infty} s(n,m)$ exists for each $n \in \mathbb{N}$, we denote $\lim_{m\to\infty} s(n,m) = c_n$. For a given n, per definition, given any $\varepsilon > 0$, $\exists N_2(n,\varepsilon)$ such that $\forall m \ge N_2(n,\varepsilon)$, $d(s(n,m), c_n) < \varepsilon/2$.

Therefore, given $\varepsilon > 0$, for every $n \ge N_1(\varepsilon)$, chose $m_n > \max\{N_1(\varepsilon), N_2(n, \varepsilon)\}$, it holds that

$$d(c_n, a) \leq d(c_n, s(n, m_n)) + d(s(n, m_n), a) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Namely, $d(c_n, a) < \varepsilon$ holds $\forall n \ge N_1(\varepsilon)$, which concludes the proof.